
FPGA Resource and Timing Estimation
from Matlab Execution Traces

Per Bjuréus
Saab Avionics
Nettovägen 6

175 88 Järfälla, Sweden
+46 (8) 790 4132

perb@imit.kth.se

Mikael Millberg
Royal Institute of Technology

Electrum 229
164 40 Kista, Sweden

+46 (8) 790 4145

micke@imit.kth.se

Axel Jantsch
Royal Institute of Technology

Electrum 229
164 40 Kista, Sweden

+46 (8) 790 4124

axel@imit.kth.se

ABSTRACT
We present a simulation-based technique to estimate area and
latency of an FPGA implementation of a Matlab specification.
During simulation of the Matlab model, a trace is generated that
can be used for multiple estimations. For estimation the user pro-
vides some design constraints such as the rate and bit width of
data streams. In our experience the runtime of the estimator is
approximately only 1/10 of the simulation time, which is typically
fast enough to generate dozens of estimates within a few hours
and to build cost-performance trade-off curves for a particular
algorithm and input data. In addition, the estimator reports on the
scheduling and resource binding used for estimation. This infor-
mation can be utilized not only to assess the estimation quality,
but also as first starting point for the final implementation.

Keywords
Design exploration, Matlab, FPGA, Estimation

1. INTRODUCTION
System-level estimation of design properties such as performance,
area and power is hard and can be performed with sufficient accu-
racy for specific design flows and target architectures. In the se-
quel we propose an estimation technique for Matlab descriptions
to be implemented on an FPGA. The entire workflow is presented
as shown in Figure 1.
The execution trace, which is derived from a simulation of the
Matlab program, contains information about the number of times
all Matlab operations and functions are executed for a particular
set of input vectors. From this trace, an acyclic data flow graph
(DFG) is derived. It is acyclic because all loops are unfolded in
the execution trace. The operations of the DFG are scheduled and
bound to FPGA resources by way of a greedy scheduling and
binding algorithm. The FPGA performance model provides timing
information, which is detailed enough to estimate pipelining and
resource sharing effects.

Matlab
Specification

Matlab
Specification

Execution
Trace

Execution
Trace FPGA

Perf. Model

FPGA
Perf. Model

Resource
& Timing
Estimate

Resource
& Timing
Estimate

Type
Refinement

Type
RefinementSimulationSimulation

EstimationEstimation

Figure 1. Design space exploration workflow

The main target application area is regular data flow systems such
as signal or image processing applications. In that domain Matlab
is a very popular language to explore and develop algorithms.
During algorithm development it is extremely beneficial to ap-
proximately estimate performance and cost of a possible imple-
mentation. Having this feedback available quickly may allow
tuning the algorithm for optimal performance-cost trade-off.
In earlier work we have developed a system-level modeling envi-
ronment that integrates the languages Matlab and SDL to allow to
evaluate and simulate the complete system including the data flow
and the control dominated parts. This allows the designer to get
the system functionality right before implementing it in lower
level C and VHDL code. In order to also optimize for perform-
ance and cost at the system level, fast feedback through estimation
is needed. However, a useful estimation must take the target archi-
tecture and technology into account. In [5] we have reported a
stochastic approach to estimate the performance of Matlab pro-
grams in a SW implementation. Here we complement this work
with an estimator for an FPGA implementation. Even though a
complete estimation tool suite should also contain estimators for
other target technologies and architectures, we have already come
a long way by developing a simulation trace based estimation
framework, which allows the integration of new estimators with
moderate effort.

2. RELATED WORK
This paper spans a large number of disciplines in electronic sys-
tem design from high-level specification to scheduling and re-
source binding. However, our focus is on the high-level modeling,
type refinement, and trace generation techniques. We have chosen
a simple approach for low-level scheduling and resource binding

