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ABSTRACT

Power concerns are becoming increasingly pressing in high-
performance processors. Building power-aware and even
power-adaptive computer architectures requires being able
to track power consumption and attribute energy consump-
tion to the portions of the chip that are responsible for it.

This paper presents the Castle project which aims to de-
duce the actual runtime power dissipated by different pro-
cessor units on the CPU chip by leveraging existing hard-
ware. Namely, we examine the use of hardware performance
counters as proxies for power meters. We discuss which per-
formance counters count power-relevant events, and how to
estimate event counts for power-relevant events not well sup-
ported by current, commonly available performance coun-
ters. We also discuss sampling-based approaches for esti-
mating signal transition activity within the processor. Over-
all, we find that these performance counters can be quite
useful in providing good power apportionment estimates for
programs as they run.

1. INTRODUCTION

Recent efforts in energy-aware computing have examined
many different ways to reduce power consumption (for ex-
ample, [16, 18, 8, 1, 21, 15]). Many of these techniques, par-
ticularly ones based on run-time adaptation, require accu-
rate estimates of processor power dissipation. For example,
equal-energy operating system scheduling assumes that the
operating system can estimate when a processor has used
its allotment of energy for this timeslice.

Although power estimates are often crucial for design pur-
poses or for dynamic optimization, they are often quite hard
to obtain in a modern, super-scalar processor. Architects
typically rely on simulations or on estimates of maximum
power dissipated per unit. Compiler writers and operating
system developers resort to even higher-level abstractions
for power dissipation. While some processors have on-chip
thermal sensors, they are often slow to read (requiring an
interrupt) and offer little information on which particular
unit might be most responsible for power dissipation.
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Ideally, hardware and software designers want detailed
breakdowns of how much power is dissipated, in which units,
for individual programs. For example, Figure 1 of [11] presents
the power distribution for the Intel Pentium Pro processor,
broken down by individual units. That graph was gener-
ated by simulation, and in fact such a piechart is extremely
difficult to measure directly, since there are no on-chip am-
meters to determine how current or power divides between
different CPU units.

Our work in developing Castle seeks to provide per-unit
power breakdowns based on direct measurements, rather
than through simulations or max-power estimates. In par-
ticular, this paper outlines and explores a technique for es-
timating run-time processor power dissipation on a compo-
nent level. The estimation scheme relies on performance
counters, a frequently overlooked facility of most micropro-
cessors. With these counters and register file sampling, we
can deduce usage and activity factors for many processor
components. The measurement routines are simple, incur
only negligible performance and power impact, and—most
importantly—are accurate.

The remainder of this paper is structured as follows. Sec-
tion 2 gives an overview of our approach and outlines key
issues in leveraging performance counters for power mea-
surement. Sections 3 and 4 then discuss results for two key
types of accuracy: accuracy in unit event counts, and ac-
curacy in signal transition statistics. Section 5 presents the
combined effects of examining utilization and signal transi-
tions. Section 6 offers some results on real hardware. In
Section 7, we discuss related work, and finally, Section 8
offers our conclusions.

2. POWER MEASUREMENT WITH PER-
FORMANCE COUNTERS

Our approach allows a run-time monitor or operating sys-
tem kernel to measure a program’s power consumption on
the fly. This will create opportunities for interesting energy
based scheduling and power optimization techniques. To
approximate power consumption, we rely on performance
counters to generate usage counts and register values to es-
timate activity. This measurement scheme does not impact
performance because the necessary routines are simple and
can be embedded into the operating system’s scheduler. Fig-
ure 1 outlines our general approach and partial validation
scheme.
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Figure 1: General Approach and Partial Validation.

2.1 Hardware Performance Counters

Most modern microprocessors support programmable event
counters that can measure microarchitectural events. Ob-
servable events typically include cache misses/hits, bus trans-
actions, branch mispredictions, and instruction retirement.
Such event counters are used in commercial performance
monitoring toolsets [9] and are also employed in more ad-
hoc ways to track subtle performance bugs [12]. The key
advantage of hardware performance counters is that instead
of relying on simplified performance simulations, program-
mers can evaluate the impact of their final optimizations on
real hardware.

The capabilities provided by event counter mechanisms
varies across processor families and within implementations.
For example, the Compaq Alpha 21164 features 22 events,
but the Alpha 21264 which implements the same ISA; only
recognizes nine different events [3]. There are also limita-
tions on how many events may be simultaneously measured.
The IBM Power 3-II processor can concurrently measure up
to eight of its 238 performance events [3]. The Intel Pentium
IT processor can only simultaneously observe two out of 77
total events [3].

