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ABSTRACT

Multi-processor solutions in the embedded world are being
designed to meet the ever increasing computational demands
of the emerging applications. Such architectures comprise
two or more processors (often a mix of general purpose and
digital signal processors) together with a rich peripheral
mix to provide a high performance computational platform.
While there are many simulation solutions in the industry
available to address the system partitionaing issues and also
the verification of HW-SW interactions in these complex
systems, there are very few solutions targetted towards the
SW application developers’ needs.

The primary concern of the SW application developers
is to debug and optimize their code. Hence, cycle accu-
racy and performance of the simulation solution becomes
the key enablers. Desired observability and controllability
of the models are additional careabouts. Secondly, appli-
cation devlopers are more comfortable at instruction level
simulations than they are with RTL or gate level simulation.
These specific requirements have a bearing on the choices in
the simulation solutions.

This paper describes the design of a generic, C based
multi-processor instruction set simulator framework in the
context of the above parameters. This framework, termed
the “simulation bridge”, facilitates highly accurate, yet ef-
ficient simulation. The SimBridge performs clock correct
lock-step simulation of the models in the architecture using
a global simulation engine that handles both intra-processor
and inter-processor communication in a homogenous fash-
ion. It addresses the multiple key issues of execution control,
synchronization, connectivity and communication.

The paper concludes with the performance analysis of the
SimBridge in an experimental test setup as well as in the
Texas Instruments (TI) TMS320C54x-based simulators.
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1. INTRODUCTION

Emerging embedded applications have necessitated the
advent of high performance DSPs to meet their comput-
ing needs. Among the multiple options available to the de-
sign community, of late, one has witnessed the emergence of
multi-processor DSP solutions as well as higher level of inte-
gration to satiate the MIPS requirements. For instance, in
the Texas Instruments’ context, there are the TNETC4320,
OMAP1510 and the TMS320C5471 platforms integrating
microcontroller and DSP onto a single chip, and devices
like TMS320C5421 & TMS320C5441 comprising 2 to 4 DSP
cores together with a rich mix of shared peripheral subsys-
tems such as DM As, memories, serial ports and other device
controllers.

The application developer (we use the term “application
developer” to refer to “sw application developer”) has to
comprehend a number of features of such architectures in or-
der to implement and optimize solutions. These features in-
clude the individual instruction set architectures of the con-
stituent processors, access characteristics of shared memory,
necessary address translations, characteristics of background
memory transfers, inter-processor communication semantics,
use of shared peripheral subsystems, interrupt behaviour,
boot-up modes, and inherent master-slave relationships. The
developer is, thus, most often interested in running real ap-
plications on such architectures to gather architecture un-
derstanding, perform validations and application optimiza-
tions. It is also important to note that application develop-
ers are more often happier with instruction level visibility
than with RTL or gate level details. This requires cycle
accurate yet abstracted, high-performance and full-featured
simulation platforms that make realistic application simula-
tion feasible, both in terms of performance as well as mod-
eling detail.

Given this recurring need for multi-processor simulators,
it is intuitively appealing to construct an architecture- ag-
nostic simulation framework that hosts common simulation
infrastructure of instruction set simulators. In general, there
are several factors that influence the design decisions for
such a framework. From application development stand-



point, two of the key issues are simulation performance and
cycle accuracy. These are key enablers for large-scale appli-
cation debug and optimization. Further, other factors such
as the observability (to a debugger), controllability and con-
figurability of the simulation come to bear on the design
choices.

These criteria thus define the scope and available choices
for designing the multi-processor simulation framework. This
paper describes the Simulation Bridge (SimBridge, for short)
which has been designed to be a generic multi-processor sim-
ulation framework. SimBridge is an architecture-agnostic
framework that schedules and synchronizes an arbitrary num-
ber of processor models at clock granularity. It also provides
mechanisms for processor models and other components to
be “wired up” and to be able to communicate with one an-
other in a homogenous fashion.

Section 2 takes a quick look at existing literature on multi-
processor simulation in the light of addressing application
developers needs. This is followed by Section 3 which mo-
tivates the need for the simulation bridge by discussing key
factors involved in the design of a generic simulation frame-
work. Section 4 dives into a detailed presentation of the
SimBridge design. Section 5 presents quantitative measure-
ments of SimBridge performance on two case studies: an
experimental test setup and the TI TMS320C54x based sim-
ulator. The paper concludes with a note on future work in
section 6.

