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ABSTRACT 
We describe an approach for a microprocessor to tune itself to its 
fixed application to reduce power in an embedded system. We 
define a basic architecture and methodology supporting a 
microprocessor self-optimizing mode. We also introduce a loop 
table as a tunable component, although self-optimization can be 
done for other tunable components too. We highlight 
experimental results illustrating good power reductions with no 
performance penalty. 
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1. INTRODUCTION 
Several billion microprocessors targeted for embedded systems 
are produced annually. Most of those embedded microprocessors 
are mass-produced. Mass-produced integrated circuits (IC’s) can 
cost very little per IC, sometimes less than one dollar, due to the 
amortization of engineering costs over large volumes, high yields 
from large production runs, and other economy-of-scale factors. 
Furthermore, mass-produced IC’s often justify more design 
attention and use of advanced IC technology, and thus may 
provide excellent power and performance compared even with 
customized IC’s produced in smaller volumes. Mass-produced 
parts also provide immediately available parts and hence faster 
time-to-market. The trend towards system-on-a-chip (SOC) still 
includes mass-produced SOC parts, known in that context as 
programmable platforms [12]. 

Typically, an embedded microprocessor runs only one application 
program for its lifetime, in contrast to microprocessors used in 
other domains. Since low power is so critical in many embedded 
systems, we would therefore like to customize a microprocessor to 
its one application in order to reduce power.   

IC transistor capacities have continued to increase at a tremendous 
rate, following Moore’s Law [6]. One non-obvious use of the 

additional transistor capacity is to reduce power in a mass-
produced embedded microprocessor by, adding tunable 
components to the architecture, and extra circuitry that tunes those 
components to the particular fixed application. Essentially, the 
microprocessor is self-optimizing. A designer using such a part 
gets reduced power through some customization while still getting 
the benefits of a mass-produced IC. 

In this paper, we describe a basic architecture and methodology 
for a self-optimizing microprocessor that tunes itself to an 
application to reduce power. Such a microprocessor represents an 
instance of post-fabrication tuning [16], namely tuning done after 
an IC has been fabricated. We introduce self-profiling circuitry 
and a designer-controlled self-optimization mode, in which 
configurable architectural components would be tuned based on 
an application’s profile. 

To illustrate self-optimization, we introduce a tunable component 
called a loop table. A loop table is a small memory inside the 
microprocessor controller, which stores frequently executed loops, 
thus reducing power-expensive accesses to program memory. On 
the surface, the loop table is similar to loop-cache approaches, but 
it differs in how and when its contents are updated. Furthermore, 
our particular implementation has the desirable feature of not 
changing cycle-by-cycle behavior.  Other tunable components 
could be used with our self-optimization approach, such as caches 
with a configurable number of ways [11]. 

We describe experimental results that show good power and 
energy reductions on several examples, at the cost of extra gates, 
and with no change in performance.  

2. PROBLEM DESCRIPTION AND 
RELATED WORK 

We wish to develop a mass-producible extended version of a 
standard embedded microprocessor that can tune its configurable 
components to a particular application for low power. In doing so, 
we may use extra transistors, as they are becoming cheaper every 
year, with the following goals. 

First, we desire exact instruction set compatibility, meaning we 
should avoid adding, deleting, or changing any instructions. Thus, 
the self-optimizing microprocessor should run any binary 
designed for the standard microprocessor, and likewise, any 
binary designed for the self-optimizing processor should run on 
other versions of the standard microprocessor. Backwards 
compatibility is a big issue in embedded systems, as is the related-
issue of minimizing risk associated with future changes [2]. 
Second, we would like to avoid modifying or adding any tools in 
the development tool chain. Embedded system designers tend to 
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have significant investments in high-quality, stable tools. 
Modifications or additions are not commonly accepted [2]. 

Third, we would like to preserve cycle-by-cycle behavior. Many 
embedded system programmers, especially those using 
microcontrollers, write code that must execute exactly as written 
to satisfy detailed timing constraints with the external 
environment.  

