Due to the type 3 fonts used, please increase the magnification to view

Low Power Address Encoding using Self-Organizing Lists

Mahesh Mamidipaka
Center for Embedded Systems
University of California, Irvine
Irvine, CA - 92697

maheshmn @ cecs.uci.edu

ABSTRACT

Off-chip bus transitions are a major source of power dis-
sipation for embedded systems. In this paper, new adap-
tive encoding schemes are proposed that significantly reduce
transition activity on data and multiplexed address buses,
that do not add redundancy in space or time and which
have minimal delay overhead. These adaptive techniques are
based on self-organising lists to achieve reduction in transi-
tion activity by exploiting the spatial and temporal locality
of the addresses. Unlike previous approaches that focus on
instruction address buses, experiments demonstrate signif-
icant reduction in transition activity of up to 54% in data
address buses and up to 59% in multiplexed address buses.
The average reductions are twice those obtained using cur-
rent schemes on a data address bus and more than twice
those obtained on a multiplexed address bus.

1. INTRODUCTION

Power dissipation has become a critical design criterion in
most system designs, especially in portable battery-driven
applications such as mobile phones, PDAs, laptops, etc.
that require longer battery life. Reliability concerns and
packaging costs have made power optimization even more
relevant in current designs. Moreover, with the increasing
drive towards System On a Chip (SOC) applications, power
has become an important parameter that needs to be op-
timized along with speed and area. Power reduction tech-
niques have been proposed at different levels of the design
hierarchy from the algorithmic level[3] and system level[11]
to the layout level[12] and circuit level[11]. The dominant
source of power dissipation however, is due to the charg-
ing and discharging of node capacitances during transitions,
referred to as capacitive power[17, 10].

*This work was partially supported by grants from NSF
(MIP-9708067), DARPA (F33615-00-C-1632) and Motorola

Corporation

Permission to make digital or hard copies of all or part of this work for
persona or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on serversor to redistributeto lists, requires prior specific
permission and/or afee.

ISLPED’ 01, August 6-7, 2001, Huntington Beach, California, USA.
Copyright 2001 ACM 1-58113-371-5/01/0008....$5.00.

Dan Hirschberg
Dept. of ICS
University of California, Irvine
Irvine, CA - 92697

dan@ics.uci.edu

188

Nikil Dutt
Center for Embedded Systems
University of California, Irvine
Irvine, CA - 92697

dutt@cecs.uci.edu

A significant portion of total power dissipation is due to
the transitions on the off-chip buses. It is estimated that
power dissipated on the I/O pads of an IC ranges from 10%
to 80% of the total power dissipation with a typical value of
50% for circuits optimized for low power[14]. This is because
of the large switching capacitances associated with these bus
lines. Therefore, various techniques have been proposed in
the literature, which encode the data before transmission
on the off-chip buses so as to reduce the average and peak
number of transitions.

However, most techniques have focussed on reduction of
transition activity on the instruction address buses and have
not generated consistent improvement on data address buses,
without incurring significant penalty through redundancy in
space or time. In this paper, new encoding techniques are
presented that exploit the notion of self-organizing lists to
adaptively encode data and multiplexed addresses. This ap-
proach achieves significant and consistent transition activity
reduction without adding redundancy in space or time. The
paper is organized as follows: Section 2 reviews the related
work and Section 3 discusses the techniques for data address
buses and their implementations. The techniques proposed
for multiplexed address bus and their implementation details
are discussed in Section 4. Section 5 shows the reduction in
transition activity obtained by applying these techniques on
various programs. Furthermore, these results are compared
with the existing techniques to demonstrate the efficacy of
these techniques. Finally, conclusions and future work are
presented in Section 6.

2. RELATED WORK

Since instruction addresses are mostly sequential, Gray
coding[16] was proposed to minimize the transitions on the
instruction address bus. The Gray code ensures that when
the data 1s sequential, there is only one transition between
two consecutive data words. However this coding scheme
may not work for data address buses because the data ad-
dresses are typically not sequential. An encoding scheme
called TO coding[2] was proposed for the instruction address
bus. This coding uses an extra bit line along with the ad-
dress bus, which is set when the addresses on the bus are
sequential, in which case the data on the address bus are not
altered. When the addresses are not sequential, the actual
address is put on the address bus. Bus-Invert (BI) cod-
ing[14] is proposed for reducing the number of transitions
on a bus. In this scheme, before the data is put on the bus,

the number of transitions that might occur with respect to
the previously transmitted data is computed. If the tran-
sition count is more than half the bus width, the data is
inverted and put on the bus. An extra bit line is used to
signal the inversion on the bus.

