
A Self-Optimizing Embedded Microprocessor using a
Loop Table for Low Power

Frank Vahid* and Ann Gordon-Ross
Department of Computer Science and Engineering

University of California, Riverside
http://www.cs.ucr.edu/~vahid

{vahid/ann}@cs.ucr.edu
*Also with the Center for Embedded Computer Systems at UC Irvine.

ABSTRACT
We describe an approach for a microprocessor to tune itself to its
fixed application to reduce power in an embedded system. We
define a basic architecture and methodology supporting a
microprocessor self-optimizing mode. We also introduce a loop
table as a tunable component, although self-optimization can be
done for other tunable components too. We highlight
experimental results illustrating good power reductions with no
performance penalty.

Keywords
System-on-a-chip, self-optimizing architecture, embedded
systems, parameterized architectures, cores, low-power, tuning,
platforms.

1. INTRODUCTION
Several billion microprocessors targeted for embedded systems
are produced annually. Most of those embedded microprocessors
are mass-produced. Mass-produced integrated circuits (IC’s) can
cost very little per IC, sometimes less than one dollar, due to the
amortization of engineering costs over large volumes, high yields
from large production runs, and other economy-of-scale factors.
Furthermore, mass-produced IC’s often justify more design
attention and use of advanced IC technology, and thus may
provide excellent power and performance compared even with
customized IC’s produced in smaller volumes. Mass-produced
parts also provide immediately available parts and hence faster
time-to-market. The trend towards system-on-a-chip (SOC) still
includes mass-produced SOC parts, known in that context as
programmable platforms [12].

Typically, an embedded microprocessor runs only one application
program for its lifetime, in contrast to microprocessors used in
other domains. Since low power is so critical in many embedded
systems, we would therefore like to customize a microprocessor to
its one application in order to reduce power.

IC transistor capacities have continued to increase at a tremendous
rate, following Moore’s Law [6]. One non-obvious use of the

additional transistor capacity is to reduce power in a mass-
produced embedded microprocessor by, adding tunable
components to the architecture, and extra circuitry that tunes those
components to the particular fixed application. Essentially, the
microprocessor is self-optimizing. A designer using such a part
gets reduced power through some customization while still getting
the benefits of a mass-produced IC.

In this paper, we describe a basic architecture and methodology
for a self-optimizing microprocessor that tunes itself to an
application to reduce power. Such a microprocessor represents an
instance of post-fabrication tuning [16], namely tuning done after
an IC has been fabricated. We introduce self-profiling circuitry
and a designer-controlled self-optimization mode, in which
configurable architectural components would be tuned based on
an application’s profile.

To illustrate self-optimization, we introduce a tunable component
called a loop table. A loop table is a small memory inside the
microprocessor controller, which stores frequently executed loops,
thus reducing power-expensive accesses to program memory. On
the surface, the loop table is similar to loop-cache approaches, but
it differs in how and when its contents are updated. Furthermore,
our particular implementation has the desirable feature of not
changing cycle-by-cycle behavior. Other tunable components
could be used with our self-optimization approach, such as caches
with a configurable number of ways [11].

We describe experimental results that show good power and
energy reductions on several examples, at the cost of extra gates,
and with no change in performance.

2. PROBLEM DESCRIPTION AND
RELATED WORK

We wish to develop a mass-producible extended version of a
standard embedded microprocessor that can tune its configurable
components to a particular application for low power. In doing so,
we may use extra transistors, as they are becoming cheaper every
year, with the following goals.

First, we desire exact instruction set compatibility, meaning we
should avoid adding, deleting, or changing any instructions. Thus,
the self-optimizing microprocessor should run any binary
designed for the standard microprocessor, and likewise, any
binary designed for the self-optimizing processor should run on
other versions of the standard microprocessor. Backwards
compatibility is a big issue in embedded systems, as is the related-
issue of minimizing risk associated with future changes [2].
Second, we would like to avoid modifying or adding any tools in
the development tool chain. Embedded system designers tend to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’01, August 6-7, 2001, Huntington Beach, California, USA.
Copyright 2001 ACM 1-58113-371-5/01/0008…$5.00.