Tuning a microprocessor to its program has been addressed in 
previous work from different perspectives: ASIPs, dynamic binary 
translation, program compression, and caching, which we now 
discuss. All of the techniques try to improve the execution of 
frequently-executed program regions. 

ASIPs (Application-Specific Instruction-set Processors) involve 
generating a custom instruction-set optimized for a given 
application, along with a custom tool chain (e.g., compiler). Some 
such approaches are pre-fabrication [2], with commercial products 
having recently appeared [4]. Other approaches extend a 
microprocessor with programmable logic to enable post-
fabrication instruction-set customization [9] of mass-produced 
IC’s.  In either case, ASIPs obviously require changes to binaries 
and to tool chains. Somewhat related is a commercial mass-
produced IC [15] having a microcontroller extended with 
programmable logic, where that logic can be used to customize a 
standard microcontroller’s peripherals. Some recent work has 
focused on tuning a microprocessor without modifying the 
instruction set [13]. 

Dynamic binary translation involves on-chip on-the-fly translation 
of one binary to another binary. A recent commercial processor 
[8] dynamically profiles a binary to find the most frequently 
executed code regions, and then caches the corresponding 
translated binary region, to avoid having to translate that region 
again, thus saving power. The profiler task runs on the processor 
itself, so obviously changes cycle-by-cycle behavior. 

Some program compression techniques pre-profile a program to 
detect the most frequently executed regions of code, and compress 
those regions in program memory to reduce the number of bits 
transmitted over a power-expensive program memory bus [5]. 
Those regions are then decompressed in the microprocessor. Such 
approaches require additional profiling and compression tools, 
and change the binary. 

Caching can also be viewed as tuning to an application. Most 
caching approaches store the most recently executed blocks in an 
on-chip fast memory. Trace caches [3] seek to tune further, by 
caching commonly-executed sequences of blocks, requiring 
additional trace profiling circuitry. This and other previous 
caching work focus on improving performance.  

Some recent efforts on caching for low power are closely-related 
to our loop table approach. In many applications, a few small 
loops account for a large percentage of clock cycles. Since 
accesses to program memory consume much power, these 
techniques seek to minimize such accesses by caching those loops 
in a small, low-power memory. One approach is a filter cache [7], 
which is an unusually small cache, perhaps just hundreds of bytes, 
placed closest to the microprocessor in the memory hierarchy. 
Although the miss rate will be high, the power consumed per hit is 
so low as to reduce power consumption overall. An extension of 
this approach [1] involves pre-profiling the program to detect the 
most frequently-executed loops, having the compiler place those 

loops in special memory regions, and extending the architecture to 
detect those regions. Only code from those regions will be placed 
in the filter cache (renamed the loop cache), eliminating the 
problem of high miss rate, at the expense of tool chain additions 
and changes.  Another approach, proposed by [10], uses a cache 
specifically designed for loops. This loop cache is only filled 
when a short backwards jump instruction is detected, which 
typically indicates a small loop. Execution stays within the loop 
cache, using a counter to sequence to subsequent addresses, until 
the short backwards jump is not taken. Notice that this approach 
can satisfy all of our goals – no binary modification, no tool 
modification, and preserved cycle-by-cycle behavior. Thus, we 
use this as the basis for our loop table – the key difference being 
that we want to use profiling to ensure that only the most 
frequently executed loops get cached and that those loops never 
leave the loop table, thus reducing runtime overhead and hence 
reducing power even further.  

A general discussion of pre- and post-fabrication tuning for 
embedded microprocessors can be found in [16]. 

3. ARCHITECTURE AND 
METHODOLOGY OVERVIEW 

We developed our architecture and methodology using a standard 
microcontroller. Microcontrollers represent a well-known class of 
embedded microprocessors. A microcontroller is an IC possessing 
a microprocessor with tightly-integrated peripherals, program 
memory, and data memory. Microcontrollers are typically used in 
control-dominated applications, having simple architectures 
oriented towards bit-manipulation, usually excluding features like 
multipliers, floating-point units, caches, deep pipelines, and 
branch predictors. Popular microcontrollers include the Intel 
8051, and the Motorola 68HC05, 68HC11, and 68HC12. 