2. CURRENT STATE OF THE TECHNOL-
oGY

Multiprocessor simulation is a problem already well ad-
dressed in the EDA world. Specifically Seamless (refer [9]),
VCC (refer [1]), and other HDL simulation environments
provide us with the ability to create and simulate multi-
processor designs. HDL simulation environments typically
work with RTL level capture of the models, which puts
a big constraint on the simulation performance. Seamless
does better by allowing one to interface instruction set sim-
ulators with HDL simulations, thus allowing for instruction
level abstractions from the application developers perspec-
tive. While we can get better performance using Seamless
and its optimizations modes, the speed is still constrained
by the slowness of the HDL simulation. Seamless works well
in the area of low level HW-SW interactions, but is still slow
from full application execution perspective. VCC allows for
various levels of capture of the target system, often trading
off performance for accuracy. While this approach works
well for HW-SW exploration & partitioning, it is not best
suited for application debug and tuning.

There are a few other published works on various efforts
in multi-processor simulations. Most of these provide evalu-
ation frameworks for memory architecture evaluation (refer
[5], [12], [2] and [10]). They work with a specific target
instruction set while allowing for change in the number of
processors and the memory architecture. Luis Barriga et. al.
(refer [8]) give a very good overview of different approaches
on multi-processor simulation and their relative merits and
demerits.

A few other solutions are more relevant to the problem
that we are trying to address, but no one of them seems to
adrress all the issues. Augmentation based SPARC simula-
tor (refer [2]) and the Wisconsin Wind Tunnel (refer [10])

discuss synchronizations across multiple threads and the
granularity for synchronization, but both of them work with
a specific instruction set simulator and are not generic to be
applied for multiple instruction set architectures. Pia(refer
[6]) and the Hierarchical Architecture Simulation Environ-
ment (refer [3]) discuss frameworks that comprehend com-
munication and abstraction of communication, but both sep-
arate the simulation frameworks from the model that needs
to be simulated. While appealing as frameworks, they lead
to loose coupling between the framework and the simulation
models.

3. KEY CAREABOUTS

Instruction set simulators have done well to address the
needs of the application developers in the single processor
domain. They are at the right level of abstraction from
the developers perspective and give good performance. In
moving to system level solutions we should be able extend
these abstracted C based models into the multi-processor
domain. In this section we will look at some of the key
careabouts for a simulation framework targeted to enable
the extension of Instruction set simulators into the system
level models.

3.1 Execution Control of simulated processors

Simulators are typically partitioned into two parts: a de-
bugger that provides the user interfaces and a back-end that
provides the simulation content. Debuggers need to provide
multiple execution controls to the user: single step proces-
sors (group step), free run processors (group run), halt pro-
cessors etc. In the multi-processor context, a whole bunch of
semantics needs to be implemented for their support. Some
of them include: how are group run & step implemented -
by serially running each processor or by running them all
in a synchronous fashion ?, how is a run halted - is there
a globally correct state at which it is safe to halt the system
¢, how are breakpoints handled - if any one processor hits a
breakpoint, should all processors be stopped ?, if so, at what
simulation time - immediately or aligned to some state ?
etc.

An important distinction is that the debugger only pro-
vides user interfaces in support of the above controls. It does
not enforce any semantics of these controls. The definition
and implementation of the semantics, as well as addressing
related concerns of accuracy & efficiency are implemented
in the framework.

3.2 Scheduling & synchronization of simulated
components

An important consideration is the granularity of the atomic
simulation step: does the simulation advance on a clock tick
by clock tick basis ?, or does it advance in some larger chunks
of time ¢. This affects the choice of synchronization and
scheduling strategy.

For a clock accurate simulation, it may be necessary for
the framework to schedule the models to run in such a way
as to mimic true hardware clocking. In a multi-processor
context a host of issues crop up: are all processors running
at the same clock speed ?, if not what are the relative clock
speeds of the constituent processors ?, what is the strategy
for advancing all the processors ?.

This brings up the important question of granularity of
synchronization: how far ahead should any one processor be



allowed to run before synchronizing its time with the rest
of the system ¢ It is intuitively clear that there are trade-
offs among granularity, simulation performance and accu-
racy. While a coarse granularity approach favors higher
performance, it impacts accuracy. To maintain accuracy,
either a fine-grained (pessimistic) synchronization or a roll-
back mechanism is needed (refer [7]).
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Figure 1: Multi-processor system block diagram

Further, the framework has to address the issue of clocking
the non-processor shared components in the system. While
the user interface concerns itself with providing “processor
views” of the multi-processor system, the framework has
to advance not only the processor simulators, but also the
shared active components (such as shared DMAs, memo-
ries etc.) that can not be categorized as belonging to any
single processor (see figure 1). Relevant questions include:
when should the shared active system be clocked ? should it
be clocked only when all processors are Tun (group run) ?
or should it be clocked even if any one processor is single-
stepped ? should the shared system’s clock be synchronized
with the rest of the system ?