209219

have significant investments in high-quality, stable tools.
Modifications or additions are not commonly accepted [2].

Third, we would like to preserve cycle-by-cycle behavior. Many
embedded system programmers, especially those using
microcontrollers, write code that must execute exactly as written
to satisfy detailed timing constraints with the external
environment.

Tuning a microprocessor to its program has been addressed in
previous work from different perspectives: ASIPs, dynamic binary
translation, program compression, and caching, which we now
discuss. All of the techniques try to improve the execution of
frequently-executed program regions.

ASIPs (Application-Specific Instruction-set Processors) involve
generating a custom instruction-set optimized for a given
application, along with a custom tool chain (e.g., compiler). Some
such approaches are pre-fabrication [2], with commercial products
having recently appeared [4]. Other approaches extend a
microprocessor with programmable logic to enable post-
fabrication instruction-set customization [9] of mass-produced
IC’s. In either case, ASIPs obviously require changes to binaries
and to tool chains. Somewhat related is a commercial mass-
produced IC [15] having a microcontroller extended with
programmable logic, where that logic can be used to customize a
standard microcontroller’s peripherals. Some recent work has
focused on tuning a microprocessor without modifying the
instruction set [13].

Dynamic binary translation involves on-chip on-the-fly translation
of one binary to another binary. A recent commercial processor
[8] dynamically profiles a binary to find the most frequently
executed code regions, and then caches the corresponding
translated binary region, to avoid having to translate that region
again, thus saving power. The profiler task runs on the processor
itself, so obviously changes cycle-by-cycle behavior.

Some program compression techniques pre-profile a program to
detect the most frequently executed regions of code, and compress
those regions in program memory to reduce the number of bits
transmitted over a power-expensive program memory bus [5].
Those regions are then decompressed in the microprocessor. Such
approaches require additional profiling and compression tools,
and change the binary.

Caching can also be viewed as tuning to an application. Most
caching approaches store the most recently executed blocks in an
on-chip fast memory. Trace caches [3] seek to tune further, by
caching commonly-executed sequences of blocks, requiring
additional trace profiling circuitry. This and other previous
caching work focus on improving performance.

Some recent efforts on caching for low power are closely-related
to our loop table approach. In many applications, a few small
loops account for a large percentage of clock cycles. Since
accesses to program memory consume much power, these
techniques seek to minimize such accesses by caching those loops
in a small, low-power memory. One approach is a filter cache [7],
which is an unusually small cache, perhaps just hundreds of bytes,
placed closest to the microprocessor in the memory hierarchy.
Although the miss rate will be high, the power consumed per hit is
so low as to reduce power consumption overall. An extension of
this approach [1] involves pre-profiling the program to detect the
most frequently-executed loops, having the compiler place those

loops in special memory regions, and extending the architecture to
detect those regions. Only code from those regions will be placed
in the filter cache (renamed the loop cache), eliminating the
problem of high miss rate, at the expense of tool chain additions
and changes. Another approach, proposed by [10], uses a cache
specifically designed for loops. This loop cache is only filled
when a short backwards jump instruction is detected, which
typically indicates a small loop. Execution stays within the loop
cache, using a counter to sequence to subsequent addresses, until
the short backwards jump is not taken. Notice that this approach
can satisfy all of our goals – no binary modification, no tool
modification, and preserved cycle-by-cycle behavior. Thus, we
use this as the basis for our loop table – the key difference being
that we want to use profiling to ensure that only the most
frequently executed loops get cached and that those loops never
leave the loop table, thus reducing runtime overhead and hence
reducing power even further.

A general discussion of pre- and post-fabrication tuning for
embedded microprocessors can be found in [16].

3. ARCHITECTURE AND
METHODOLOGY OVERVIEW

We developed our architecture and methodology using a standard
microcontroller. Microcontrollers represent a well-known class of
embedded microprocessors. A microcontroller is an IC possessing
a microprocessor with tightly-integrated peripherals, program
memory, and data memory. Microcontrollers are typically used in
control-dominated applications, having simple architectures
oriented towards bit-manipulation, usually excluding features like
multipliers, floating-point units, caches, deep pipelines, and
branch predictors. Popular microcontrollers include the Intel
8051, and the Motorola 68HC05, 68HC11, and 68HC12.