Figure 1 shows the architecture of a microcontroller’s processor 
core and memories. Peripherals are not shown. The white boxes 
correspond to the basic architecture; the gray boxes will be 
discussed later. After an application program has been developed 
for this microcontroller, the application will be downloaded into 
the program memory, and does not change for the life of the target 
product. The program memory is typically some form of 
programmable ROM, like EPROM, EEPROM, or Flash. Each 
access to such memory typically consumes much power, since 
such access uses large, high-capacitance buses. This is especially 
true if the memory is on a separate chip.  High power per access, 
coupled with the obvious fact that program memory is also 
accessed very frequently, leads to program memory accesses 
contributing to a large part of a microcontroller’s total power 
consumption, as can be seen in Figure 5. Thus, reducing program 
memory accesses is a good focal point for power reduction. 

In Figure 1, we have used gray boxes to represent additional 
hardware for a self-optimizing microcontroller architecture. A 
Loop Table stores copies of frequently-executed loops. A Bypass 
Controller detects addresses, contained in one or more loop 
address registers (LAR’s), of loops stored in the loop table. A Self-
Profiling Controller determines the most frequently-executed 
loops with the aid of a Loop Count Table. These items will all be 
described further. 

Figure 2 illustrates where self-optimization would occur in a 
design flow. It occurs after fabrication, in a mass-produced IC. It 
occurs in-system, meaning we need not develop complicated and 
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non-standard simulations. The tuning is done under designer 
control. Traditional ASIP approaches perform tuning before 
fabrication, while caching and dynamic binary translation 
approaches occur during end-use. 

Figure 3 illustrates the self-optimization methodology we propose. 
First, a designer downloads an application program into the 
microcontroller program memory. Second, the designer resets the 
IC, and can then execute the program in normal mode. Up to that 
point, the self-optimizing features of the IC are completely 
invisible. Third, the designer can optionally activate a special self-
optimizing mode. This mode actually consists of three steps: 
initialize, profile, and configure. This mode activates the dark-
gray components of Figure 1. Here, the program is executing in its 
real environment, but is also being monitored and profiled. After 
self-optimization mode is completed, a configuration memory gets 
written with information on how to configure the architecture to 
consume less power for the given profile. In our loop table case, 
the configuration memory would contain the addresses of the 
most frequently executed loops. Fourth, the designer can again 
reset the IC, which this time will be configured using the 
configuration memory. In our case, this means that certain 
program memory regions will be copied into the loop table. The 
program executes in normal mode again, but now uses the light-
gray components in Figure 1, so should consume less power than 
before. Finally, a designer may wish to upload the configuration 
memory to a workstation, and then download that configuration 
into a large number of identical parts. We now describe the three 
self-optimization steps in more detail. 

4. SELF-OPTIMIZING MODE 
4.1 Initializing 
The first question we faced was determining how to activate self-
optimization. One option is to include an extra input pin on the IC. 
A second is software activation by setting of a bit in a special 
register. A third is to use a special combination of values on 
existing pins including the reset pin. Similar methods can be used 
for the chip to indicate completion of self-optimization. We 
currently use the first option. 

Once activated, initializing for our loop table consists of 
traversing the program memory to detect all possible loops, and 
placing the starting address of each loop in a loop count table. 
Loops can be detected by finding relatively short backwards 
jumps in the program memory. Filling the loop count table is 
handled by the self-profiling controller in Figure 1. Initialization 
is only done once in self-optimization mode. 

4.2 Profiling 
Next, the self-profiler executes the application in program 
memory, monitors the program memory address bus, and updates 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Self-optimizing microcontroller architecture. Items not found in a standard microcontroller are shown in gray. 

 
 
 
 
 
 
 
 
 

Figure 2: Self-optimization mode is in-system but under 
designer control. 

 
 
 
 
 
 
 
 
 
 
 

Figure 3: Self-optimization methodology. 
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the loop count table to reflect the number of times each loop is 
executed. Note that the application runs in its real environment, so 
this profiling information can be quite accurate. 