2.2 Performance-relevant Events vs. Power-
relevant Events

Architectural power simulators like Wattch [5] track the
utilization of processor components including wakeup logic,
functional units, and cache ports. They also monitor switch-
ing factors for critical bitlines including register files, result
buses, and the store buffer. During simulation, they feed
these utilization numbers and activity factors into a high-
level power model to estimate the energy behavior of the
processor.

In a similar vein, we wish to generate the same kind
of power estimates with complete component breakdowns.
By sampling performance counters we can approximate the
component usage counts. By examining register file con-
tents, we infer bitline switching factors. There are sev-
eral obstacles that make both tasks interesting. First, the
events recorded by performance counters are not the same
one might choose for power-relevant counts. This issue is
discussed further in Section 3. Second, none of the per-
formance counters are aimed at discerning signal transition
activity, which of course is crucial for power measurement.
Methods for overcoming this problem are discussed further
in Section 4.
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Resource Utilization Formula

rename insn_decoded

bpred branch _retired

regfile (insn_retired - branch_retired)
+ 0.4 * insn_decoded

icache fetch_access

dcache dmem _access

12cache 12_access

resultbus insn_executed

5 * insn_executed
insn_executed
insn_decoded

window_preg
window_wakeup
window_selection

Isq_preg 1/3 * dmem_access
Isq-wakeup 2/3 * dmem_access

ialu insn_executed - fp_op_exec
falu fp_op_exec

Table 1: Listing of heuristic approximations for Wattch-
Alpha model.

3. POWER-RELATED EVENT COUNTS
3.1 Power Mode€

In our investigations, we used Wattch [5], an architec-
ture level power simulator. This SimpleScalar[6] based tool
leverages analytic models of processor components to gener-
ate complete and accurate power statistics. In the spirit of
SimpleScalar, Wattch allows a fair amount of flexibility and
customization. In most cases, we use Wattch parameterized
to resemble an Alpha 21264.

3.2 Which Event Countersto Use?

While most processors have extensive performance count-
ing ability, many of the events that are interesting from a
power measurement standpoint do not appear in any per-
formance counter APIs. For example, register file usage is
an important contributor to total processor power, but this
is not a directly useful statistic from a performance stand-
point. As a result, it is not directly available in any per-
formance counter API. To combat this, we use heuristics to
infer power relevant counts from the available counters.

Since typical performance counters do not capture all the
power relevant events, we must approximate some utiliza-
tion factors through heuristics. In general, the heuristics
depend on machine structure and the available performance
counters. We have chosen a set of heuristics that are based
on our Wattch-Alpha model and rely on our assumed per-
formance counters. These heuristics may not be suitable on
other architectures. For example, Section 5 outlines a differ-
ent set of heuristics used to model a Pentium Pro. Table 1
summarizes our Wattch-Alpha formulae. We briefly explain
the reasoning behind three of our heuristics.

As our first example, we estimate the number of instruc-
tion window physical register accesses (window_preg) by mul-
tiplying the number of instructions executed by five. This
works because the average instruction in our model makes
five instruction window /reservation station accesses.

There is no direct way to measure the number of archi-
tected register file accesses (regfile). In general, this is diffi-
cult to predict since it is partially dependent on early avail-
ability of source operands. To first order, it will scale with
the number of retired instructions which write values and
instructions decoded that read values. The corresponding
formula in Table 1 reflects this.



Finally, to estimate the number of wakeup logic accesses
(window_wakeup), we substitute with the number of instruc-
tions executed. After instructions execute, they alert depen-
dent instructions that their operand values are ready via
wakeup logic. So, the number of instructions executed ap-
proximates the number of wakeup accesses.

3.3 Counting Limited Eventsat Once

Unfortunately, the performance counter API only allows
us to measure two event types at a time. Even the most ac-
commodating processors only allow eight simultaneous events
[3]. To approximate these measurements, we rotate through
the available performance counters, examining one pair of
event counts at a time. This multiplexing assumes that pro-
gram behavior is fairly constant with respect to the sampling
intervals.

3.4 Validation

Our Wattch simulation model was configured to roughly
approximate an Alpha 21264 running at 600 MHz. Unfortu-
nately, the Alpha 21264 has a limited performance counter
API, in contrast to its predecessor, the Alpha 21164 which
has extensive counter abilities. In response, we have ex-
panded the number of countable events to bring the our
Alpha model up to speed. All of the selected performance
events can be found in existing processors. Finally, we have
assumed aggressive, linear clock gating within the processor.

