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ABSTRACT
Intra-task voltage scheduling (IntraVS), which adjusts the supply
voltage within an individual task boundary, is an effective tech-
nique for developing low-power applications. In this paper, we
propose a novel intra-task voltage scheduling algorithm for hard
real-time applications based on average-case execution informa-
tion. Unlike the original IntraVS algorithm where voltage scaling
decisions are based on the worst-case execution cycles, the pro-
posed algorithm improves the energy efficiency by controlling the
execution speed based on average-case execution cycles while still
meeting the real-time constraints. The experimental results using
an MPEG-4 decoder program show that the proposed algorithm
reduces the energy consumption by up to 34% over the original
IntraVS algorithm.

1. INTRODUCTION
Since energy consumption E of CMOS circuits has a quadratic

dependency on the supply voltage VDD, lowering the supply volt-
age VDD is the most effective way of reducing energy consump-
tion. However, lowering the supply voltage also decreases the clock
speed, since the CMOS circuit delay TD is given by TD ∝VDD=(VDD�
VT )

α [6], where VT is a threshold voltage, and α is a velocity sat-
uration index. This trade-off introduced various dynamic voltage
scaling (DVS) techniques. DVS techniques change the clock speed
and its corresponding supply voltage dynamically to the lowest pos-
sible level while meeting the task’s performance constraint.

1.1 Dynamic Voltage Scaling
For hard real-time systems, there exist two DVS approaches de-

pending on the scaling granularity. Inter-task voltage scheduling
(InterVS) [9, 2, 8, 5] determines the supply voltage on task-by-
task basis, while intra-task voltage scheduling (IntraVS) [4, 7] ad-
justs the supply voltage within an individual task boundary. Both
approaches can guarantee the required performance constraints of
real-time systems.
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Intra-task voltage scheduling [4, 7] has been proposed as a so-
lution to overcome the limitations of inter-task voltage scheduling.
IntraVS algorithms exploit all the slack time from run-time vari-
ations of different execution paths; there is no slack time when
the scheduled program completes its execution, thus significantly
improving energy efficiency. Furthermore, since IntraVS does not
involve OS in adjusting the clock speed, it can be used with an
existing OS without any modifications on a variable voltage pro-
cessor.

We propose an energy-efficient IntraVS algorithm for hard real-
time applications based on average-case execution information. Un-
like the original IntraVS algorithm [7] where voltage scaling deci-
sions are based on worst-case execution cycles, the proposed al-
gorithm controls the execution speed based on the average-case
execution paths (ACEPs), which are the most frequently executed
paths. Since the proposed algorithm is optimized for the energy re-
duction in the ACEP(s), which are the most likely path(s) that will
be executed at run time, the proposed algorithm is more effective
than the original intraVS algorithm [7] in reducing the energy con-
sumption. The novel aspect of the proposed algorithm is that the
timing constraints of a hard real-time program is still satisfied, even
if the ACEP(s) are used for voltage scaling decisions.

2. ORIGINAL INTRA-TASK VOLTAGE
SCHEDULING ALGORITHM

For a hard real-time task, the goal of an intra-task voltage schedul-
ing algorithm is to assign a proper clock speed to each basic block
so that energy consumption is minimized while satisfying timing
requirements. In this section, we briefly describe the original intra-
task voltage scheduling algorithm [7] as a short introduction to
intra-task voltage scheduling.

Throughout this paper, we assume the following about the tar-
get variable voltage processor: The processor provides a special
instruction, change f V( fCLK), which changes the current clock
frequency to fCLK and adjusts the supply voltage to the correspond-
ing voltage VDD. fCLK and VDD can be set continuously within the
operational range of the processor. When the processor changes the
clock/voltage, there is a clock/voltage transition overhead. During
clock/voltage transition, the processor stops running.