We must therefore maintain a table of loop addresses and 
associated count values in the loop count memory. However, 
profiling cannot change the cycle-by-cycle behavior of the 
application’s execution.  Thus, when a loop address is detected, its 
corresponding count value must be looked up and incremented 
within the time that it takes to execute the instruction. This can be 
hard. Storing the counts as a linked list in a memory will not 
work, because finding the record with the current loop address 
will take many cycles.  

One solution is to use a loop count table that is the same size as 
the program memory. Thus, the current loop address indexes 
directly to a memory location storing the count value for that 
address. This is obviously wasteful in terms of memory, since 
only a small fraction of program memory addresses correspond to 
loops. For example, an application might have 64,000 words of 
program memory, but only 100 loops. 

We will instead need to use a much smaller memory, having 
perhaps a few hundred words. We investigated two possible 
options for the loop count table. One is to make it fully-
associative, where each location in the memory consists of both a 
key  (the loop address) and data (the count value). As with any 
fully-associative memory, an access consists of simultaneously 
comparing the input address with all keys. If the microprocessor 
executes instructions in only a few cycles, then an increment 
feature could be added to each word of this memory. Otherwise, if 
more cycles are available (as is often the case in 
microcontrollers), then the count value can be read, incremented, 
and written back to the memory location. The drawback of fully-
associative memories is the many gates used for comparison logic.  

A second option for the loop count table is a hardware hash table. 
We can use a simple hashing function to map program memory 
addresses to loop count table addresses. Again, since the ratio of 
program memory addresses to loops is large, we should be able to 
design a simple hash function, using the address bits, that 
minimizes conflicts. If enough cycles exist per instruction, we can 
even tolerate some conflicts, since we could use multiple words 
per location, and/or simply overflow to the next location on a 
conflict. We could even create an N-way set-associative cache in 
order to tolerate some conflicts without loss of cycles. Again, an 
auto-increment feature could be incorporated into the loop count 
table if we only have a few cycles per instruction. We currently 
use a fully-associative memory. 

The location of the loop count table in the overall architecture is 
shown in Figure 1. Note that in any loop count table with fewer 
locations than program memory, we run the risk of not being able 
to accommodate all loop addresses. This will not result in 
incorrect functionality, but merely yield less-than-optimal results, 
which is acceptable. Instead, we could perform several rounds of 
such loop counting on subsets of all the loop addresses. 

Profiling must be done for sufficient time, but not for so long as to 
cause overflow in the count values of the profile table.   

Profiling will consume extra power while executing. However, we 
again stress that the profiling circuit only runs during self-
optimization mode; during normal mode, this circuit is shut down 
completely and does not contribute to power consumption. We 

point out that the IC must be designed to tolerate this extra power 
during self-optimization mode. We also point out that the extra 
circuitry could indirectly increase wire capacitance of the 
microprocessor core by lengthening some wires, but this increase 
should be far outweighed by the decrease from fewer program 
memory accesses. 

4.3 Configuring 
After profiling, we want to determine how to best tune the 
architecture to the given profile. In our case, we want to put 
frequently executed loops in the loop table. Actually, during 
configuration, we just want to store the addresses of those loops in 
a non-volatile memory, so that when the IC is reset in the future, 
we can then load the appropriate loops into the loop table. We 
want to store this information in non-volatile memory because we 
do not want to have to run self-optimization every time we power 
up the microcontroller. Once self-optimization is done, the IC 
should consume less power for the remainder of its lifetime, as 
long as the same program resides in program memory.  

We achieve this goal by keeping the configuration memory in a 
reserved region at the bottom of program memory. This assumes 
we are using in-system programmable ROM, like EEPROM or 
Flash, and that enough extra words exist in that memory. A 
particular location of this region is a flag; if the flag is set, then 
this means that the region includes valid configuration 
information. If not set, it means self-optimization has not yet been 
run. A nice feature of putting the configuration memory in 
program memory is that, whenever a new program is downloaded, 
the flag automatically gets reset. This reset is desirable because 
configuration information for a previous program is not 
necessarily valid for a new program. The drawbacks are that there 
must be extra words available for a configuration information 
region, and this particular region must be independently in-system 
programmable.  