Figure 1 shows the architecture of a microcontroller’s processor
core and memories. Peripherals are not shown. The white boxes
correspond to the basic architecture; the gray boxes will be
discussed later. After an application program has been developed
for this microcontroller, the application will be downloaded into
the program memory, and does not change for the life of the target
product. The program memory is typically some form of
programmable ROM, like EPROM, EEPROM, or Flash. Each
access to such memory typically consumes much power, since
such access uses large, high-capacitance buses. This is especially
true if the memory is on a separate chip. High power per access,
coupled with the obvious fact that program memory is also
accessed very frequently, leads to program memory accesses
contributing to a large part of a microcontroller’s total power
consumption, as can be seen in Figure 5. Thus, reducing program
memory accesses is a good focal point for power reduction.

In Figure 1, we have used gray boxes to represent additional
hardware for a self-optimizing microcontroller architecture. A
Loop Table stores copies of frequently-executed loops. A Bypass
Controller detects addresses, contained in one or more loop
address registers (LAR’s), of loops stored in the loop table. A Self-
Profiling Controller determines the most frequently-executed
loops with the aid of a Loop Count Table. These items will all be
described further.

Figure 2 illustrates where self-optimization would occur in a
design flow. It occurs after fabrication, in a mass-produced IC. It
occurs in-system, meaning we need not develop complicated and

210220

non-standard simulations. The tuning is done under designer
control. Traditional ASIP approaches perform tuning before
fabrication, while caching and dynamic binary translation
approaches occur during end-use.

Figure 3 illustrates the self-optimization methodology we propose.
First, a designer downloads an application program into the
microcontroller program memory. Second, the designer resets the
IC, and can then execute the program in normal mode. Up to that
point, the self-optimizing features of the IC are completely
invisible. Third, the designer can optionally activate a special self-
optimizing mode. This mode actually consists of three steps:
initialize, profile, and configure. This mode activates the dark-
gray components of Figure 1. Here, the program is executing in its
real environment, but is also being monitored and profiled. After
self-optimization mode is completed, a configuration memory gets
written with information on how to configure the architecture to
consume less power for the given profile. In our loop table case,
the configuration memory would contain the addresses of the
most frequently executed loops. Fourth, the designer can again
reset the IC, which this time will be configured using the
configuration memory. In our case, this means that certain
program memory regions will be copied into the loop table. The
program executes in normal mode again, but now uses the light-
gray components in Figure 1, so should consume less power than
before. Finally, a designer may wish to upload the configuration
memory to a workstation, and then download that configuration
into a large number of identical parts. We now describe the three
self-optimization steps in more detail.

4. SELF-OPTIMIZING MODE
4.1 Initializing
The first question we faced was determining how to activate self-
optimization. One option is to include an extra input pin on the IC.
A second is software activation by setting of a bit in a special
register. A third is to use a special combination of values on
existing pins including the reset pin. Similar methods can be used
for the chip to indicate completion of self-optimization. We
currently use the first option.

Once activated, initializing for our loop table consists of
traversing the program memory to detect all possible loops, and
placing the starting address of each loop in a loop count table.
Loops can be detected by finding relatively short backwards
jumps in the program memory. Filling the loop count table is
handled by the self-profiling controller in Figure 1. Initialization
is only done once in self-optimization mode.

4.2 Profiling
Next, the self-profiler executes the application in program
memory, monitors the program memory address bus, and updates

Figure 1: Self-optimizing microcontroller architecture. Items not found in a standard microcontroller are shown in gray.

Figure 2: Self-optimization mode is in-system but under
designer control.

Figure 3: Self-optimization methodology.

