
Worst-Case Performance Analysis of Parallel,
Communicating Software Processes ∗

A. Siebenborn, O. Bringmann and W. Rosenstiel

FZI Forschungszentrum Informatik
Haid-und-Neu-Str. 10-14

76131 Karlsruhe, Germany
[siebenborn,bringmann]@fzi.de

Universität Tübingen
Sand 13

72076 Tübingen, Germany
rosenstiel@informatik.uni-tuebingen.de

ABSTRACT
In this paper we present a method to perform static tim-

ing analysis of SystemC models, that describe parallel, com-
municating software processes.The paper combines a worst-
case execution time (WCET) analysis with an analysis of
the communication behavior. The communication analysis
allows the detection of points, where the program flow of
two or more concurrent processes are synchronized. This
knowledge allows the determination of the worst-case re-
sponse time (WCRT). The method does not rely on restric-
tions on the system design to prevent deadlocks or data loss.
Furthermore possible deadlocks and data loss can be detected
during the analysis.

1. INTRODUCTION
The complexity of systems is increasing more and more,

and often a single processor is not suitable to cope with
high computational demands. Today multi processor sys-
tems are used for different applications, e.g. network pro-
cessing or multimedia. Often these systems consist of DSPs
and micro-controllers and interact with dedicated hardware.
Increasing system complexity raises the demand for an un-
ambiguous form of specification, that allows the description
of systems, consisting of software and hardware. Moreover it
should be possible to verify the correctness of such a specifi-
cation. These requirement are fulfilled by the SystemC mod-
eling platform. SystemC allows to create executable specifi-
cations of systems. It is based on the programming language
C++, extended by constructs, that allow the description of
concurrency, timing and reactivity, all of which are neces-
sary to model parallel systems containing both software and
hardware. These extensions are realized by classes, in con-

∗This work was partially suported by the DFG prior-
ity programs on Embedded Systems Ro1030-5/3 and the
BMBF/MEDEA+ project SPEAK A-508

.

trast to adding new syntactic constructs. This way common
C++ tools can be used for the design. Though SystemC
allows a functional verification of the system by execution
of the model, a verification of the temporal behavior of the
system, especially the software, is needed. Timing behavior
has to be explicitly specified. Execution times for software
implementations could be determined by performing static
timing analysis. However current methods for timing analy-
sis are not able to handle concurrency and communication.
We introduce a new method for static timing analysis for
parallel, communicating systems specified by SystemC, the
use of the determined timing values for the SystemC model
and an analytical method to determine the worst-case re-
sponse time of such a system. As a side effect we detect
possible deadlocks, that result from structural and tempo-
ral properties of the system. The paper is structured as
follows: In section 2 we give an overview other works in the
area of timing analysis. In section 3 we shortly mention
some properties of SytemC, especially communication and
concurrency. Since we combine two methods, we have to de-
compose the problem for the two different domains, which
is presented in section 4. Section 5 gives an introduction
of our method of static timing analysis. In section 6 the
communication analysis is presented and illustrated by an
example in section 7.

2. RELATED WORK
Objective of timing analysis in the area of embedded sys-

tems is to gain information on the correctness of the pro-
grams timing behavior. There are several approaches to
bound the worst-case execution time of single software tasks.
In principle there are two different approaches: Methods
performing an explicit path enumeration and methods based
on implicit path enumeration. The idea of explicit path
enumeration is to use standard graph algorithms to find
the longest path in the control flow graph of a program.
An example for this approach can be found in [1]. In gen-
eral algorithms for longest path search are not suitable for
cyclic graphs. For that reason loops are replaced by complex
nodes.

A method based on implicit path enumeration, is pre-
sented in [5, 7]. Herein the problem is formulated by integer
linear programming (ILP). With this method it is possi-
ble to model the whole system, including properties of pro-
cessor architecture, like pipelining, caches and super-scalar

execution units. Furthermore it is possible to formulate re-
strictions on the program flow, which result from functional
properties of the program, like loop bounds or excluding
path dependencies.