3.3 Connectivity between components

Different components have to be interconnected via pins
(as in the silicon) or at other levels of abstraction. Interac-
tion between components occurs by means of pin-level trans-
actions or, as is often the case in a software simulation, at a
higher level of abstraction.

No one processor by itself is aware (nor should it be) of
the system-wide connectivity. For instance, a processor is
not aware of how its output pins are hooked up to the rest
of the system. This calls for an entity that is outside the
realm of any one processor to set up the desired connectiv-
ity. Thus, the framework must facilitate specification and
implementation of this connectivity.

3.4 Communication between components

During the course of simulation, components read from or
write to pins (or other abstractions). This data communi-
cation has to be implemented behind the scenes: no compo-
nent is (should be) aware of inter-component connectivity.
Ideally, components read from and write to abstract, well-
defined interfaces which implement the physical communica-
tion channels. The communication system should also deal
with the issue of order of processing of communication re-
quests: this has impact on both efficiency of communication
as well as on accuracy of simulation.

In the following sections we discuss the SimBridge solu-
tion and some analysis on its expected performance. We will
see how SimBridge is designed to ensure speeds of multi-
processor systems comparable to those of single processor
instruction set simulators while ensuring the ability to main-
tain system wide cycle accuracy thus addressing the needs
of application developers.

4. SIMULATION BRIDGE DESIGN

4.1 Overview

SimBridge is a C-based multi-processor system simulation
framework. It is designed to be able to build over existing
processor and subsystem instruction set simulators, and al-
low for capture of the shared system in an extendable way.
This makes it suitable for capture of any multi-processor
based system, using C-based simulation models of the dif-
ferent processor subsystems, and abstracted models of other
modules in the system. By facilitating tight integration of
the models into a single threaded executable, it provides
very high performance.

Figure 2 captures the overall architecture of a SimBridge-
based solution for multi-processor simulation. The Sim-
Bridge sits between the front end (FE) layers and the sim-
ulation models. It is designed to bridge all the processor
models in the multi-processor simulation system. During
construction of this system it sets up the connectivity be-
tween the different subsystems and enables communication
at execution time. It intercepts & implements all execution
control flow from the FE to the simulation models, supply-
ing semantics, and synchronization. Below, a more detailed
description of SimBridge design and how it addresses the
above considerations is presented.

4.2 Building blocks

The SimBridge is made up of three modules: the execu-
tion manager, the event engine and the processor integration
module (see figure 2). The following sections highlight the
key functionalities provided by each of these modules.

4.2.1 Execution Manager

This module supports the user execution commands: run,
step, group run & group step. As seen from figure 2, the
SimBridge straddles all the back-end processor simulation
models. This allows the execution manager to take complete
control of the execution of the entire multi-processor system.

It provides the following semantics for the group execu-
tion commands (single processor run and step are treated as
special cases of the group run & step, the group size being
1) :

e Group Run: Advance the processors constituting the
group in lock-step: interleave the clocking of the pro-
cessors as to ensure that a global time line is followed.
The termination of the group run occurs whenever:

Any processor completes its run quantum
or
Any processor hits a breakpoint

e Group Step: This is similar to group run except that
the termination of this command occurs when all the
processors finish one instruction each.

Section 4.3 details the functionality of this module.
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4.2.2 Event Engine

The event engine, based on the Core System Simulation
Interface (refer [4]), supports event notification and data
communication between components throughout the sys-
tem. Components post events (along with event-specific
data) into the engine. The engine, in turn, posts the event
notifications to its listeners. A listener typically reads the
associated data and may initiate further events of its own
in response. Thus, no component ever needs to know which
component(s) listen(s) to its event outputs. The event en-
gine guarantees that the posted events are notified in order
obeying the notion of simulation delta: all notifications are
made after the current round of cycle activities complete.
This provides the basis for highly accurate simulation.

Events and associated data pins are initially configured
into the engine using the processor integration module dis-
cussed below. Listener components also register themselves
into the engine, indicating which event(s) they would like
to be notified on. The engine does not distinguish between
inter- and intra-processor notifications. Thus, the global
event engine provides full flexibility and visibility for com-
ponents to “talk” to one another.