Alternatively, we could use extra memory for the configuration 
memory, but this requires extra non-volatile memory hardware, 
and must include a method of resetting the configuration flag 
when the program memory is updated. 

5. NORMAL MODE 
In normal mode, the microcontroller executes its application. If no 
previous self-optimization was performed, this execution will be 
identical to that on a microcontroller without our extensions. If 
self-optimization was performed and hence the configuration 
memory updated, execution should consume less power. We now 
describe the behavior of a microcontroller reset, and execution 
without and with prior self-optimization. 

5.1 Reset 
During reset caused by power up and/or assertion of the external 
reset pin found on all microcontrollers, the microcontroller checks 
the flag in configuration memory. If set, the microcontroller reads 
the loop start addresses from configuration memory, copies the 
corresponding loops from program memory into the loop table, 
and stores the loop addresses in the bypass controller’s loop 
address registers. It also sets a flag (flip-flop) in the bypass 
controller indicating self-optimization configurations are 
activated. These tasks are in addition to other reset tasks. This 
may or may not increase the cycles needed for reset, but the 
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precise number of cycles needed for reset is not an issue in most 
cases, and is distinct from the earlier requirement of cycle-by-
cycle accuracy during execution.  

5.2 Executing from the Program Memory 
If the configuration flag is set, the microcontroller compares each 
address, generated by the controller and destined for program 
memory, with the loop address registers. If a match is not found, 
or the configuration flag is not set, then that address proceeds to 
program memory and instructions are fetched as usual. 

5.3 Executing from the Loop Table 
If the configuration flag is set and an address destined for program 
memory matches with an address register, program memory is not 
accessed, and program memory address lines are held constant to 
reduce switching activity and hence power; in fact, program 
memory can even be shut down at this time. Instead, the first 
instruction of the corresponding loop is fetched from the loop 
table immediately, providing a seamless transition to a loop table 
mode of operation. Once in loop table mode, subsequent 
addresses are immediately translated into loop table accesses, 
until we transition out of this mode. 

The transition out of loop table mode must be seamless as well.  If 
the controller for the loop table were just to examine the addresses 
of read operations to determine if they were in the loop’s address 
range, extra cycles would be required for the comparison. To 
avoid extra cycles, we keep two extra bits in the loop table to 
quickly detect departures out of the loop.  There are two ways for 
execution to leave the loop table:  either the jump at the end that 
returns to the beginning of the loop is not taken, or a jump is 
encountered in the loop that jumps out of the loop. During self-
optimization, the code to be placed in the loop table is examined 
to determine which instructions may take execution out of the 
loop.  For each instruction, two extra bits are included in the loop 
table. 00 means this instruction cannot exit the loop – it is either 
not a jump, or it jumps to a location inside the loop (and is not the 
last instruction). 10 means the instruction is a jump that exits the 
loop if not taken (meaning it is the last instruction). 11 means the 
instruction is a jump that exits the loop if taken.   An exit causes 
subsequent instructions to immediately be fetched from program 
memory. 

5.4 Experimental Results 
We performed experiments to validate the effectiveness of our 
architecture and methodology. We used an existing synthesizable 

VHDL model of an 8051 microcontroller as a starting point [16]. 
We modified this model with the architectural extensions 
described in this paper. The initial version supports only a single-
loop in the loop table. All experiments were performed using 
Synopsys synthesis, simulation and power analysis tools [14]. The 
synthesis tool takes a VHDL register-transfer-level representation 
of the microcontroller and outputs a gate-level netlist. To account 
for high capacitance of large buses in deep submicron 
technologies, the long bus wires going to program memory (in a 
special chip region or even separate chip supporting a 
programmable ROM technology) have a capacitance 100 times 
greater than a typical short on-chip wire, while the data memory 
(RAM) bus has a capacitance 10 times greater. Simulation of an 
application running on the microcontroller is done to obtain a 
count of the switching on each net. Total power consumption is 
computed using the standard equation for dynamic CMOS power, 
½CV2f, for each net, summed over all nets, where C is a net’s 
capacitance, V is voltage, and f is the switching frequency as 
computing during simulation. This is all done using standard 
Synopsys tools. 