Consider a hard real-time program P with the deadline of 2 µsec
shown in Fig. 1(a). The CFG GP of the program P is shown in
Fig. 1(b). In GP, each node represents a basic block of P and each
edge indicates the control dependency between basic blocks. The
number within each node indicates CEC(bi) which is the number of
execution cycles of the corresponding basic block. The back edge
from b5 to bwh models the while loop of the program P.

Using a WCET analysis tool, we can find the path pworst = (b1,bwh,
b3,b4,b5,bwh,b3,b4,b5,bwh,b3,b4,b5,bwh,bi f ,b6,b7) as the worst case
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execution path (WCEP) for the example program P, assuming that
the maximum number of while loop iterations is set to 3 by user.
The predicted execution cycles of pworst is, therefore, 160 cycles,
which is the worst case execution cycles (WCEC) of program P.
If a target processor operates at the maximal 80-MHz clock fre-
quency, the program P completes its execution in 2 µsec, resulting
in no slack time.
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Figure 1: An example program; (a) an example real-time pro-
gram P and (b) its CFG GP.

The key observation behind the IntraVS approach is that there
are large execution time variations among different execution paths.
For short execution paths, if we were able to identify them in the
early phase of its execution, we can lower the clock speed substan-
tially, thus saving a significant amount of energy consumption.

For the speed adjustment, intra-task voltage scheduling tech-
nique uses an adaptive approach with the help of a static program
analysis technique on worst case execution times. Assume that
CRW EC(bi) represents the remaining worst case execution cycles
(RWEC) among all the execution paths that start from bi. Using
a modified WCET analysis tool, for each basic block bi, we can
compute CRW EC(bi) in compile time. In Fig. 1(b), the symbol [ ]
contains the CRWEC(bi) values of each basic block. For the ba-
sic blocks related to the while loop (i.e., bwh, b3;b4;b5), the cor-
responding nodes are associated with multiple CRWEC(bi) values,
reflecting the maximum three iterations of the while loop.

With the CRWEC(bi) values computed, we can statically iden-
tify an edge (bi;b j) (of a CFG G) where [CRWEC(bi)�CEC(bi)] 6=
CRW EC(b j). For example, in Fig. 1(b), we can identify four such
edges, i.e., (b1;b2), (bwh;bi f ), (bi f ;b7) and (b3;b5), which are
marked by the symbol �. These marked edges form a set of candi-
date Voltage Scaling Edges (VSEs). If an edge (bi;b j) is selected as
a VSE, it means that the clock speed will change when the thread
of execution control branches to bj from bi. For example, the clock
speed will be lowered when the basic block b2 is executed after
b1 because the remaining work is reduced by 1/5 (i.e., the ratio of
CRW EC(b2) to [CRWEC(b1)�CEC(b1)]).

At the selected VSEs, the new clock speed is determined by
how much the remaining work is reduced. For example, when
the thread of execution control meets a VSE (bi;b j), the clock
speed can be lowered because the remaining work is reduced by
[R�CRW EC(b j)] where R =CRW EC(bi)�CEC(bi). After bi is exe-
cuted at the clock speed S, the clock speed can be changed to reflect
the reduction in the remaining work. The new clock speed for bj

is set to S� CRWEC(bj)
R . We call CRWEC(bj)

R as the speed update ratio
(SUR) for the edge bi ! b j , denoted by SUR(bi ! b j).

By the original IntraVS algorithm, the clock speed is changed
from 80 MHz to 16 MHz (= 80 MHz � 30

160�10 ) at the edge (b1;b2).
Assuming that no energy is consumed in an idle state and E ∝ CL �

Ncycle �VDD
2, when the execution follows the path p1 = (b1;b2;bi f ;

b6;b7), the original IntraVS algorithm reduces the energy consump-
tion by 69%.

Since there exists the transition overhead during speed changes,
not all the candidate VSEs are selected as VSEs. A candidate VSE
is selected as a VSE when the number of saved cycles at the can-
didate VSE is larger than a given threshold value. The threshold
value is determined by a VSE selection policy, which is a function
of the transition time overhead, the transition power overhead, and
the code size increase (by the added scaling code).