Variants of T0, TOBI, Dual T0, and Dual TO_BI[15] are
proposed which combine TO coding with Bus-Invert coding.
Ramprasad et al. described a generic encoder-decoder ar-
chitecture[13], which can be customized to obtain an entire
class of coding schemes for reducing transitions. The same
authors proposed INC-XOR coding, which reduces the tran-
sitions on the instruction address bus better than any other
existing technique. An adaptive encoding method is also
proposed by Ramprasad et al.[13] , but with huge hardware
overhead. This scheme uses a RAM to keep track of the
input data probabilities, which are used to code the data.

Another adaptive encoding scheme is proposed by Benini
et al., which does encoding based on the analysis of previ-
ous N data samples[1]. This again has huge computational
overhead. Mussol et al. propose a Working Zone Encoding
(WZE) technique[9], which works on the principle of locality.
Although this technique gives good results for data address
buses, there is a huge delay and hardware overhead involved
in encoding and decoding. Moreover this technique requires
extra bit lines leading to redundancy in space. Recently,
Cheng et al. have proposed coding techniques for optimizing
switching activity on a multiplexed DRAM address bus[4].

Although the existing methods give significant improve-
ment on instruction address buses, none of the encoding
methods yield significant and consistent improvement on the
data and multiplexed address buses without redundancy in
space or time. This is because most of the proposed tech-
niques are based on the heuristic that the addresses on the
bus are sequential most of the time. However, data ad-
dresses are typically not sequential and hence the existing
techniques fail to reduce transition activity. Many of the
existing schemes add redundancy in space or time, which
may be expensive in some applications.

3. DATA ADDRESSBUSES

Although data addresses may not be sequential, they still
follow the principles of spatial and temporal locality[6]. That
is, it is more likely that there will be an access to a loca-
tion near the currently accessed location (spatial locality)
and it is more likely that the currently accessed location
will be accessed again in the near future (temporal local-
ity). We propose adaptive encoding techniques that exploit
the principle of locality for reducing the transitions on the
data address bus.

We develop heuristics to minimize the number of transi-
tions between the most frequently accessed address ranges
by assigning them the codes with minimal Hamming dis-
tance. To achieve this, we employ the Move-To-Front (MTF)
and TRanspose (TR) methods in self-organizing lists[7] for
assigning codes that reduce transitions on the address bus.

MTF is a transformation algorithm that, instead of out-
putting the input symbol, outputs the index of the symbol
in a table. The table has all possible symbols stored in it.
Thus the length of the code is the same as the length of the
symbol. Both the encoder and decoder initialize the table
with the same symbols in the same positions. Once a symbol
is processed, the encoder outputs the code corresponding to
its position in the table and then the symbol is shifted to

189

the top of the table (position 0). All the codes from position
0 until the position of the symbol being coded are moved to
the next higher position. The TR algorithm is similar to
MTF in that the code assigned to the symbol is the posi-
tion of the symbol but, instead of moving the symbol to the
front, the symbol is exchanged in position with the symbol
just preceding it. If the symbol is at the beginning of the
list, it is left at the same position.

Note that in both MTF and TR, the most frequent in-
coming symbols are moved to the beginning of the list and
thus the indices of these locations are closer in terms of Ham-
ming distance. Therefore the transition activity between the
codes assigned to most frequent incoming symbols is mini-
mized. These heuristics are very useful in data address buses
since there is a greater likelihood of two different address
sequences being sent on the bus (two arrays being accessed
alternatively, reads from an address space and writes to a
different address space, etc.). In such cases, it is desirable to
keep the encoding of these address ranges as close as possi-
ble i.e., with minimal Hamming distance. The MTF and TR
heuristics achieve the goal by self-organization. But storage
of all the possible address ranges and managing them in
the list is impractical in terms of area and delay overhead.
Hence the address bus is partitioned into a set of smaller
address buses and encoding is applied on each of these ad-
dresses separately. We now discuss the architecture and im-
plementation of the self-organizing lists based encoder and
decoder. The delay/area overheads for each of these tech-
niques is minimal, as descibed here, and as demonstrated in
our experiments presented in Section 5.