Program Memory (ROM)
(~10,000’s of bytes)

Configuration Memory
(~10’s of bytes)

Datapath

Data Memory (RAM)

Controller

Self-
Profiling

Controller

Bypass
Controller

Loop Count
Table

(~100’s of
bytes)

Loop Table (~100’s of bytes)

Mux

A
dd

re
ss

In
st

ru
ct

io
n Microprocessor

Instructions
Jump
bits

M
ux

Instruction

(Designer: pre-
fabrication) Designer: post-fabrication User

Self-optimization mode activation

Instruction LAR’s

Address
Address

Download
application to

microcontroller
program memory

Activate self-optimizing
mode, causing update of
configuration memory

Reset microcontroller,
causing (optimized)

application execution in
normal mode

Upload configuration memory for
downloading to other microcontrollers

211221

the loop count table to reflect the number of times each loop is
executed. Note that the application runs in its real environment, so
this profiling information can be quite accurate.

We must therefore maintain a table of loop addresses and
associated count values in the loop count memory. However,
profiling cannot change the cycle-by-cycle behavior of the
application’s execution. Thus, when a loop address is detected, its
corresponding count value must be looked up and incremented
within the time that it takes to execute the instruction. This can be
hard. Storing the counts as a linked list in a memory will not
work, because finding the record with the current loop address
will take many cycles.

One solution is to use a loop count table that is the same size as
the program memory. Thus, the current loop address indexes
directly to a memory location storing the count value for that
address. This is obviously wasteful in terms of memory, since
only a small fraction of program memory addresses correspond to
loops. For example, an application might have 64,000 words of
program memory, but only 100 loops.

We will instead need to use a much smaller memory, having
perhaps a few hundred words. We investigated two possible
options for the loop count table. One is to make it fully-
associative, where each location in the memory consists of both a
key (the loop address) and data (the count value). As with any
fully-associative memory, an access consists of simultaneously
comparing the input address with all keys. If the microprocessor
executes instructions in only a few cycles, then an increment
feature could be added to each word of this memory. Otherwise, if
more cycles are available (as is often the case in
microcontrollers), then the count value can be read, incremented,
and written back to the memory location. The drawback of fully-
associative memories is the many gates used for comparison logic.

A second option for the loop count table is a hardware hash table.
We can use a simple hashing function to map program memory
addresses to loop count table addresses. Again, since the ratio of
program memory addresses to loops is large, we should be able to
design a simple hash function, using the address bits, that
minimizes conflicts. If enough cycles exist per instruction, we can
even tolerate some conflicts, since we could use multiple words
per location, and/or simply overflow to the next location on a
conflict. We could even create an N-way set-associative cache in
order to tolerate some conflicts without loss of cycles. Again, an
auto-increment feature could be incorporated into the loop count
table if we only have a few cycles per instruction. We currently
use a fully-associative memory.

The location of the loop count table in the overall architecture is
shown in Figure 1. Note that in any loop count table with fewer
locations than program memory, we run the risk of not being able
to accommodate all loop addresses. This will not result in
incorrect functionality, but merely yield less-than-optimal results,
which is acceptable. Instead, we could perform several rounds of
such loop counting on subsets of all the loop addresses.

Profiling must be done for sufficient time, but not for so long as to
cause overflow in the count values of the profile table.

Profiling will consume extra power while executing. However, we
again stress that the profiling circuit only runs during self-
optimization mode; during normal mode, this circuit is shut down
completely and does not contribute to power consumption. We

point out that the IC must be designed to tolerate this extra power
during self-optimization mode. We also point out that the extra
circuitry could indirectly increase wire capacitance of the
microprocessor core by lengthening some wires, but this increase
should be far outweighed by the decrease from fewer program
memory accesses.

4.3 Configuring
After profiling, we want to determine how to best tune the
architecture to the given profile. In our case, we want to put
frequently executed loops in the loop table. Actually, during
configuration, we just want to store the addresses of those loops in
a non-volatile memory, so that when the IC is reset in the future,
we can then load the appropriate loops into the loop table. We
want to store this information in non-volatile memory because we
do not want to have to run self-optimization every time we power
up the microcontroller. Once self-optimization is done, the IC
should consume less power for the remainder of its lifetime, as
long as the same program resides in program memory.