We experimented with three examples. Ex1 is a program that 
computes checksums. Ex2 computes the greatest common divisor 
of two numbers. Ex3 performs matrix multiplication. All assembly 
program code was generated from C source by the Keil C 
compiler, and we made no modifications to the assembly code. 
Each of these examples has the common embedded system 
property of spending much time in small loops. Ex1 spends 97% 
of its time in 36% of the program code.  Ex2 spends 77% of its 
time in 31% of the code. Ex3 spends 57% of its time in 11% of the 
code (A), and another 28% of its time in 4% of the code (B) as 
seen in Figure 4. Upon investigation, we noticed that A is a loop 
that at one location calls B; B is a block that executes and jumps 
back to A. Thus, B could be inlined into A to create a single loop, 
which would have yielded even better power savings than our 
current single-loop loop table could provide. This suggests the 
need for tuning not just the architecture to the application, but also 
the application to the architecture, an area of future work.   

Figure 5 provides power results for these three examples, on the 
8051 without any extensions (bef), and on the 8051 with 
extensions and after self-optimization (aft), with power data 
broken down by microprocessor subsystem. Overall power is 
significantly reduced in all three examples, as desired, averaging 
nearly 34% total power reduction. Reductions will be even greater 
when we allow more than one loop in the loop table. Notice that 
power related to ROM access decreases by an average of 50%, 
with additional power due to the loop table and additional control 
logic being small. The percentages depend greatly on the IC 
process technology; as feature sizes decrease, the capacitance of 
large buses compared with internal nets increases, making the 
loop table approach more attractive as features continue to shrink. 

Performance was not changed, as desired. No clock cycles were 
added or removed during normal or self-optimization operation. 
The clock cycle length was not modified either. Note that since 
performance did not change, the power reductions also imply 
energy reductions. 

Though not shown in the figure, we also measured the power after 
architectural extensions were made but before self-optimization. 
There was no noticeable increase. Furthermore, we measured the 
power during self-optimization. The average power increase 
during this temporary mode was only about 5%.  
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Size data is provided in Table 1. We see that the loop count table 
adds the most to the size, and the loop table adds the next largest 
amount. We are currently working on reducing the sizes of the 
memories. We also note several items.  First, transistor budgets 
are very large and still growing [6], representing a very different 
design situation from a few years ago. Second, the loop count 
table and profiler transistors are completely idle during normal 
operation. Third, if we are willing to accept an increase in cycle-
by-cycle behavior during self-optimization, then the loop count 
table can be reduced to a much smaller memory. Fourth, the 
microcontroller version we used is as small as they come. Other 
versions have more program and data memory, and other 
microcontrollers have more complex logic, but the self-
optimization extensions would not increase for those, meaning the 
percentage size increase would be much less. Finally, we can 
envision that IC’s having only the loop table and by-pass logic, 
but not the self-profiling logic and loop count table, could be 
mass-produced as smaller and lower cost product-oriented parts, 
with the complete self-optimizing architecture serving as 
prototype-oriented parts [16]. 

6. CONCLUSIONS 
Pre-fabricated mass-produced microcontrollers are extremely 
popular due to low-cost and short time-to-market. Previously, they 
could not be tuned to a specific application to reduce power 
consumption. We introduced a methodology and architecture that 
makes use of today’s abundance of transistors to enable such 
tuning in a mass-produced part. The key is a special self-
optimization mode that profiles the application and saves tuning 

configuration information. We illustrated our approach by 
introducing a loop-table as a tunable component, and showed that 
self-optimization using a loop table reduced power significantly in 
several examples. We plan to experiment with larger benchmarks, 
as well as develop additional tunable components to achieve 
greater power reductions. 
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Figure 5: Power consumption for the examples. 

Table 1: Size breakdown in gates 
Subsystem Original Extended
Controller 3,391 3,767
ALU 2,100 2,100
Decoder 586 586
RAM 17,312 17,312
ROM (8kbytes) 11,000 11,000
Select logic 132
Loop Count Table 33,595
Loop Table 16,740
Self-Profiler/Bypass 7,188
Total: 34,389 92,420  
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