3. PROFILE-BASED INTRA-TASK VOLTAGE
SCHEDULING

3.1 Motivation
Before the profile-based IntraVS algorithm is presented, we first

generalize the original IntraVS algorithm described in Section 2. In
order to adjust the clock speed at VSEs, IntraVS first selects a (pre-
dicted) reference execution path such as the WCEP. Once the ref-
erence execution path is decided, IntraVS sets the initial operating
voltage and its corresponding clock frequency assuming that the
task execution will follow the predicted reference execution path.

When the actual execution deviates from the (predicted) refer-
ence execution path (say, by a branch instruction), the clock speed
can be adjusted depending on the difference between the number of
remaining execution cycles of the reference execution path and the
number of remaining execution cycles of the newly deviated exe-
cution path. If the new execution path takes significantly longer to
complete its execution than the reference execution path, the clock
speed should be raised to meet the deadline constraint. On the other
hand, if the new execution path can finish its execution earlier than
the reference execution path, the clock speed can be lowered to
save the energy consumption. Once the actual execution takes a
different path from the reference path, a new reference path is con-
structed starting from the deviated basic block.

Using a static program-analysis technique, IntraVS identifies the
appropriate program locations where the clock speed should be
raised or lowered relative to the current clock speed. For the clock
speed adjustment at run time, IntraVS algorithm inserts voltage
scaling code to the selected program positions. The candidate posi-
tions for inserting voltage scaling code are the branching edges of
the CFG, which correspond to the branch or loop statements.

We call the original IntraVS as the remaining worst-case exe-
cution path (RWEP)-based IntraVS, because the remaining worst-
case execution path (RWEP) is used as the reference path. In the
RWEP-based IntraVS, the clock speed is monotonically decreasing
at all the VSEs. Depending on how the reference path is selected,
however, the clock speed may be increased as well at some VSEs.
Therefore, we divide VSEs into Up-VSEs and Down-VSEs. The
clock speed is increased at an Up-VSE while the clock speed is
decreased at a Down-VSE.

Although the RWEP-based IntraVS reduces the energy consump-
tion significantly while guaranteeing the deadline, this is a pes-
simistic approach because it always predicts that the longest path
will be executed. A more optimistic approach is to use the average
case execution path (ACEP) as a reference path. The ACEP is de-
fined to be an execution path that is most likely to be executed. The
ACEP can be decided by the execution profile information.

The main motive of using the ACEP instead of the WCEP is to
make the common case more energy-efficient. For a typical pro-
gram, about 80 percent of the program’s execution occurs in only
20 percent of its code, which is called the hot paths [1]. For an In-
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traVS algorithm to be energy-efficient, it should be energy-efficient
when the hot paths are executed. If we use one of hot paths as a
reference path for intra-task voltage scheduling, the speed change
graph for the hot paths will be a near flat curve with little changes
in the clock speed, which gives the best energy efficiency under
a given amount of work [3]. Even for the paths that are not the
hot paths, if we take one of hot paths as a reference paths, they
are more energy-efficient because they can start with a lower clock
speed than when the WCEP is used as a reference path.

In the profile-based IntraVS, we take the ACEP, which is the
best representative of the hot paths, as the reference path. We call
such an IntraVS algorithm as the remaining average-case execution
path (RAEP)-based IntraVS because the remaining average-case
execution path (RAEP) is used as the reference path.