Since communication can block the execution of a soft-
ware process, WCET analysis is not sufficient. In this case
the worst-case response time (WCRT) of a system is needed.
State-charts are a graphical method to specify system be-
havior. This language allows the description of concurrent
processes with communication across hierarchical levels. In
[4] a method is presented to validate the timing behav-
ior of state-charts. Since communications are blocking on
both sides, every communication represents a synchroniza-
tion point , which makes a timing analysis easier. However
the use of one sided communication leeds to more efficient
implementations. Methods allowing a global communica-
tion analysis are known from the area of hardware design.
However existing approaches often rely on fixed timing be-
havior between communication points and are restricted on
systems without data dependent control structures [6]. In
[3] a method is presented to calculate the WCRT of a system
of concurrent processes. Yet, this method assumes a correct
specified system, without deadlocks and data loss. In [2] a
method to detect synchronization points in communicating
processes is presented. As a side-effect the method can de-
tect data losses and deadlocks in a system. The information
gained by this method can be used for resource sharing dur-
ing hardware synthesis. However, the worst case response
time is not determined by this approach.

3. PARALLEL PROCESSES IN SYSTEMC
The SystemC design platform is a C/C++ based design

methodology that allows system specification at several ab-
straction levels, allowing the specification of both hardware
and software. In addition to pure C/C++ descriptions,
SystemC allows the description of concurrency, communi-
cation and timing. The model can be executed to verify
the system behavior. We will consider SystemC version 2.0
specified in [8]. In SystemC concurrency is expressed by
threads. For communication and synchronization SystemC
provides events, interfaces and channels. Events are the
basic synchronization primitives and are used to construct
communication on higher levels. Events are triggered by
the notify() method. Process execution can be suspended
by the wait()-method, resumed by occurance of specified
events. The concept of channels provides a very flexible
way to specify communication. Simple FIFO communica-
tion can be specified as well as higher level communication
protocols. Specification of temporal behavior can be realized
by the s clock class, which allows to specify a clock with a
certain period, or the wait(100, SC NS) method, which sus-
pends the execution of a process, for a specified time (100
nanoseconds in this case). The wait() method can be used
to specify the timing behavior of software parts, since it is
possible to annotate the execution time of code sequences.
These execution times can be determined by static timing
analysis, which we will show later in the paper.

The communication analysis, that we present in this paper
handles communication at a very basic level. In principle we
distinguish between three communication primitives:

• Asynchronous communication means, that neither the
receiver, nor the sender blocks execution at the com-

munication point, denoted as (sasync;rasync).

• In half-synchronous communication, one communica-
tion partner blocks at the communication point. This
can be the receiver, waiting for a message, or the sender,
waiting that the receiver is ready, denoted as
(ssync;rasync) or (sasync;rsync)

• By full-synchronous communication we mean commu-
nication, where both sender and receiver wait for each
other at the communication point, denoted as
(ssync;rsync).

The channel concept of SystemC allows the specification
of all three communication types. In asynchronous com-
munication, there is no synchronization between threads
at all. Full-synchronous communication guarantees process
synchronization. Half-synchronous communication can lead
to process synchronization under certain conditions. Since
the occurance of synchronization influences the systems over-
all timing behavior, they are worth further examination. In
section 6 we will show, what are the conditions for synchro-
nization and how synchronization points can be determined.

4. PROBLEM DECOMPOSITION
The approach presented in this paper allows the validation

of the real-time behavior of systems of concurrent software
processes. Hereby the WCRT of the system can be deter-
mined. Additionally the system is checked for potential data
loss and deadlock. While other approaches only discuss sys-
tems with synchronization at both sides of communications
[4] or simply assume that the rate of sending is less or equal
to the rate of receiving [3], our approach finds possible data
loss and deadlocks. Data loss occurs when the rate of send-
ing data is higher, than the rate of data consumption. Since
production and consumption rates are dependent on execu-
tion times, a priori assumptions are difficult to make.