to justify the high-level concepts. A data flow graph is generated
from the high-level model. This is a commonly used representa-
tion, enabling alternative, more advanced and accurate low-level
methods to be integrated with our framework.
High-level design exploration is recognized as an important activ-
ity in the design flow and other frameworks have been proposed.
The Polis framework [1], developed at UC Berkeley targets con-
trol dominated embedded systems. Polis uses Esterel as its front-
end language, and employs a Codesign Finite State Machine
(CFSM) model of computation to model communication and con-
currency. In Polis, the user performs design exploration by map-
ping CFSMs onto different architectural components. Mapping
onto SW yields a sequential execution of the state machine
whereas mapping onto hardware yields a state machine that is
always executed in one clock cycle. The Polis framework controls
synthesis and the estimation relies on knowledge about the code
generation. Our work differs in several ways. We do not have
knowledge about the code generation, which makes estimation
significantly harder. The algorithms we target are data flow domi-
nated and cannot in most cases be executed in a single clock cycle
in hardware.
Matlab code generation and synthesis is targeted by the Match
(MATlab Compiler for Heterogeneous computing systems) pro-
ject at the Northwestern University [4][8]. The Match project
allows VHDL generation from Matlab code for FPGA implemen-
tation. This requires a static analysis of the code and gradual
transformations to exploit the parallelism. Since Matlab is dy-
namically typed, a static analysis requires that the size and shape
of the Matlab matrices be bounded explicitly. In our approach, we
only try to estimate an implementation. Therefore, to relieve the
designer from the task of explicitly defining matrix bounds, the
matrix size and shape is recorded during execution. This speeds
up design exploration when the designer wants to explore differ-
ent matrix bounds.
Bammi et al. [3] use a virtual instruction set with an associated
performance model for each virtual instruction to estimate per-
formance of a C program. Similar to us they also use a simulation
run and perform part of the compilation/synthesis to increase es-
timation accuracy. However, they have C programs as input and
estimate SW implementations while we work with Matlab to esti-
mate FPGA implementation.
A different approach, also for the performance estimation of C
programs, is taken by F. Balarin [2] who asks the user to provide
abstractions for the components to be estimated. These abstrac-
tions are executed during a simulation run and can be used to
collect information about the run-time of the considered compo-
nent in sophisticated ways. The user has some control over the
accuracy of the estimation by choosing the abstraction.
Yet another approach, taken by Brandolese et al. [7], is to derive a
probability distribution for the performance. The objective is
again to estimate the performance of a C program with the help of
a simulation run during which information about execution count
of individual statements and operations is collected. Together with
a probability distribution of the execution delay of operations, a
probability distribution for the execution time of the entire pro-
gram is derived.
We have previously used a similar, execution-trace based, ap-
proach to estimate the execution time of software processes on
microprocessors [5]. The work in this paper complements our

previous efforts and is a further step to a complete estimation tool
suite for HW/SW codesign.
The novelty with our work lies in the extraction and processing of
execution data from a Matlab simulation using trace-generating
functions. We have developed a method, tools and libraries that
support the techniques presented. The usage of Matlab is not re-
stricted per se, but rather by the extent of the trace-generating
library, which can easily be expanded to facilitate any Matlab
operators and functions. The results from the scheduling and
binding algorithms are preliminary but show the validity of the
concept.

3. PREMISES
Starting from a Matlab function specification we want to trade off
design parameters such as throughput, latency and resource utili-
zation (area) for an FPGA implementation of the function. We
allow the Matlab specification to contain control statements such
as if-then-else and unbounded loops. The primary target applica-
tions are resource dominated dataflow processes with a constant
execution rate.
Consider the following Matlab code:

r = a*b;

Estimating the area and latency of this code fragment is virtually
impossible without knowing the size, shape, and type of the vari-
ables. The variables, a and b, can be scalars, vectors, or matrices,
and the number of multiplications is not known until run-time
unless the size of a and b is bounded beforehand. Matrix bound-
ing is not enforced in Matlab and is not common practice.
Furthermore, the default Matlab data type is double precision
floating-point. It is unlikely that an FPGA implementation will
use this data type because it would require floating-point arithme-
tic, which is very expensive in terms of area and latency. A more
realistic approach is to use fixed-point arithmetic. However, Mat-
lab does not natively support fixed-point data types and therefore
the designer must explicitly define the fixed-point format (bit
width and fraction), at least for the input data stream.

3.1 Functional Specification
The functional specification is written in Matlab. The Matlab code
can be executed to verify the correct behavior of the specification.
To perform trace generation, the type of the variables must be
changed to a trace generating class called “agent” by adding the
“agent” keyword when a new variable is declared.

a = 4;

The above variable declaration is changed into:

a = agent(4);

The agent class has the ability to keep track of the operations and
dependencies throughout execution by operator overloading. The
agent class also has the ability to record and use external type
specifications, see section 4.
Definition 1: Dataflow Process. A dataflow process P is a func-
tional unit with a set of input ports and a set of output ports.
When a dataflow process executes, a number of tokens are con-
sumed from the input ports, and a number of tokens are produced
at the output ports.