Figure 2 shows an RAEP-based CFG GRAEP
P with CRAEC(bi)

values that represent the remaining average-case execution cycles
among all the paths that start from bi. The bold edges in GRAEP

P
means that it has a higher probability to be followed at run time
between two branching edges. In Fig. 2, the initial reference path
is (b1;bwh;b3;b5;bwh;b3;b5;bwh;bi f ;b7). With the reference path,
CRAEC(bi) is computed. For example, CRAEC(bi f ) = CEC(bi f )+
CRAEC(b7). At the RAEP-based IntraVS, there are Up-VSEs (marked
by � in Fig. 2) as well as Down-VSEs (marked by � in Fig. 2). Fig-
ure 3 shows how the speed and voltage change by the RAEP-based
scheduling. The speed is changed from 14 MHz to 21 MHz at the
edge (bi f ;b6) because this is an Up-VSE with the SUR value of
1.5 (= 15

15�5 ). Compared to the energy consumption of the RWEP-
based IntraVS algorithm, the RAEP-based IntraVS algorithm achieves
55% more energy reduction.
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Figure 3: Speed and voltage changes by the RAEP-based In-
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Though the RAEP-based scheduling is more effective in reduc-
ing the energy consumption than the RWEP-based scheduling, the
pure RAEP-based approach cannot meet the timing requirements of
hard real-time applications. This is because it dose not satisfy the
timing constraint for all the execution paths. For example, consider
the case when the WCEP and ACEP take significantly different
number of execution cycles. When the execution takes the WCEP
at the middle of program execution, it is possible that the program
cannot meet its deadline even if the remaining path executes with
the maximum clock speed. The next section describes a novel ap-

proach that is still based on the RAEC but can guarantee the timing
constraint for all the execution paths.

3.2 Reference Path Modification
To overcome the deadline miss problem of the pure RAEP-based

IntraVS algorithm, we modify the reference path whenever the dead-
line miss situations are identified. Assume that the reference path is
pre f = (b1; � � � ;bi;bi+1; � � � ;bN), bi is a branching node whose chil-
dren basic blocks are bi+1 and bmiss, and the current clock speed at
bi is S. If the clock speed at bmiss, given by S�SUR(bi ! bmiss),
is larger than the maximal clock speed (MaxS) of the processor, it
indicates that if the current execution branches to bmiss, the dead-
line will be missed. This is because the remaining time TR to the

deadline is TR =
CRAEC(bi+1)

S and MaxS�TR <CRAEC(bmiss). There
are M = [CRAEC(bmiss)�MaxS�TR] cycles that miss the deadline.
In order to avoid the deadline miss, we increment CRAEC(bk) by M
for all k � i. That is, we modify the reference path by adding a new
virtual basic block bv between bi and bi+1. CEC(bv) is set to M.
The virtual basic block is used only to prevent the deadline miss
during the speed assignment and not executed at run time.

Figure 4 illustrates how the reference path modification works.
Given an original GRAEP

P , the ACEP, (b1;b3;b4), is used as the ref-
erence path. (The bold edges indicate higher probability edges to
be selected at run time.) With the 100-MHz maximal clock fre-
quency, the path (b1;b3;b5) misses the 0.5-µsec deadline, because
the speed at (b3;b5) should be raised to 120 MHz (i.e., 60 MHz�2).
Because 10

3 cycles1 are missed from the deadline, we add a virtual
block bv between b3 and b4, as shown in Fig. 4(b). CEC(bv) is set
to 4 (= d 10

3 e).
With the added bv, CRAEC(b1) and CRAEC(b3) are modified to 34

and 24, respectively, and the speed update ratios are recalculated.
For example, the SUR at (b3;b5) is modified to 1.43 (= 20

14 ) from 2.
Figures 4(c) and 4(d) compare the speed changes for the RWEP-

based IntraVS, the RAEP-based IntraVS and the modified RAEP-
based IntraVS for the paths (b1;b3;b4) and (b1;b3;b5), respectively.
The modified RAEP-based scheduling is more energy-efficient than
the RWEP-based scheduling for the hot paths (Fig. 4(c)), which af-
fect most on the overall energy efficiency. It also satisfies the dead-
line requirement (Fig. 4(d)), unlike the pure RAEP-based schedul-
ing algorithm.