3.1 Encoder | mplementation of Self-or ganizing
Lists

The functional implementation of an encoder based on
self-organizing can be split into two phases. During the first
phase, for every incoming symbol, the index corresponding
to it is extracted from the list and put on the bus. In the
second phase, the list is organized based on the incoming
symbol. While the first phase is common for both MTF
and TR techniques, the techniques use different strategies
for organizing the lists based on the incoming symbol.

A generic structure for the implementation of self-organizing
lists is shown in Figure 1 for a bus of width 2. Note that the
straightforward implementation of searching for the symbol
in the list and sending the index corresponding to the sym-
bol location has huge delay overhead in the critical path. A
better way of implementing this would be to keep the lo-
cation of the symbol fixed and, for every incoming symbol,
update the codes of the symbols. As shown in Figure 1,
the incoming signal is fed to the select lines of the multi-
plexer(SEL_MUX) which outputs the code corresponding to
that symbol. The selected code(Y1Yy) is then fed back to
combinational logic which organizes the codes of the sym-
bols in the list. This combinational logic is different for the
MTF and TR techniques.

For MTF encoder, the combinatorial logic will have the
following functionality:

Ny Coy i VoY1 < Cay
Cay +1if oY1 > Cay

00 if VoY) = Cuy

For TR encoder, the combinatorial logic will have the fol-

Y¥g _
c Combinational \ Nao,| 2bit [
B logic Register
SEL_MUX
Yo ‘
c Combinational }_Na 2'b_lt c 2
0 logic Register 4”‘1 L]
Yo
= D e
YY
170]
c Combinational }_N1o,| 2bit Cy At
Q logic Register
Y¥q] 2
c Combinational }_N Z-b_lt Cu «
logic Register Xo

Figure 1: Generic Architecture for Self-organizing
Lists based Encoder

lowing functionality:

Nzy = (-1 if oY1 =C4y and Cypy #£0
= (Cyy Otherwise

The encoder inserts a one-cycle delay between arrival of
the address and output of the encoding. As indicated by
Benini et al. [2], this is not an overhead because even if
binary code (without encoding) were used, the flip-flops at
the output of the bus would be needed. This is because the
address would be generated by a very complex logic circuit
that produces glitches and misaligned transitions. The flip-
flops filter out the glitches and align the edges to the clock
thereby eliminating excessive power dissipation and signal
quality degradation.

The delay induced in the address path due to this en-
coding is the delay of the multiplexer(SEL_MUX). The size
of the multiplexer is exponentially proportional to the bus-
width. Since the buses are split into buses of smaller widths
and the encoding is applied to each of them independently,
the size of multiplexer and hence the delay overhead due
to 1t is minimized. The other paths that arise due to the
encoding, start and terminate within the module and hence
should not add to any timing violations. Some other minor
overheads would be involved at reset because the registers
have to be initialized to the appropriate values. Since none
of these overheads appear in the actual address generation
path, these paths are not considered critical.

3.2 Decoder Implementation of Self-organizing

Lists

Similar to the encoder, the functionality of the decoder
can be split into two phases. In the first phase, the symbol
corresponding to the code is extracted from the list and, in
the second phase, the list is organized based on the extracted
symbol. Figure 2 shows the architecture for the MTF based
decoder.

Unlike the encoder where the codes are stored in the list,
for the decoder the symbols are stored in the list. The
incoming code(Y1Ys) is fed to the multiplexer(SEL_MUX)
to extract the symbol from the list. The extracted symbol
(X1Xo) is then fed back to organize the list based on the
strategy used. The inputs to the multiplexers in front of
the registers shown in Figure 2 determine the symbol that

190

F XXo
C
0 . .
Cmﬁ;" N 2-bit c
0, % 00
Cio | Register
Cu |
7= SEL_MUX
Coo !
c e N Z—E?II C 2
o1 j—m Register
X
XXo>= 01 ff 0
C
COIﬁ;, N 2-bit C
10 f Register
Xf<0> =10
C1o 2
et YN 2+t cy
Cn j—LL Register YYo
XX = 11

Figure 2: Architecture for MTF based Decoder

will replace the location corresponding to the index position.
The decoder for the TR based implementation is similar to
MTF based implementation except that the inputs to these
multiplexers are different.