Definition 2: Rate Constraint. A rate constraint Cr defines how
often (exactly) data arrives at a process port.
In the Matlab specification, constraints can be added according to
the below example. The constraints will be recorded in the execu-
tion trace and used by the estimation tool.

addconstraint('DD1Re', '16MHz');

addconstraint('DD1Im', '16MHz');

The process execution rate can be derived from the rate con-
straints of the data streams that are connected to the process ports.

3.2 Execution Trace
To be able to estimate control statements correctly, a simulation-
based approach is used. During simulation, an execution trace is
recorded that accurately captures all computation and communica-
tion that occur in the system. Here, we are only interested in com-
putation, which appears in the execution trace as process invoca-
tions. A process invocation represents the activation and execu-
tion of a dataflow process in the specification

Definition 3: Process Invocation. A process invocation ξ is a
sequence of operation traces ξ = {ω1, ω2, ..., ωk}, k ≥ 0.
The operation traces in the process invocation captures the execu-
tion of functions and operations inside the process.

Definition 4: Operation Trace. An operation trace ω is a 9-tuple
ω = (i, op, P, loc, n, D, Ω, t, r) where i∈N is an instance
count, op is an operation identifier, P={p1, p2, ..., pm}, m ≥ 0 is
a list of parameters, loc is a location identifier, n is an operation
node identifier, D={n1, n2, ..., nj}, j ≥ 0 is a list of dependency
node identifiers, Ω={ω1, ω2, ..., ωk}, k ≥ 0 is a list of child
operation traces, t is a type identifier, and r∈N is a repeat count.
The parameter list P contains a set of structural parameters. For
example the multiplication operation shown below has three pa-
rameters, which specify the size of the matrices being multiplied.

2 # MUL (2,3,2) [test: line 5] *n45* <n43, n44> {
} [fixpt4.3] # 1

The instance count i specifies how many independent instances of
the operation that are executed. The repeat count r on the other
hand, specifies how many times the operation is executed sequen-
tially. The instance and repeat counts result from vector process-
ing in Matlab and is just a compressed way to write a symmetric
dependency graph.
Figure 2 shows how the instance and repeat counts are inter-
preted. The same operation is laid out in an r×i matrix, where
operation instances on the same row are independent of each
other, whereas all operations in a single row are dependent of all
operations in the previous row.
The operation node identifier n and the dependency node list D
are used to derive dependencies. An operation A that depends on
another operation B will have B’s node identifier nB in its de-
pendency list DA.

i # op # r

op1,1 op1,2 op1,i…

…

opr,1 opr,2 opr,i…

op2,1 op2,2 op2,i…

Figure 2. Instance and repeat count interpretation

The operation trace is hierarchically decomposed through the
child operation trace list Ω. Note that this relation is very different
from the operation dependency. An operation trace with a non-
empty child operation list can be fully substituted by its children
during estimation. For example, the Matlab filter operation is a
complex operation that can be decomposed into multiply-
accumulate (MAC) operations. The MAC operation in turn can be
decomposed into multiplication and addition. If the performance
model can estimate an entire filter, the top-level operation is used,
and the child operations will be disregarded. Otherwise, the MAC
child operations will be used, and, if the MAC operation cannot
be estimated either, it will be further broken down into multiplica-
tion and addition operations.
The type identifier t specifies the data type of the operation and is
used to determine the operation bit width.

3.3 FPGA Performance Model
The FPGA is represented by a performance model, which is used
to retrieve the area and latency information about different opera-
tions in the execution trace. Each operation is mapped to a par-
ticular FPGA resource such as e.g. a comparator. The resource is
modeled as a function that maps an operation to an estimated area,
latency, and service rate.
Definition 5: Performance Model. A performance model M is a
function that maps an operation identifier op, argument bit widths
<width> and clock speed clk, to area, latency and service rate:
M(op, <width>, clk) = (S, lat#, rate–1), where S∈R is the
resource area (size), lat#∈N is the latency expressed in number of
clock cycles, and rate-1∈N, 1 ≤ rate-1 ≤ lat# is the inverse of
the service rate expressed in clock cycles per data.
The service rate is used to exploit pipelining. When the rate in-
verse equals the resource latency, i.e. rate-1=lat#, the resource
can service a new input data at the same rate as its total latency
and no pipelining is possible. When the service rate inverse is less
than the resource latency (rate-1 < lat#), pipelining is possible.