Our approach combines two methods: (1) Communication
Analysis and (2) Static Timing Analysis. This two methods
work in two different problem domains. Static timing analy-
sis handles code sequences with control structures, including
loops with bounded iteration counts. Communication, that
blocks process execution and loops with unknown iteration
counts can not be handled. On the other hand, for commu-
nication analysis only communication points and the timing
behavior between those nodes are of interest. Consequently
the first step is, to decompose the problem for the two anal-
ysis domains.

The first step is to find and classify communications in
the programs. In SystemC communication is encapsulated
by channels, interfaces and ports. This way communication
points are easy to find. The methods notify() and wait()

give the necessary information for a classification.
Communication points represent the nodes of the commu-

nication dependency graph CDG, which will be explained in
section 6. An edge between two nodes in the CDG exists,
if a path in the control flow graph exists, that connects the
two communication nodes, without including an other com-
munication node. The minimum and maximum latency be-
tween the two nodes is determined by static timing analysis.
For that purpose a subgraph of the control flow graph CFG
is build up, which contains a communication node as start
and end node. The subgraph contains all paths between the

corresponding communication nodes, which do not include
further communication nodes.

5. STATIC TIMING ANALYSIS
The problem addressed in the area of static timing analy-

sis is to bound the execution time of a given sequence of code
executed on a given processor. It is assumed that the given
piece of code complies the restrictions on tasks, that means
uninterrupted execution, no blocking communications and
no unbounded loops. The term processor includes any ar-
chitectural components, that influence the runtime of pro-
grams. So, not only the execution units, also memory hier-
archy and busses are considered. This opens a large design
space, that can be exploited at an early design stage. The
execution time of a program may vary dependent on input
data and the state of the processor system. The objective
of static timing analysis is to find a time interval, which in-
cludes all possible execution times. The bounds should be
as tight as possible to the actual minimum and maximum
execution time. The problem is equivalent to the problem
of finding the longest path in the program’s control flow
graph CFG. Since control flow graphs are cyclic graphs in
general, this problem is only decidable, if the execution of
loops is bounded by additional constraints. Though there
exist standard graph algorithms to determine the longest
paths in graphs, they are not applicable on cyclic graphs.
We use an approach which formulates the problem as an
optimization problem with linear constraints. The integer
linear programming (ILP) is a flexible way to formulate and
solve this kind of problems.

The objective function of the problem is given by the fol-
lowing expression:

N∑
i=1

cixi , (1)

where N is the number of basic blocks in the CFG, ci the
execution time or cost of a basic block and xi its execu-
tion count. There are two types of constraints: (1) con-
straints that describe the structure of the CFG, and (2)
constraints that result from program functionality. Details
of the method can be found in [5].

6. COMMUNICATION ANALYSIS
For the communication analysis only information on the

communications and the temporal behavior between these
communications is of interest. This information can com-
pactly be represented as a communication dependency graph
CDG, defined as follows:

Communication Dependency Graph(CDG). A commu-
nication dependency graph of a process is denoted by
CDG := 〈VCDG, ECDG, ECOM , τCDG, lCDG〉, where

• VCDG is a set of nodes representing communication
nodes or loops with unbounded data-dependent delay.

• ECDG ⊆ VCDG × VCDG is a set of directed edges de-
scribing the precedence dependencies between nodes.

• ECOM ⊆ Vsend × Vrec, with Vsend = {v ∈ VCDG :
τCDG(v) ∈ {sendasync, sendsync}} and vrec = {v ∈
VCDG : τCDG(v) ∈ {receiveasync, receivesync}} is a

set of directed edges describing the communication
channel.

• The function τCDG(v) : VCDG → {sendasync, sendsync,
receiveasync, receivesync, init} denotes the type of each
node.

• The edge weights are represented by the function lCDG :
ECDG → N0 × N0 with minimal and maximal execu-
tion time lCGD(v1, v2) = (csmin, csmax) between two
nodes v1, v2 ∈ VCDG.