Similar to the encoder, the critical path in the decoder is
the multiplexer(SEL_MUX) for extracting the symbol cor-
responding to the code. All other paths start and terminate
within the module and hence are not considered critical.

The actual delay and area overhead for self-organizing lists
based encoder and decoder are presented in Section 5.

4. MULTIPLEXED ADDRESSBUSES

In a multiplexed address bus, both instruction and data
addresses are sent on the same bus. So while the addresses
still exhibit the principle of locality, they are often sequen-
tial because of the characteristic of instruction addresses[6].
We propose heuristics that make use of both the sequential
nature and the locality principle to reduce the transition ac-
tivity on the multiplexed address bus. Fortunately, when
the addresses are sequential, most of the transitions occur
on a few of the least significant bits. Thus, we use tech-
niques related to sequential data on the least significant bits
and techniques that exploit the principle of locality on the
higher significant bits.

When the addresses are sequential, the least significant
bits account for the most number of transitions. More specif-
ically, the 4 least significant bits contribute to approximately
93.75% of the total transitions in sequential addresses. Dif-
ferent encoding techniques could be applied on the least sig-
nificant bits which significantly reduce the transition activity
in instruction addresses[8]. We describe the INC-XOR and
Delta-TS techniques below.

e The INC-XOR encoding technique[13] best reduces the
transition activity in an instruction address stream. In
this scheme, the data transmitted is the EXclusive-
OR of the current address and previous address incre-
mented by a constant. The technique was proposed to
be applied on the whole address bus. However, by ap-
plying this technique to only the least significant bits,
we still get significant reductions in transition activity.
The comparison of reductions when INC-XOR is ap-

plied on the 4 least significant bits and when applied
on the whole address bus is shown in Section 5.

o The Delta-TS encoding technique transmits the differ-
ence between the previous address incremented by a
constant and the current address with Transition Sig-
naling (TS). Since the subtractor involved in delta cal-
culation is only 4 bits wide, efficient Look-Up-Table
(LUT) based implementations could be used to lower
delay overhead. The structure of a 4-bit Delta-TS
based encoder is shown in Figure 3.

The actual delay and area overheads for encoding/decoding
of these techniques, along with the reductions obtained by
using these techniques are presented in Section 5. The self-
organizing lists based techniques (MTF/TR), are applied to
the least significant bits and reduce transitions due to se-
quential addresses; the Delta-TS/INC-XOR techniques are
applied to the higher significant bits and exploit the princi-
ple of locality to reduce the transitions.

ot

X(3:0) A

L A-B
B
D

Figure 3: Delta-TS Encoder

5. EXPERIMENTS

We now present results of our low-power address encod-
ing techniques. The programs used for the experiments
are the UNIX compression and compiler utilities (gzip and
cc), commonly used UNIX commands (Is, who, and date),
and standard C programs (factorial and sort). The address
traces of the programs were obtained by executing them on
an instruction-level simulator, SHADE[5] on a SUN Ultra-5
workstation. The comparison is made in terms of the total
number of toggles on the bus before and after the encoding
is applied. We also present the actual area and delay over-
head of the encoding and decoding through synthesis using
the Synopsys Design Compiler.

Table 1. Transition activity reductions using self-organizing lists based encodings on

data address bus

#of addr | %Seq| Binary MTF+TS| TR+TS|MTF+TS TR+TS |MTF+TS

(inK)| (w=2) | W=3) | (w=3) | (w=4) | (w=4)

cc 55496 | 11%| 5628 | 38% | 38% | 45% 1% | 48%
gzip 905338 |0.4% | 90820 | 31% | 47% | 44% 54% | 52%
Is 40704 | 4% 3389 | 19% | 29% | 30% 36% | 3%
who 71443 | 8% 6382 | 18% | 33% | 3% 0% | 3%
date 21032 | 8% 2052 | 18% | 31% | 32% 3% | 38%
factoriad| 3783 | 5% | 358 14% | 25% | 2% 30% | 33%
sort 23390 | 4%| 2329 | 16% | 28% | 29% 3% | 38%