4. TYPE REFINEMENT
Since the hardware resources used in an implementation are very
sensitive to the bit widths of the input and output arguments, the
bit widths need to be specified before estimation.
Starting from an executable Matlab specification the user must
perform type refinement to be able to generate an execution trace
for hardware estimation. The goal has been to allow maximum
reuse of the original code during the refinement task.

The type refinement technique that we propose is similar to [10],
which requires two execution passes. In the first pass, the data
types of all variables in the specification are recorded. This proce-
dure must be repeated every time a change is made in the func-
tional specification. During recording, operator output data types
are automatically derived from the input data types. When the data
types have been recorded, they can be modified externally, allow-
ing the designer to control the bit widths and accuracy. In the
second execution pass, the specification uses the externally de-
fined data types, checking and issuing warnings for overflows. In
this way, data type exploration can be performed until satisfactory
accuracy is achieved. The recorded variables are displayed and
modified in a type configuration window; see Figure 3.

Figure 3. Type configuration window

The user has an option to set the data type explicitly in the Matlab
code, which will then be used in the recording pass.

a = agent(4, 'a', 'fixpt10.-5');

The code fragment above shows how this is done. The variable ‘a’
is declared as a fixed-point variable with bit width 10 and the
binary point located 5 bits to the left of the least significant bit.
Note that the type definition found in the Matlab code will be
overridden by the external type specification during the second
execution pass.

5. ESTIMATION
When the Matlab specification has been type refined, and an exe-
cution trace has been recorded, the estimator takes over. During
estimation the following steps are performed:

•= Build DFG
•= Annotate DFG nodes with resource data
•= Create area/latency grid from constraints
•= Schedule and bind operators and resources
In the first step, the execution trace is read and a data flow graph
(DFG) is built. The DFG is a bipolar directed acyclic graph where
each node corresponds to an operation.
In the second step, the DFG is annotated with resource data, e.g.
latency as shown in Figure 4. The resource data is fetched from
the FPGA performance model according to section 3.3. This step
requires that the clock speed f of the FPGA and the execution rate
r be set in advance. If rate constraints are available, the execution
rate is derived from those.

MUL

MUL

MUL

ADD

CMP

Source

Sink

50

100

100

10

10

Source

Sink
Figure 4. DFG node latency annotation

The annotated DFG is then traversed from top to bottom and back
to compute the earliest execution time (EET) and the remaining
execution time (RET) for each node. Figure 5 shows this step
applied to the example in Figure 4. The EET of the sink node
corresponds to the minimum expected latency of the DFG.

50

100

100

10

10

Source

Sink

(0)

(50)

(150)

(50)

(150)

(160)

(170)

50

100

100

10

10

Source

Sink

(0,170)

(50,110)

(150,10)

(50,120)

(150,20)

(160,10)

(170,0)

Figure 5. EET and RET annotation

During estimation, there are four design parameters to trade off:
FPGA clock speed f, execution rate r, latency l, and area A. The
latency defines the time from data input to data output. The area
parameter specifies how much area the resources occupy in the
chosen device. The clock speed determines the device clock fre-
quency and is used to derive the clock period T=1/f.
The estimator uses the annotated DFG together with the area and
latency to determine a schedule and resource binding of an im-
plementation of the Matlab function. To this end we have used an
area/latency grid.

Latency (l)

To
ta

l A
re

a
(A

)
R1R1

R2R2

R3R3

R5R5

R4R4

R
es

ou
rc

es

op1

Clock Period (T)

Resource Latency (lR)

Resource Area (AR)
Dependency

Figure 6. Area/latency grid

Figure 6 shows a schematic picture of the area/latency grid. Each
resource is assigned to a row, where the height of a row corre-
sponds to the area of the resource. The total grid height is con-
strained by the area A. Each column corresponds to a clock cycle

with period time T. Resources are instantiated in the grid when
they perform an operation and are labeled with the operation they
perform. A resource instance spans one or more columns in the
grid according to its resource latency lat#. A resource can be re-
used at an interval that is equal to its inverse service rate: rate-1.
This allows us to model pipelined resources that can be reused at
an interval that is shorter than its latency.
The scheduling and resource-binding algorithm that we have used
is a greedy algorithm that works as follows:

•= Initialize the area/latency grid G by searching the DFG for
all different resources. At least one resource of each kind
must be available in the grid.