A communication dependency graph CDG is a directed,
cyclic graph, which can be constructed based on the CFG
of each process. The edges ecom are given by the commu-
nication. Edges ecdg represent the control flow between two
communication points in the CFG. An edge ecdg between
two nodes in the CDG exists, if there exists a path in the
CFG between the corresponding basic blocks. The latencies
cmin, cmax are attributed to the edges ecdg, which are the
execution times of the longest and shortest path between
the corresponding nodes in the control flow graph. These
latencies are determined by static timing analysis. For that
purpose subgraphs of the control flow graph have to be con-
structed, that contain all possible paths from one communi-
cation node to an other in the CFG.

6.1 Synchronicity Conditions
A synchronicity condition can be formulated based on the

communication dependency graph. This condition has to
be fulfilled for all synchronization points. Each communica-
tion pair vs, vr is a potential candidate for a synchronization
point. An obvious condition is, that the blocking communi-
cation participant is reached before the non-blocking partic-
ipant. The set of nodes on the shortest path from v1 to v2 is
denoted by pathmin(v1 ; v2). Analogically the set of nodes
on the longest acyclic path is denoted by pathmax(v1 ; v2).
The function L(p) means the sum of all edge latencies l on
a path p.

A communication C = (vs → vr) with (vs, vr) ∈ ECOM is
a synchronization point if

L(pathmax(vsync ; vr)) ≤ L(pathmin(v′sync ; vs))
∀(vsync ↔ v′sync) ∈ SPpre(vs → vr), with

SPpre(vs → vr) = {(vsync ↔ v′sync ∈ SP :
∃p1 ∈ paths(vsync ; vr), p2 ∈ paths(v′sync ; vs)
∀(vm → vn) ∈ SP : vm, vn 6= vsync ∧ vm, vn 6= v′syn ∧
vm, vn /∈ p1 ∪ p2 ∧ p1, p2 /∈ �} holds.

Herein the set SPprec(vs → vr) refers to all previous syn-
chronization points from which the communication nodes
vs or vr can be reached directly, without passing an other
synchronization point. This synchronization condition rep-
resents an actual criterion for the verification of existing
synchronization points. However for the detection of syn-
chronization points the criterion is not applicable. Figure 1
shows the application of the synchronization condition. In
this example the following equations can be determined:

L(pathmax(I2 ; R1)) ≤ L(pathmin(I1 ; S1))

1 ≤ 2

L(pathmax(S3 ; R1)) ≤ L(pathmin(R3 ; S1))

1 ≤ 1

The communication (S1 → R1) is a synchronization point if
(S3 → R3) and (I1, I2) are synchronization points. Later in
the paper we will show, how synchronization points can be
determined and how the cyclic dependency introduced by
the process loop can be resolved.

1

S2

S1

2R

3

1R

3

1

1

1

2

1

4 2, 7

R 3S

II 2

Figure 1: Communication Dependency Graph

6.2 Synchronization Point Detection
The main task during the communication analysis is the

determination of all feasible synchronization points, such
that the condition formulated in section 6.1 holds. Since
this condition is based on an already determined set of syn-
chronization points, a constructive algorithm is needed. Our
algorithm is divided into two phases. In the first phase, ini-
tially synchronous communications are determined, which
fulfill the synchronization condition between the reset state
and the treated communication nodes. The second phase ob-
serves the processes after their initiation is completed. Ob-
jective is to determine the minimum number of wait states
of each receive node. If the result is negative, then the cor-
responding communication is not a synchronization point.
This can be done by formulating the synchronization condi-
tions as a system of linear equations. As already shown in
section 6.1, there is a cyclic dependency introduced by the
process loop. At this point we introduce the term commu-
nication cycle Cycle(Pi, Pj), which is the ordered set of all
communications between two processes Pi and Pj . With this
ordered set we can define a relation ≺, which means for two
communications C1, C2 ∈ Cycle(Pi, Pj) with Ci ≺ Cj that
communication C1 is reached before C2 for all possible input
data. The cyclic dependency is resolved the way, that first
all communications of a communication cycle are assumed
to be synchronization points and the synchronicity condi-
tion is checked for the cycle. If one communication does not
fulfill the synchronicity condition, it will be removed from
the cycle and all condition are checked again. The method
terminates, if all communications of all cycles fulfill the syn-
chronicity condition, such as they form a ring closure. To
prove, that the communication points in the detected cycles
are really synchronization points the synchronicity condition
is checked, based on the initial synchronization points. To
describe the problem by a set of equations, minimum and
maximum slack variables are introduced, describing mini-
mum and maximum number of wait states at the communi-
cation points. The synchronicity condition from section 6.1
is not fulfilled, if the result for a slack variable is a nega-