We achieve this goal by keeping the configuration memory in a
reserved region at the bottom of program memory. This assumes
we are using in-system programmable ROM, like EEPROM or
Flash, and that enough extra words exist in that memory. A
particular location of this region is a flag; if the flag is set, then
this means that the region includes valid configuration
information. If not set, it means self-optimization has not yet been
run. A nice feature of putting the configuration memory in
program memory is that, whenever a new program is downloaded,
the flag automatically gets reset. This reset is desirable because
configuration information for a previous program is not
necessarily valid for a new program. The drawbacks are that there
must be extra words available for a configuration information
region, and this particular region must be independently in-system
programmable.

Alternatively, we could use extra memory for the configuration
memory, but this requires extra non-volatile memory hardware,
and must include a method of resetting the configuration flag
when the program memory is updated.

5. NORMAL MODE
In normal mode, the microcontroller executes its application. If no
previous self-optimization was performed, this execution will be
identical to that on a microcontroller without our extensions. If
self-optimization was performed and hence the configuration
memory updated, execution should consume less power. We now
describe the behavior of a microcontroller reset, and execution
without and with prior self-optimization.

5.1 Reset
During reset caused by power up and/or assertion of the external
reset pin found on all microcontrollers, the microcontroller checks
the flag in configuration memory. If set, the microcontroller reads
the loop start addresses from configuration memory, copies the
corresponding loops from program memory into the loop table,
and stores the loop addresses in the bypass controller’s loop
address registers. It also sets a flag (flip-flop) in the bypass
controller indicating self-optimization configurations are
activated. These tasks are in addition to other reset tasks. This
may or may not increase the cycles needed for reset, but the

212222

precise number of cycles needed for reset is not an issue in most
cases, and is distinct from the earlier requirement of cycle-by-
cycle accuracy during execution.

5.2 Executing from the Program Memory
If the configuration flag is set, the microcontroller compares each
address, generated by the controller and destined for program
memory, with the loop address registers. If a match is not found,
or the configuration flag is not set, then that address proceeds to
program memory and instructions are fetched as usual.

5.3 Executing from the Loop Table
If the configuration flag is set and an address destined for program
memory matches with an address register, program memory is not
accessed, and program memory address lines are held constant to
reduce switching activity and hence power; in fact, program
memory can even be shut down at this time. Instead, the first
instruction of the corresponding loop is fetched from the loop
table immediately, providing a seamless transition to a loop table
mode of operation. Once in loop table mode, subsequent
addresses are immediately translated into loop table accesses,
until we transition out of this mode.

The transition out of loop table mode must be seamless as well. If
the controller for the loop table were just to examine the addresses
of read operations to determine if they were in the loop’s address
range, extra cycles would be required for the comparison. To
avoid extra cycles, we keep two extra bits in the loop table to
quickly detect departures out of the loop. There are two ways for
execution to leave the loop table: either the jump at the end that
returns to the beginning of the loop is not taken, or a jump is
encountered in the loop that jumps out of the loop. During self-
optimization, the code to be placed in the loop table is examined
to determine which instructions may take execution out of the
loop. For each instruction, two extra bits are included in the loop
table. 00 means this instruction cannot exit the loop – it is either
not a jump, or it jumps to a location inside the loop (and is not the
last instruction). 10 means the instruction is a jump that exits the
loop if not taken (meaning it is the last instruction). 11 means the
instruction is a jump that exits the loop if taken. An exit causes
subsequent instructions to immediately be fetched from program
memory.

5.4 Experimental Results
We performed experiments to validate the effectiveness of our
architecture and methodology. We used an existing synthesizable

VHDL model of an 8051 microcontroller as a starting point [16].
We modified this model with the architectural extensions
described in this paper. The initial version supports only a single-
loop in the loop table. All experiments were performed using
Synopsys synthesis, simulation and power analysis tools [14]. The
synthesis tool takes a VHDL register-transfer-level representation
of the microcontroller and outputs a gate-level netlist. To account
for high capacitance of large buses in deep submicron
technologies, the long bus wires going to program memory (in a
special chip region or even separate chip supporting a
programmable ROM technology) have a capacitance 100 times
greater than a typical short on-chip wire, while the data memory
(RAM) bus has a capacitance 10 times greater. Simulation of an
application running on the microcontroller is done to obtain a
count of the switching on each net. Total power consumption is
computed using the standard equation for dynamic CMOS power,
½CV2f, for each net, summed over all nets, where C is a net’s
capacitance, V is voltage, and f is the switching frequency as
computing during simulation. This is all done using standard
Synopsys tools.