•= Initialize the DFG by setting the modified execution time
(MET) to EET, and marking each node as “not visited”.

•= Initialize a set E of enabled nodes. The set will initially con-
tain all the successors of the source node

•= While the set of enabled nodes is not empty, E≠∅, do the
following:
−= Select the next node n∈E to schedule by choosing the

node with (1) smallest MET and (2) greatest RET.
−= Find an idle resource R for the next operation. If no re-

source is currently idle, create a new resource. If a new
resource cannot be created due to area constraints, select
the resource that will become idle first.

−= Schedule the node n on the selected resource R by add-
ing it to the grid. Update the MET of the node and all its
successors down to the sink node accordingly.

−= Mark the scheduled node n as “visited” and update the
enabled node list E by removing n and adding all suc-
cessors that have all predecessors marked visited.

•= When the active node list is empty, all operations have been
scheduled. Calculate the area and latency from the grid.

The scheduling and resource binding optimization problem is well
known in the high-level synthesis field, and a much more exten-
sive treatment of the subject is available e.g. in [9].

6. EXPERIMENTS AND RESULTS
To validate the proposed estimation technique, we have applied it
to the ArbiterThreshold process fetched from a model of a
Digital Receiver [5]. The selected process was simulated, refined,
and used to generate an execution trace. A performance model of
an FPGA was developed and used for estimation. Design explora-
tion was then performed to trade off different design parameters.

6.1 Type Refinement and Trace Generation
The ArbiterThreshold process was first simulated in Matlab to
verify the function on a behavioral level. After functional verifica-
tion, the data types of the process inputs were changed to the
‘agent’ class. The process was then simulated again, recording the
data types in the process. After recording the variables, the type
configuration window was used to display and alter the data types.
At this point, all data types were refined into fixed-point with
appropriate bit widths. To verify that the correct behavior was
preserved after type refinement, the process was again simulated
using the refined types. After verification, the process was simu-
lated one last time in “trace”-mode, storing all operations in a file.

Table 1. ArbiterThreshold process execution time
Simulation Mode Simulation Time
Normal 5.8680
Record data types 57.7730
Use data types 138.9400
Trace 255.0670

Table 1 shows the simulation time of the ArbiterThreshold
process in different simulation modes.

6.2 FPGA Performance Modeling
To model the performance of the FPGA, three operations (addi-
tion, multiplication, and comparison) that are central in the
ArbiterThreshold process were characterized. The characteri-
zation process was automated with a script, allowing a large num-
ber of possible implementations to be investigated.

Table 2. FPGA Performance Model Operations
Op # BW Delay Pipe Size

ADD 12 4x4-32x32 8.29 - 103.47 0 6-62
CMP 12 4x4-32x32 10.66 - 70.49 0 3-50
MUL 160 4x4-32x32 8.94 - 150.13 0-5 35-2128

Table 2 shows a summary of the FPGA performance model used.
The first column displays the operation (Op) and the second col-
umn the number of possible operations available in the model (#).
The third column shows the range of bit-widths available (BW).
Column four shows the range of delays acquired (Delay), where
the delay corresponds to the service rate inverse: rate-1. Different
pipeline lengths were derived for the MUL operation and range
from zero to five (Pipe). Finally, the last column shows the range
of sizes (Size), expressed in number of look-up tables (LUTs).

6.3 Design Exploration
We have developed a tool that operates on the execution trace and
allows the designer to alter design parameters and run the estima-
tion. The tool used for estimation is shown in Figure 7.

Figure 7. Estimation Tool

The tool shows the hierarchical execution trace to the left and the
node parameters after annotation to the right.

The design exploration was performed considering several design
alternatives. The interesting design parameters are:

•= Number of input channels (8 or 16)
•= Input stream bit width (8 or 16)
•= Input stream data rate (1 MHz)
•= Device Clock Speed (8, 16, and 32MHz)
•= Execution Latency
•= Device Area
Altering the first two parameters requires that the Matlab specifi-
cation be changed and that new execution traces be generated for
each set of parameters. The last four parameters can be explored
using the same execution trace with a fixed number of channels
and input stream bit width.
We explored the design parameters according to the above speci-
fication and the result is shown in Figure 8.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