tive value. There are two types of synchronicity equations,
corresponding to the minimum slack variables xi and the
maximum slack variables xi:

SE(Cisync ; Ci) : L(pathmax(visync ; vr))

= L(pathmin(v′isync ; vs)) + xi

SE(Cisync ; Ci) : L(pathmin(visync ; vr))

= L(pathmax(v′isync ; vs)) + xi

Figure 2 shows a part of an example CDG. In this figure
the influence of a communication from an other communi-
cation cycle is illustrated. When communication C5 is not
considered, the following equations can be derived.

SE(C3 ; C4) : 4 + x4 = 5⇒ x4 = 1

SE(C1 ; C2) : 8 = 1 + 1 + x4 + 1 + x2

⇒ x2 = −1

with 1 + x4 = 7⇒ x4 = 6

To determine the maximum path R1 ; R2, the maximum
slack variable x4 has to be considered and for its determi-
nation an additional equation is needed.

3Process P21Process P Process P

1
1

7

C1

5,7

C2

C3

C4

1

1,4

1

C5

S1

2S

S5

S

3S

R5

2R

3R

4R

1R

4

Figure 2: Interdependencies between communication
cycles

The determination of the maximum and minimum path
in such a case can be demonstrated using the example in
Figure 2.

L(pathmin(R1 ; R2))

= minA+ maxB + x4 + minC

= minA+ maxB + (minD −maxB) + minC

with x4 = minD −maxB ≥ 0

= minA+ minD + minC

L(pathmax(R1 ; R2))

= maxA+ minB + x4 + maxC

= maxA+ minB + (maxD −minB) + maxC

with x4 = maxD −minB ≥ 0

= maxA+ maxD + maxC

Due to the influence of communication C4, the path maxD
has to be considered to determine the maximum path from
R1 to R2. The inspection of paths of processes, which are
not part of the communication cycle Cycle(Pi, Pj), can be
avoided by expressing the minimum path to the send node
in the other process by the maximum path to the receive
node and the minimum slack variable xi.

Though the evaluation of min and max functions means
an additional effort, it leads to a reduction of the number of
variables and equations. Taking communication C5 in the
example from Figure 2 into account, the problem can be
expressed by the following equations:

SE(C3 ; C4) : 4 + x4 = 5⇒ x4 = 1
SE(C1, C3 ; C2) : 7 + x5 = 1 + 5 + 1

⇒ x5 = 0
SE(C1 ; C2) : 8 + x5 = 1 + 4 + x4 + 1 + x2

⇒ x2 = 1

In this case the path over communication C3 has to be
taken into account, to express the synchronicity equation
SE(C1, C3 ; C2).

In Figure 6.2 the algorithm of our method is shown. The
algorithm is quite similar for the determination of initial syn-
chronization points and repetitive synchronization points.
For the initial synchronization point communication cycles
with init-nodes of the CDG are considered. For the determi-
nation of repetitive synchronization points the communica-
tion cycles do not contain init-nodes. In a first analysis step
we determine the communications, where program synchro-
nization can be guaranteed. As a result we get the minimum
slack variables xi. If the constructed equation system is not
solvable, due to an inconsistency, a deadlock in the system
is possible. If no synchronization point between processes
is found, this indicates possible data loss. The synchro-
nization points determined in the first step, are the base to
calculate the maximum slack variables xi in a second step.
The variables xi provide us with the necessary information
to calculate a WCRT of the system.