191

Table 1 shows the percentage reduction in transition ac-
tivity for the self-organizing lists based encodings applied to
the data addresses. As indicated in Section 3, the address
bus is split into smaller bus widths and the encoding is ap-
plied to each of these buses independently. In the results
shown, ”w” indicates the width of the smaller buses. The
first column indicates the programs to which the encodings
have been applied. Column 2, ”# of addr.” indicates the
total number of addresses to which the encodings have been
applied. Column 3, ”%Seq” indicates the percentage of ad-
dresses which are sequential. Column 4, ”Binary” indicates
the total transitions that occur on the bus without any en-
coding. Columns 5, 6, 7, 8, and 9 indicate the percentage
reductions obtained when the MTF and TR techniques are
applied for different values of w. It was observed that when
Transition Signaling (Y,‘ =Y.—1 xor X;, whereY is the out-
going bit stream and X is the incoming bit stream) is applied
on top of these encodings, a greater reduction in transition
activity is often achieved. The results shown in the table
indicate the reduction after Transition Signaling(TS).

Note that the reductions increase with increasing bus width,
but the delay overhead due to the encoding/decoding in-
creases rapidly with higher bus widths as shown at the end
of this section. So a configuration could be selected based on
the desired transition activity reduction and tolerable delay
overhead. For applications with tight delay constraints, the
configuration with minimum delay overhead, w=2 could be
used.

Table 2. Transition activity reductions using different encoding techniques on

data address bus

TRCTS) [MTECTS) | Gray | inoor Bt
o 39%(41%) | 41%(48%) | 20% | -4% 23%
gzip 43%(54%) | 42%(52%) | 41% | -8% 42%
Is 25%(36%) | 31%(BT%) | 17% | -9% 17%
who 369(40%) | 39%(37%)| 15% | -6% 20%
date 34%(30%) | 36%(38%)| 14% | -6% 16%
factorial | 26%(30%) | 32%(33%)| 4% | -9% %
sort 28%(35%) | 35%(38%)| 17% | -8% 19%
verede | 3306(40%)| 36%(A0%)| 18% | -T% 20%

Table 2 shows the comparison of these reductions with
those obtained using existing techniques. A maximum re-
duction of 54% was achieved by TR+TS with w=4 for the
gzip program. The values in the parenthesis for MTF(+TS)
and TR(4+TS) in columns 2 and 3, indicate the percentage
reductions achieved by using TS on top of MTF/TR tech-
nique. Except for the 'who’ program, there was an increase
in the reductions by using T'S on top of MTF/TR. This extra
reduction on average, is considerable in case of TR("7%),
but is less significant for MTF (< 4%). Columns 4, 5, and
6 show the reduction in transition activity for Gray coding,
INC-XOR, and Bus-Invert coding respectively. As expected,
since the addresses are not sequential, the INC-XOR tech-
nique fails to give any reduction. While Bus-Invert coding
gives the best reduction among the existing techniques, this
technique needs 4 extra bit lines for implementation which
may not be tolerable. And clearly the self-organizing lists

based techniques outperform the existing techniques. On
average, the reduction with self-organizing lists based en-
coding is twice that of the best existing technique. Also,
the self-organizing lists based encoding does not add any re-
dundancy in space or time (no extra bit-lines or time slots
are needed for implementation).

Table 3 shows the reduction in transition activity for var-
ious combination of encoding techniques on the multiplexed
address bus. While the Delta-TS and INC-XOR are applied
on the least significant 4-bits, the MTF and TR are applied
on the higher significant bits. Asin the data address bus, the
multiplexed address bus is split into smaller buses(w=4) and
the encodings are applied on each of them independently.

Table 3. Transition activity reductions for various encoding techniques on
multiplexed address bus

#of addr | %Seq | Binary |Inc-Xor |Inc-Xor | Delta | Delta

(inK) (nK) | +MTF| +TR | +MTF | +TR
cc 387.3 | 60%| 2100.7 49% 41% 50% 40%
gzip 44127 | 57%| 35323.0 58% 56% 59% 57%
Is 4437 | 57%)| 24155 46% 33% 47% 34%
who 819.6 | 58%)| 44457 | 47% 36% 48% 38%
date 1532 | 60%| 823.2 50% 39% 51% 41%
factorial 30.8 | 62%| 14238 49% 34% 51% 35%
sort 295.2 | 60%| 1543.0 49% 38% 50% 39%