0 1000 2000 3000 4000 5000
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

0 1000 2000 3000 4000 5000

0.00

2.00

4.00

6.00

8.00

10.00

12.00

0 1000 2000 3000 4000 5000
0.00

2.00

4.00

6.00

8.00

10.00

12.00

0 1000 2000 3000 4000 5000

8 Channels, Bitwidth 16 16 Channels, Bitwidth 16

8 Channels, Bitwidth 8 16 Channels, Bitwidth 8

Figure 8. Design exploration

The input bit width was 8 and 16 bits, and the number of input
channels 8 and 16. Thus, in total four execution traces were used.
In each graph, the latency (y-axis) and area (x-axis) is shown for
device speeds 8MHz (diamonds), 16MHz (squares), and 32MHz
(circles). In general, the latency increases with decreasing area
and device speed. There are however discrepancies that can be
explained by the greedy algorithm, which sometimes lead to local
optima. The entire exploration, containing 98 data points in the
design space, took less than an hour to perform.
Since the estimation is based on real component libraries, and the
estimator generates a valid schedule, the accuracy of the estimate
has been shown to be within ±10% if that particular solution is
implemented. However, the estimate should be viewed as an up-
per bound, because clever engineers and modern high-level syn-
thesis tools are capable of more sophisticated optimization.

7. DISCUSSION
The high-level estimation technique presented allows a user to
efficiently trade off different design parameters for an FPGA im-
plementation of a Matlab specification. The estimator only pre-

sents one possible implementation of the function. However, it
also provides a resource and schedule report that shows the de-
signer which implementation that was estimated. This gives the
engineer a fair chance to actually implement the function in com-
pliance with the design goals. Other scheduling and resource
binding techniques can be integrated with the same framework
since the internal DFG representation is commonly used in high-
level synthesis. The framework is therefore flexible, and we have
implemented a simple low-level technique to demonstrate how the
high-level techniques can be used.

8. REFERENCES
[1] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L.

Lavagno, C. Passerone, A. Sangiovanni-Vincentelli, E.
Sentovich, K. Suzuki, B. Tabbara, Hardware-Software Co-
Design of Embedded Systems: The Polis Approach, Kluwer
Academic Press, 1997

[2] F. Balarin, "STARS of MPEG decoder: a case study in
worst-case analysis of discrete event systems", Proceedings
of the International Workshop on HW/SW Codesign, pp.
104-108, April 2001.

[3] J.R.Bammi, E.Harcourt, W.Kruijtzer, L. Lavagno,
M.T.Lazarescu, "Software Performance Estimation Strategies
in a System-Level Design Tool", Proceedings of the
International Workshop on HW/SW Codesign, pp. 82-86,
May 2000.

[4] P. Banerjee, N. Shenoy, A. Choudhary, S. Hauck, C.
Bachmann, M. Haldar, P. Joisha, A. Jones, A. Kanhare, A.
Nayak, A. Periyacheri, M. Walkden, D. Zaretsky, “A
MATLAB compiler for distributed, heterogeneous,
reconfigurable computing systems”, Proceedings 2000 IEEE
Symposium on Field-Programmable Custom Computing
Machines, Napa Valley, CA, USA, 17-19 April 2000

[5] P. Bjureus, F. Hoffman, “Modeling a Digital Receiver with
Mascot”, Proceedings of the Designer's Forum at Design,
Automation & Test in Europe Conference (DATE), Munich,
Germany, 2001

[6] P. Bjureus, A. Jantsch, “Performance analysis with
confidence intervals for embedded software processes”,
Proceedings of the International Symposium on System
Synthesis (ISSS), Montreal, Que., Canada, 30 Sept.-3 Oct.
2001

[7] C. Brandolese, W. Fornaciari, F. Salice, D. Sciuto, "Source-
Level Execution Time Estimation of C Programs",
Proceedings of the International Workshop on HW/SW
Codesign, pp. 98-103, April 2001.

[8] M. Haldar, A. Nayak, N. Shenoy, A. Choudhary, P.
Banerjee, “FPGA hardware synthesis from MATLAB”,
Proceedings of 14th International Conference on VLSI
Design, Bangalore, India, 3-7 Jan. 2001

[9] G. De Micheli, Synthesis and Optimization of Digital
Circuits, McGraw-Hill, 1994

[10] H. Olson, A. Jantsch, H. Tenhunen, “Floating- to Fixed-
Point Refinement in Matlab with an Object-Oriented
Library”, Proceedings '99. 17th NORCHIP Conference,
Oslo, Norway, 8-9 November 1999

	Main Page
	CODES'02
	Front Matter
	Table of Contents
	Author Index