At the first sight it seems to be obvious, that a optimiza-
tion problem has to be solved to determine all maximal slack
variables. But since the calculation of a slack variable is al-
ways based on the preceding synchronization point, only the
paths between this two communications have to be consid-
ered, so that only the Gauss algorithm has to be applied, to
solve the equation system.

7. EXAMPLE
In this section we present an example applying our ap-

proach to the specification of an Ethernet controller, with
respect to the description shown in [3].

In Figure 4 the CDGs are shown for the three processes.
The processes are communicating via the communication
channels C1, C2, C3, C4 and C′4 where the channels C4 and
C′4 represent a communication to multiple receivers. The
CDG contains three communication cycles:

Cycle1(P1, P2) = {C3, C4}
Cycle2(P2, P3) = {C′4}
Cycle3(P1, P3) = {C1, C2}

In the first phase all communications are observed, whether
they are initially synchronous. An initially synchronous

function RepetitiveSync(CDG) return SP RSP;
compose the set of all communication cycles CYCLE;
mark all communications C with analyzed(C) = false;
while ∃Cycle ∈ CYCLE ∧ C ∈ Cycle : analyzed = false do

LES = setupLES(CDG);
solve LES;
// evaluate solution
if xi ≥ 0 ∀xi ∈ solution(LES) then

for each xi ∈ var(LES) do
if τC(Ci) ∈ {ISP, SP} then

set all ISP of current communication cycle to SP
set analyzed(C) = true ∀C ∈ Cycle : Ci ∈ Cycle

else
set τC(Ci) = RSP ∧ analyzed(C) = true;
RSP = RSP ∪ {Ci};

fi;
od;

else
test, if a non-SP communication has influence and correct result;
remove all communication Cj ∈ Cyclej in Cyclej if: xj < 0;

fi;
od;

end RepititiveSync;

Figure 3: Algorithm for synchronization point detec-
tion

communication is a suitable candidate for a synchroniza-
tion point. With respect to the algorithm presented in

1 2Process P 3Process PProcess P

1

2

2

2

2

2 1

2

1,2

1

3,288

3,22

1

3

C
C

C

2

4

1

4

C’’

3

4C’C

S
4S

S

1

4

3I

2R

4R’

2I

3R

4R

S

3S

1I

1R

Figure 4: Synchronization points of an Ethernet con-
troller

Figure 6.2, first all initial synchronization points will be de-
termined.

SE1(I1, I2 ; C3) : 4 + x1 = 2 + x3

SE2(I1, I3 ; C1) : 5 + min (x′4, x
′′
4) = 3 + x1,

with x′′4 = 0

SE3(I2, I3 ; C′4) : 5 + x3 = 3 + x4

This equation system has the solution x1 = 2, x3 = 4,
x′4 = 6. Thus the communications C1, C3 and C′4 are initial
synchronization points. It is obvious, that the intra pro-
cess communication C′′2 has not to be considered for syn-
chronization point analysis. Without the communication
C′′4 the system would contain a deadlock, since in this case

from the equations SE1 and SE2 the equation x3 = x′4 + 4
can be derived. Inserted in SE3 the inconsistent equation
5 + x′5 + 4 = 3 + x′4.

The second equation system conduces to test the remain-
ing communications points.

SE1(C3 ; C4) : 3 = 3 + x4

SE2(C1 ; C2) : 2 = 1 + x2

The solution x2 = 1 and x4 = 0 indicates, that C2 and C4

are initial communication points too. In the second phase
the global synchronization points are determined. For the
equations paths from the last initial synchronization points
to the first communications of each synchronization cycle:

SE1(C4 ; C3) : 23 + x1 = 2 + x3

SE′2(C2, C4 ; C4) : 2 + x4 = 2 + x4

SE3(C2 ; C1) : 4 + x′4 = 24 + x4 + x1

SE4(C3 ; C4) : 3 = 3 + x4

SE5(C1 ; C2) : 2 = 1 + x2

With SG2(C′4 ; C′4) : 5 + x3 = 5 + x2 + x′4 the equation
system would have a cyclic dependency. For that reason it
is replaced by equation SG′2 where a path from communi-
cation C2 to C′4 over communication C4 is considered. The
equations SG4 and SG5 are inserted to determine the vari-
ables x2 and x4. The system has the solution x1 = −20,
x2 = 1, x3 = 1, x4 = 0, x′4 = 0. Since x1 has a negative
value, the corresponding communication C1 is no synchro-
nization point. The communication C1 is removed from the
communication cycle and a new equation system is set up.