4. EXPERIMENTAL RESULTS
We have extended the existing voltage scaling tool, the Auto-

matic Voltage Scaler (AVS) [7], to evaluate the energy efficiency
of the proposed IntraVS over the original IntraVS. AVS takes as
inputs an original DVS-unaware program P and its timing require-
ments, and produces a low-energy DVS-aware program PDVS that
satisfies the same timing requirements of P. The converted program
PDVS contains voltage scaling code that handles all the idiosyncrasy
of scaling speed/voltage on a variable voltage processor. The ex-
tended AVS can convert a program using either the RWEP-based
IntraVS or the RAEP-based IntraVS.

To evaluate the power reduction effect of the proposed exten-
sions to the original IntraVS algorithm, we have experimented with
an MPEG-4 video decoder using an energy simulator [7]. We as-
sume that both DVS-aware and DVS-unaware systems enter into a
power-down mode when the system is idle. The energy consump-
tion of a power-down mode is assumed to be 0. The supply volt-
age for a given clock frequency is obtained from fCLK = 1=TD ∝
(VDD �VT )

α=VDD [6] where VDD, VT , and α are assumed to be
2.5V, 0.5V, and 1.3, respectively. For the RAEP-based IntraVS, the

120 cycles - 100 MHz �10 cycles
60 MHz = 10

3 cycles
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probability of branch edges and the average number of loop itera-
tions in a CFG of the MPEG-4 video decoder are estimated using
the profiled information. A probability of 0.5 is assigned to the
branch edges for which we cannot collect the execution profiles
with sample test bitstreams. For the experiments, the slew rate of
the clock/voltage transition is assumed to be 1.0V/200µsec, which
is typical for state-of-the-art DC-DC converters.
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Figure 5 shows how the normalized starting speeds change over
various slack factor values. The slack factor, defined by deadline�WCET

deadline ,
represents the fraction of time that a processor becomes idle after
WCET. The execution times of modified ACEPs (by the procedure
described in Section 3.2) for the MPEG-4 decoder is up to 35%
smaller than the WCET. This means that the processor can start
initially 35% more slowly than the speed required by the RWEP-
based IntraVS algorithm.

Figure 6 compares the energy consumption of two IntraVS schedul-
ing algorithms, varying the slack factor. (All the results were nor-
malized over the energy consumption of the original program run-
ning on a DVS-unaware system.) For the MPEG-4 decoder, the
modified RAEP-based IntraVS algorithm reduces the energy con-
sumption up to 34% over the RWEP-based IntraVS algorithm.

Note that there is a large gap between energy consumption of
RWEP-based and RAEP-based IntraVS algorithms, even when the
slack factor is 0 (i.e. deadline = WCET). This is because, although
the starting speed is set to the same speed as in the RWEP-based
IntraVS, there are many execution paths that still can take advan-
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Figure 6: Normalized energy consumption of the RWEP-based
IntraVS and RAEP-based IntraVS (varying the slack factor).

tage of the RAEP-based speed settings. That is, in order to meet the
timing constraint, virtual blocks are added so that the initial speed
is set to the same speed as in the RWEP-based IntraVS algorithm.
However, the (partial) paths following the virtual blocks can take
advantage of the ACEP-based speed settings. As the slack factor
increases, the energy consumption gap decreases because supply
voltages of both IntraVS algorithms get lower. Since the energy
consumption is proportional to VDD

2, the lower voltage values re-
sult in a smaller difference in the energy consumption.

5. CONCLUSION
We have presented a novel IntraVS algorithm based on the RAEP

information. The proposed algorithm exploits the fact that the average-
case execution paths are more likely to be followed at run time
than the WCEP, and optimize the energy consumption for such hot
paths. The main contribution of the proposed algorithm is that it
enhances the original IntraVS algorithm by exploiting the probabil-
ity of each execution path, while guaranteeing the worst-case tim-
ing constraints. The experimental results using an MPEG-4 video
decoder show that the RAEP-based IntraVS improves the energy
efficiency up to 34% over the RWEP-based IntraVS.
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