Table 4. Comparison of transition activity reductions for
various encodings on multiplexed address bus

Delta

+MTE Gray |Inc-Xor B'ijvs\'/_l:ré\)/

w=4)
cc 50% 22% 22% 21%
gzip 59% 47% 14% 50%
Is 47% 19%6 20% 17%
who 48% 18% 23% 16%
date 51% 19% 24% 18%
factorial 51% 16% 27% 19%
sort 50206 18% 24% 17%
Average 519% 23% 22% 22%
Reductions:

It can be noticed that MTF based encodings give better
reductions than TR based encodings. Also, Delta based
encodings give marginally better reductions than the INC-
XOR ones. In all the cases in which the encodings have
been applied, the Delta+MTF combination gave the best
results. The best reduction obtained with these encodings
was 59% on the gzip program. But if delay overhead is a
major concern, then INC-XOR+MTF could be used which
gives reductions marginally less than that of Delta+MTF.
Table 4 shows the comparison of these reductions with the
existing techniques: Gray, INC-XOR and Bus-Invert coding.
Among the existing techniques Gray coding gives the best
reductions. The reduction for INC-XOR is mainly due to the
instruction addresses in the multiplexed address bus which
are sequential. On average, Delta+MTF gives a reduction
of 51% which is more than twice that of the best existing
technique(Gray, 23%).

Fach encoding scheme incurs some area and delay over-
head. Table 5 compares the area(number of library cells)

192

and the delay(ns) of encoders and decoders that are based
on MTF and TR techniques with those based on other tech-
niques. The designs were synthesized using Synopsys Design
Compiler on a 0.6pm LSI_10K library and the synthesis was
done for a 32-bit address bus. For MTF and TR the synthe-
sis was done for w=4, and for Bus-Inv, synthesis was done
for w=8 (i.e., the same parameters used in the previous ex-
periments).

Table 5. Area and Critical Path Delay overheads for
Self-organizing Lists based Encoder and Decoder

Area(lib. cells) | Delay (ns)

Enc Dec | Enc | Dec
MTF4TS | 2582 2485 4.6 4.2
TRA+TS 2436 2345 4.6 4.2
Bus-Inv 210* 40% | 4.7 1.9
Gray 72 406 3.2 | 12.3
Inc-Xor 496 518 4.2 4.2

The asterisk for Bus-Inv indicates that the area overhead
due to extra bit lines was not considered in its area evalu-
ation. As can be noted, the delay overhead in the critical
path for MTF/TR is comparable to that for the existing
techniques. But the area overhead of these techniques is
considerably more than that of other techniques. Consider-
ing the fact that the reduction in transition activity obtained
with this technique is consistently more than twice the ex-
isting techniques, we think this extra overhead in area is
acceptable. If the area overhead is a concern, it can reduced
substantially by applying this technique on fewer number
of bits (say w=3). Another overhead that needs analysis is
the power dissipation due to encoder and decoder. For TR,
because of the structure of implementation, for any given
input, there can be a change in encoding for at most 2 sym-
bols out of 16 symbols. So, approximately, only 1/8th of
the gates could be active in any cycle for any input. Simi-
larly for MTF, on average 1/2 of the gates would be active.
Assuming a transition activity of 0.5, the possible number
of transitions are approximately 600 for MTF and 150 for
TR. Note that the I/O capacitance is at least 3 orders of
magnitude more than that of the internal capacitance[9].
Hence the overhead due to internal power dissipation is still
considerably less than the reduction obtained.

The delay induced in the critical path due to the encod-
ing/decoding and the area overhead for the Delta-TS and
INC-XOR techniques are shown in Table 6 for a 4-bit ad-
dress bus. The delay overhead of Delta-TS is higher than
that of INC-XOR technique because of the 4-bit subtrac-
tor needed for calculating the difference between the cur-
rent address and the previous address. But the reduction
in transition activity by using the Delta-TS technique is
marginally more than that obtained by using INC-XOR
technique. Also, it can be noted that the area overhead
of these modules is minimal.