SE1(C4 ; C3) : 4 = 2 + x3

SE′2(C2, C4 ; C′4) : 2 + x4 = 2 + x′4
SE3(C2 ; C2) : 7 + x4 = 5 + x′4 + x2

SE4(C3 ; C4) : 3 = 3 + x4

This system of equations leads to the solution x2 = 2, x′3 =
2, x4 = 0, x′4 = 0. Now all variables have positive values
and the algorithm terminates.

The determined variables represent the minimal wait cy-
cles at the synchronization points. Based on the determined
synchronization points, the maximum value for the wait
states will be determined in the next step. These values
are needed to determine a WCRT of the system. First the
maximum slack variables for the initialization can be deter-
mined.This leads to the solution x1 = 2, x3 = 4, x′4 = 292 In
the second step the maximal slack variable for the iterative
case are determined:

SE1(C4 ; C3) : 4 = 2 + x3

SE
′
2(C2, C4 ; C4) : 2 + x4 = 2 + x4

SE3(C2 ; C2) : 26 + x′4 = 5 + x4 + x2

SE4(C3 ; C4) : 288 = 2 + x4

The solution in this case is x2 = 21, x3 = 2, x4 = 286,
x′4 = 286. With this information it is possible to deter-
mine maximal execution times between arbitrary points in
the system and this way to determine the WCRT of a the
system.

8. CONCLUSION
We presented a method to perform timing analysis in sys-

tems consisting of parallel software processes. We combined

a method for static timing analysis with an approach for
communication analysis. The SystemC modeling platform
allows the description of such systems. However there is
a need for a method, to prove the temporal correctness of
such descriptions. The presented method could be applied
on SystemC models, and this way it would be possible to ver-
ify the temporal correctness of the software in a SystemC
model, including the detection of deadlock and data loss.
The application of the method has been demonstrated by
an example. Besides information an the temporal correct-
ness, the information on control flow synchronization can
be used in a further step, to perform an efficient processor
allocation in a multiprocessor environment.

9. REFERENCES
[1] P. Altenbernd. On the False Path Problem in Hard

Real-Time Programs. In Proceedings of the 8th
Euromicro Workshop of Real-Time Systems, 1996.

[2] O. Bringmann, W. Rosenstiel, and D. Reichardt.
Synchronisation Detection for Multi-Process
Hierarchical Synthesis. In Proceedings of International
Symposium on System Synthesis (ISSS) Hsinchu,
Taiwan, 1998.

[3] S. Dey and S. Bommu. Performance Analysis of a
System of Communicating Processes . In Proceedings of
ICCAD, 1997.

[4] E. Erpenbach and P. Altenbernd. Worst-Case
Execution Times and Schedulability Analysis of
Statechart Models. In 11th Euromicro Conference on
Real Time Systems, 1999.

[5] A. Hergenhan and W. Rosenstiel. Static Timing
Analysis of Embedded Software on Modern Processor
Architectures. In Proceedings of the Date 2000
Conference, March 2000.

[6] H. Hulgaard and T. Amon. Symbolic Timing Analysis
of Asynchronous Systems. In IEEE Transactions on
Computer-Aided Design, volume 19. 2000.

[7] Y.-T. S. Li and S. Malik. Performance Analysis of
Embedded Software Using Implicit Path Enumeration.
In Proceedings of the 32nd ACM/IEEE Design
Automation Conference, pages 456–461. IEEE, June
1995.

[8] Open SystemC Initiative (OSCI). Functional
Specification for SystemC 2.0. www.SystemC.org,
January 2001.

	Main Page
	CODES'02
	Front Matter
	Table of Contents
	Author Index