We experimented with three examples. Ex1 is a program that
computes checksums. Ex2 computes the greatest common divisor
of two numbers. Ex3 performs matrix multiplication. All assembly
program code was generated from C source by the Keil C
compiler, and we made no modifications to the assembly code.
Each of these examples has the common embedded system
property of spending much time in small loops. Ex1 spends 97%
of its time in 36% of the program code. Ex2 spends 77% of its
time in 31% of the code. Ex3 spends 57% of its time in 11% of the
code (A), and another 28% of its time in 4% of the code (B) as
seen in Figure 4. Upon investigation, we noticed that A is a loop
that at one location calls B; B is a block that executes and jumps
back to A. Thus, B could be inlined into A to create a single loop,
which would have yielded even better power savings than our
current single-loop loop table could provide. This suggests the
need for tuning not just the architecture to the application, but also
the application to the architecture, an area of future work.

Figure 5 provides power results for these three examples, on the
8051 without any extensions (bef), and on the 8051 with
extensions and after self-optimization (aft), with power data
broken down by microprocessor subsystem. Overall power is
significantly reduced in all three examples, as desired, averaging
nearly 34% total power reduction. Reductions will be even greater
when we allow more than one loop in the loop table. Notice that
power related to ROM access decreases by an average of 50%,
with additional power due to the loop table and additional control
logic being small. The percentages depend greatly on the IC
process technology; as feature sizes decrease, the capacitance of
large buses compared with internal nets increases, making the
loop table approach more attractive as features continue to shrink.

Performance was not changed, as desired. No clock cycles were
added or removed during normal or self-optimization operation.
The clock cycle length was not modified either. Note that since
performance did not change, the power reductions also imply
energy reductions.

Though not shown in the figure, we also measured the power after
architectural extensions were made but before self-optimization.
There was no noticeable increase. Furthermore, we measured the
power during self-optimization. The average power increase
during this temporary mode was only about 5%.

0
10
20
30
40
50
60

58
 to

 11
2

45
2 t

o 4
71

11
4 t

o 1
51

51
 to

 57

15
3 t

o 1
67

46
 to

 49

41
 to

 44

19
4 t

o 1
95

16
9 t

o 1
69

35
2 t

o 3
57

35
9 t

o 4
51
0 t

o 3
8

29
5 t

o 3
50

19
1 t

o 1
93

19
7 t

o 2
00

Code Block

%
 o

f C
od

e
Ex

ec
ut

io
n

Figure 4: A few loops often comprise most of an application’s

execution time, as in the matrix multiply example.

213223

Size data is provided in Table 1. We see that the loop count table
adds the most to the size, and the loop table adds the next largest
amount. We are currently working on reducing the sizes of the
memories. We also note several items. First, transistor budgets
are very large and still growing [6], representing a very different
design situation from a few years ago. Second, the loop count
table and profiler transistors are completely idle during normal
operation. Third, if we are willing to accept an increase in cycle-
by-cycle behavior during self-optimization, then the loop count
table can be reduced to a much smaller memory. Fourth, the
microcontroller version we used is as small as they come. Other
versions have more program and data memory, and other
microcontrollers have more complex logic, but the self-
optimization extensions would not increase for those, meaning the
percentage size increase would be much less. Finally, we can
envision that IC’s having only the loop table and by-pass logic,
but not the self-profiling logic and loop count table, could be
mass-produced as smaller and lower cost product-oriented parts,
with the complete self-optimizing architecture serving as
prototype-oriented parts [16].

6. CONCLUSIONS
Pre-fabricated mass-produced microcontrollers are extremely
popular due to low-cost and short time-to-market. Previously, they
could not be tuned to a specific application to reduce power
consumption. We introduced a methodology and architecture that
makes use of today’s abundance of transistors to enable such
tuning in a mass-produced part. The key is a special self-
optimization mode that profiles the application and saves tuning

configuration information. We illustrated our approach by
introducing a loop-table as a tunable component, and showed that
self-optimization using a loop table reduced power significantly in
several examples. We plan to experiment with larger benchmarks,
as well as develop additional tunable components to achieve
greater power reductions.