Table 6. Area and Critical Path Delay overheads for
Delta-TS and INC-XOR Encoding/Decoding

Delta-TS INC-XOR
Encoder | Decoder | Encoder | Decoder
of Cells 60 51 30 30
CPDel(ns) | 2.7 2.58 0.96 0.96

6. CONCLUSIONSAND FUTURE WORK

In this paper, we presented self-organizing list based en-
coding techniques (MTF and TR) for data address buses.
For multiplexed address buses, we employ a combination of
encoding techniques: while the Delta and INC-XOR are ap-
plied on the least significant bits, the self-organizing lists
based encoding are applied on the more significant bits of
the multiplexed address bus. This enables the exploitation
of both the sequential nature of the instruction addresses
as well as the locality of addresses in the multiplexed ad-
dress buses. The proposed techniques consistently outper-
form the existing techniques in both data address bus and
multiplexed address bus without adding the overhead of re-
dundancy in space or time. Results show that TR with TS
applied to various data address streams gives up to 54% re-
duction in transition activity. On a multiplexed address bus,
Delta+MTF yields a reduction of up to 59%. Future work
will involve the applicability of the proposed techniques to
data buses.

7. REFERENCES
[1] L. Benini, A. Macci, E. Macii, M. Poncino, and R.

Scarsi. Architectures and synthesis algorithms for
power-efficient bus interfaces. IFEFE Transactions on
Computer Aided Design of Circuits and Systems, 19,
2000.

L. Benini, G. De Micheli, E. Macii, D. Sciuto, and C.
Silvano. Asymptotic zero-transition activity encoding
for address buses in low-power microprocessor-based
systems. In Great Lakes Symposium on VLSI, Urbana,
1L, 1997.

A. P. Chandrakasan and R. W. Broderson. Minimizing
power consumption in digital CMOS circuits.
Proceedings of the IEFFE, 83:498,523, 1995.

W-C. Cheng and M. Pedram. Low power techniques
for address encoding and memory allocation.
ASP-DAC, 2001.

R. F. Cmelik and D. Keppel. Shade: A fast
instruction-set simulator for execution profiling.
Technical Report UW-CSE-93-06-06, 1993.

193

[6] J. L. Hennessy and D. A. Patterson. Computer
Architecture: A Quantitative Approach. Morgan
Kaufmann, San Francisco, 1996.

J. Hester and D. S. Hirschberg. Self-organizing linear
search. Computing surveys, 17:295,311, 1985.

M. N. Mahesh, D. Hirschberg, and N. Dutt. Encoding
techniques for low power address buses. Technical
Report #01-22, University of California, Irvine, 2001,
http://www.ics.uci.edu/ maheshmn /encoding_tr.doc.
E. Musoll, T. Lang, and J. Cortadella. Working-zone
encoding for reducing the energy in microprocessor
address buses. [EEF Transactions on Very Large
Scale Integration (VLSI) Systems, 6, 1998.

F. Najm. Transition density, a stochastic measure of
activity in digital circuits. In Design Automation
Conference, pages 644-649, 1991.

M. Pedram. Power minimization in [C design:
principles and applications. ACM Transactions on
Design Automation of Electronic Systems, 1:3-56,
1996.

M. Pedram and H. Vaishnav. Power optimization in
VLSI layout: a survey. The Journal of VLST Signal
Processing Systems for Signal, Image, and Video
Technology., 15:221-232, 1997.

S. Ramprasad, N. R. Shanbag, and 1. N. Hajj. A
coding framework for low power address and data
busses. TEFE Transactions on Very Large Scale
Integration (VLSI) Systems, 7:212-221, 1999.

M. R. Stan and W. P. Burleson. Bus-invert coding for
low-power 1/O. IEEFE Transactions on Very Large
Scale Integration (VLSI) Systems, 3:49-58, 1995.

M. R. Stan and W. P. Burleson. Low-power encodings
for global communications in CMOS VLSI. IEEFE
Transactions on Very Large Scale Integration (VLSI)
Systems, 5:444-455, 1997.

C. L. Su, C. Y. Tsui, and A. M. Despain. Saving
power in the control path of embedded processors.
IFEFE Design and Test of Computers, 11:24-30, 1994.
N. Weste and K. Eshragian. Principles of CMOS
VLSI Design, A Systems Perspective. Addison-Wesley,
Reading, CA 1998.

[10]

[11]

[12]

[13]

[14]

[15]

	Main Page
	ISLPED'01
	Front Matter
	Table of Contents
	Author Index