4.2.3 Processor Integration Module

While the SimBridge, by design, is generic, it requires in-
put information on the connectivity of the system. This
information comprises of events and pins that components
use. The SimBridge captures this “netlisting” information
via the processor integration module. This module provides
the event engine with the list of events and pins that compo-
nents use for communicating amongst one another. It may
be noted that this module has to be implemented specifically
for each multi-processor configuration.

4.3 Execution support & clock synchroniza-
tion

This section describes the internals of the execution man-
ager in greater detail and also shows how this design ad-
dresses the clock synchronization issues covered earlier.

Firstly, it may be recognized that by performing lock-
stepped clocking of all the processors, the SimBridge pro-
vides highly accurate simulation. Since no processor is al-
lowed to run ahead of the rest (pessimistic synchronization),
it entirely avoids the issue of rollback. Further, the accurate
execution model has no performance impact: all that the
SimBridge does is supply ezxplicit clock triggers to the pro-
cessor simulators instead of letting the processor simulators
generate their own.

4.3.1 Implementation of the execution manager

At start-up, it first acquires the relevant parameters: avail-
able processors and their clock configurations. It also ac-
quries the clock configuration of the shared system. Thus
set up, it implements the group run & step commands by
running the clock generation algorithm:

termination_condition = false;

while ( termination_condition == false)

{
move global time to nearest clock edge.
generate appropriate clock trigger(s).

( this runs the simulation )

compute next, nearest clock edge.
update termination condition.

}

As may be observed, this algorithm is generic and clock-
ratio-agnostic, scaling up to any number of processors and
clock ratios.

Caveats:

1. Termination condition becomes true either if any pro-
cessor completes its pre-assigned quantum of simula-
tion (expressed in cycles or instructions) or if any pro-
cessor hits a breakpoint.

2. Since not all the processors would finish their quanta
together, it becomes necessary to either immediately
stop all of them (aligned to a global time) or to let
them run upto their instruction completions.

3. In the implementation, the processor layers use call-
backs into the execution manager to notify instruction
step completion & breakpoint hit conditions.

4. The execution manager clocks the shared subsystem
along with the processor layers to ensure accurate sim-
ulation of the entire system. Even when a single pro-
cessor is run or stepped, the shared subsystem is clocked
(even though it breaks the concept of a global time).
The intuition behind this choice is that:

e when a processor is run, it typically needs to in-
teract with the shared system

e shared components are of a request-response na-
ture & not absolute clock value based.

e user is anyway not keeping the processors’ execu-
tion in lock-step.



e If the system time was held close to the individual
processor time, then it would lead to starvation
of processor requests.

4.4 Customizing the SimBridge

The SimBridge is designed to be a generic framework, ca-
pable of working with any number of processors, different
clock ratios and so on. With additional effort it is pos-
sible to derive specific versions of the SimBridge for bet-
ter performance. For example, for commonly encountered
configurations (such as a two processor system with iden-
tical clock speeds), the efficiency of the SimBridge can be
boosted by specializing its implementation to take advan-
tage of the settings. This also enables the SimBridge to be
deployed in uni-processor simulations. The execution man-
ager facilitates this capability by allowing its functions to be
overridden in custom ways.

5. CASE STUDY & PERFORMANCE RE-
SULTS

The evaluation of the SimBridge was conducted on two
test setups: A. an experimental test bench that mimicked
processor models and B. the TT TMS320C54x based simu-
lator.

5.1 Experimental test setup

The experimental setup consists of dummy processor mod-
els. These models do not model any architecture but simply
get clocked by the SimBridge. This setup was intended to
serve functional validation and exploration of the SimBridge.

Since the SimBridge has two main parameters, namely
number of processors and clock ratios, following two perfor-
mance characteristics were measured: one, simulation time
versus the number of processors, and two, simulation time
for changing clock ratios.
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Figure 3: Simulation Time vs Number of Processors

Figure 3 shows the variation of simulation time with in-
crease in number of processors. All processors were clocked
at the same speed and the simulation was run for 5M cycles.