7. ACKNOWLEDGEMENTS
This work was supported by the National Science Foundation
under grants CCR-9811164 and CCR-9876006.

8. REFERENCES
[1] Bellas, N.; Hajj, I.; Polychronopoulos, C.; Stamoulis, G. Energy and

Performance Improvements in Microprocessor Design Using a Loop
Cache. International Conference on Computer Design, pp. 378-383,
1999.

[2] Fisher, J.A.. Customized Instruction-Sets for Embedded Processors.
Design Automation Conference, pp. 253-257, 1999.

[3] Friendly, D., S. Patel, Y. Patt. Putting the Fill Unit to Work:
Dynamic Optimizations for Trace Cache Microprocessors.
ACM/IEEE International Symposium on Microarchitecture, 1998.

[4] Gonzalez, R.E. Xtensa: A Configurable and Extensible Processor.
IEEE Micro, pp. 60-70, 2000. Also see Tensillica Corp.,
http://www.tensillica.com.

[5] Ishihara, T., H. Yasuura. A Power Reduction Technique with Object
Code Merging for Application Specific Embedded Processors.
Design Automation and Test in Europe, March 2000.

[6] Kiefendorff, K.. Transistor Budgets Go Ballistic. Microprocessor
Report, Volume 12, Number 10, August 1998, pp. 34-43.

[7] Kin, J., M. Gupta, W. Mangione-Smith. The Filter Cache: An
Energy Efficient Memory Structure. International Symposium on
Microarchitecture, pp. 184-193, December 1997.

[8] Klaiber, A.. The Technology Behind Crusoe Processors. Transmeta
Corporation White Paper, January 2000.

[9] Kucukcakar, K. An ASIP Design Methodology for Embedded
Systems. Int. Workshop on Hardware/Software Codesign, pp. 17-21,
1999.

[10] Lee, L. H., B. Moyer, J. Arends. Instruction Fetch Energy Reduction
Using Loop Caches For Embedded Applications with Small Tight
Loops. International Symposium On Low Power Electronics and
Design, 1999.

[11] Malik, A., B. Moyer, D. Cermak. A Low Power Unified Cache
Architecture Providing Power and Performance Flexibility. Int.
Symposium on Low Power Electronics and Design, pp. 241-243,
2000.

[12] Semiconductor Industry Association. International Technology
Roadmap for Semiconductors: 1999 edition. Austin,
TX:International SEMATECH, 1999.

[13] Stitt, G., F. Vahid, T. Givargis and R. Lysecky. A First Step
Towards an Architecture Tuning Methodology for Llow Power.
International Conference on Compilers, Architectures and Synthesis
for Embedded Systems, 2000.

[14] Synopsys Inc., http://www.synopsys.com.
[15] Triscend Corporation, http://www.triscend.com.
[16] Vahid, F. and T. Givargis. Platform Tuning for Embedded Systems

Design. IEEE Computer, Vol. 34, No. 3, pp. 112-114, March 2001.
Also see The UCR Dalton Project, http://www.cs.ucr.edu/~dalton.

0

5

10

15

20

25

Ex1
bef

Ex1
aft

Ex2
bef

Ex2
aft

Ex3
bef

Ex3
aft

M
ill
iw
at
ts

Loop table
and
control
RAM

ALU

Control

ROM

Figure 5: Power consumption for the examples.

Table 1: Size breakdown in gates
Subsystem Original Extended
Controller 3,391 3,767
ALU 2,100 2,100
Decoder 586 586
RAM 17,312 17,312
ROM (8kbytes) 11,000 11,000
Select logic 132
Loop Count Table 33,595
Loop Table 16,740
Self-Profiler/Bypass 7,188
Total: 34,389 92,420

214224

	Main Page
	ISLPED'01
	Front Matter
	Table of Contents
	Author Index