The “ideal” line was obtained by simply scaling the time for
a single processor simulation in a non-SimBridge setup by
the number of processors. SimBridge linear extrapolate was
obtained by scaling the time for a single processor simula-
tion in the SimBridge setup by the number of processors.
Actual overhead is the difference of the SimBridge actual
and the ideal. Linear overhead is the single processor over-
head scaled up. It is clear that the overhead of SimBridge
does not multiply with the number of processors.
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Figure 4: Simulation Time for Changing Clock Ra-
tios

Figure 4 shows simulation times for changing clock ratios
in a two-processor configuration. The simulation was run
for 5M cycles of the fastest clock. The curve shows that
the simulation time falls as clock ratio is increased. This is
because, as the clock ratio becomes more and more skewed,
fewer and fewer ticks of the slower clocks are issued, resulting
in lesser synchronization and simulation. Thus, as the clock
ratio becomes very skewed, the dominating cost is that of
clocking only the fastest processor. Due to implementation
overheads, this asymptotic cost is higher than the ideal uni-
processor simulation cost.

While SimBridge has been optimized for efficient schedul-
ing and synchronization, owing to its generic nature it suf-
fers performance losses. To further improve performance, a
handful of customizations were done (exploiting knowledge
of clock ratio, and number of processors). The performance
of the customized system was compared against an ideal,
home-grown solution that we refer to as a “stand-alone”
setup. The stand-alone setup essentially hard programmed
the clocking sequence. Table 1 gives an indicative summary.
It shows that the overheads can be cut down appreciably by
exploiting domain-specific knowledge.

5.2 The TMS320C54x-based simulation setup

The TMS320C54x-based simulator comprised cycle accu-
rate C models of the TMS320C54x (refer [11]) CPU together
with on-chip, off-chip memories, timers and serial ports. To
measure real-life simulation performance, the simulator was
instantiated upto 3 times & integrated into SimBridge to



Table 1: Performance comparisons of generic, cus-
tomized, and stand-alone setups (all times in sec-

onds)
clock ratio | Stand-alone | Customized | Generic
setup SimBridge SimBridge
[% overhead] | [% overhead]
1:1 11.2 12.15 [8.4 13.80 [23.2
1:2 8.7 9.75 [12.0 12.16 [39.7
1:3 7.8 9.05 [15.8 10.91 [24.4
1:4 7.6 8.78 [15.2 10.20 [33.8
1:5 75 8.75 [16.6 9.16 [22.1]

Table 2: TMS320C54x simulation performance

Configuration Time Cycles Speed
(seconds) | simulated | (kcps)

Single processor 14.4 8195740 570

(without SimBridge)

Single processor 20.3 8195740 404

(with SimBridge)

Two processors 324 16391480 | 506

Threee processors 45.6 24587220 | 539

mimick a true multi-processor scenario. Data was collected
by running identical copies of the matrix multiplication ap-
plication on all the instantiated models.

Table 2 shows that the SimBridge delivers good multi-
processor simulation performance (of the order of a few hun-
dred keps - kilo cycles per second). While the single proces-
sor scenario shows some overheads w.r.t a native simulation
setup, the two- and three-processor versions show that the
SimBridge integrates multiple processors in a very efficient
manner, scaling up with very little synchronization over-
heads. The data demonstrates that it is feasible to perform
real application simulation on multi-processor architecture
simulators by means of tightly coupled, accurate C models.

6. CONCLUSIONS

In this paper, we have seen that there is a gap in the sys-
tem level simulation solutions available today, namely, meet-
ing the needs of SW application developers. As instruction
set simulators have been very successful in addressing the de-
velopers’ needs in the uni-processor space, we looked at some
of the key careabouts in being able to extend these solutions
into the multi-processor domain. The SimBridge framework
is specifically designed to address these careabouts, and do
so without adding too much of a simulation overhead. As
shown in Section 5, it achieves performance comparable to
that of stand-alone uni-processor instruction set simulators
while still being able to provide cycle level accuracy.

Going forward, we need to see how SimBridge can be de-
signed differently to be able to further reduce the overheads
and improve performance. Some of the considerations here
would be increasing the granularity of synchronization, con-
sidering non-interpretive simulation and distributed tech-
niques. Also, given the trend towards building applications
on top of minimal operating systems running on DSPs, it
may be profitable to switch between accurate and functional
simulation styles dynamically.

Also, it is planned to make the SimBridge configurable
enough to let the end user put together a multi-processor

simulation system and run it. This involves reading up the
configuration information from a front-end or a database
and generating the corresponding Processor Integration Mod-
ule. Another extension is to be able to integrate simulators
from different vendors via the SimBridge. While it is be-
lieved that these extensions fit into the current framework,
these capabilities are yet to be demonstrated.
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