In our experiments we assume Wattch’s basic power model,
and rely on the same per usage wattage for most microarchi-
tectural items. This means that we can expect error to be
introduced through either sampling or flaws in our heuris-
tic approximations. We assume a 10 millisecond sampling
interval. This is an acceptable context switch interval for
most operating systems, and we find that it gives good re-
sults in practice. We based our analysis on SPEC95 Int and
FP benchmarks, compiled by cc, with full optimization.

3.5 Results
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Figure 2: Alpha Model - Resource Utilization Error.

To evaluate our heuristic approximations and sampling
approach, we compare them to Wattch’s utilization factors
on Spec95 benchmarks. Figure 2 shows the relative error
introduced by our estimates. Most of the estimated utiliza-
tion rates match the Wattch measurements. In particular,
many of the items including d-cache access and fetch access
rates are within 5%. This is to be expected since both of
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these events are made directly available by the performance
counters. Error is only introduced through sampling.

Many of the heuristic based approximations also track
very well. In particular, the rename and window physical
register rates show little deviation from the Wattch mea-
surements.

Some of the heuristics do not track as favorably. Load/Store
Queue (LSQ) physical register accesses are difficult to pre-
dict. Our heuristic assumes that these accesses correspond
directly to store instructions. Further analysis suggests that
this approximation would be fairly robust if we could pre-
cisely determine the ratio of load-to-store instructions with
the available counters. At the present, limitations force us
to chose a fixed ratio, which performs well on most bench-
marks, but very poorly on a select few floating point pro-
grams.

In addition, window selection is also difficult to predict.
This is because selection power is dependent on the number
of ready instructions in the instruction window. This is
difficult to estimate with the standard counters assumed in
this investigation. With additional information on queue
occupancy, we could offer a more accurate estimate.

For circuit-based and structural reasons, window selection
and LSQ physical register power comprise a relatively small
portion of total processor power. As we will show in the
following section, these inaccuracies do not severely hamper
estimation.

4. SIGNAL TRANSITION STATISTICS

A runtime power estimate based solely on performance
counters ignores the variable activity factors dependent on
program data. In our studies, we focus on the activity of
single-ended bitlines which can comprise a significant por-
tion of total processor power. For example, single-ended
bitline power accounts for 11% of the maximum power dis-
sipation in our Wattch-Alpha model. Furthermore, it is
impossible to directly measure the crucial activity figures
during normal program operation.

Note that the activity on double-ended bitlines is not data
dependent since the paired bitlines complement each other.
They always have a constant switching factor. As a result,
double-ended bitline power can be addressed with perfor-
mance counter based utilization estimates.

In contrast, the data values seen on the single-ended bit-
lines determine their power dissipation. If the circuit is
precharged to logic one, then only zeros will dissipate power.
Conversely, a precharge to logic zero means that only ones
will dissipate power. For this type of structure, the pop-
ulation count divided by the bit width yields the activity
factor.

To assess activity factors, we sample and average regis-
ter file population counts when we collect the performance
counter values. Then, we scale the maximum power of the
single-ended bitline arrays by the estimated activity to pro-
duce a total bitline power estimate.

Our activity estimates assume that the register file values
are closely coupled to the values passing through the single
bitline structures. There is some truth to this since most of
the values seen on the physical register file, store buffer, and
result bus pass through the architected register file thorough
operand reads and writes. In general, we can expect other
values to appear on these bitlines, but the majority of data
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Figure 3: Alpha Model - Estimated Activity.

values circulating through the processor will be placed in
the register file at some point.

Finally, our scheme assumes that all the registers are used
with equal frequency. If a small number of frequently used
registers have decidedly different population counts from the
rest of register file, our estimate would be skewed. A more
sophisticated scheme might use weighted register samples.

4.1 Validation

In our experiments, we used the same Wattch model. On
single-ended bitlines, we presuppose that power is linearly
dependent on activity factor. The architected and physical
register files, store buffer, and result bus are the only single-
ended bitline structures in our model. Differences between
Wattch’s reported power levels and our power estimates will
be introduced by way of sampling.

4.2 Results

Within the benchmarks selected for this study, the ac-
tivity approximation scheme shows varying degrees of suc-
cess. In Figure 3, the estimated activity factors track the
Wattch measured factors on most of the integer benchmarks.
On most benchmarks there is less than a 2% relative error.
There is a considerable amount of variability on the float-
ing point suite. For fpppp, the approximated activity is as
much as 21% greater than the true value. We anticipate
activity factors in floating point benchmarks will be more
difficult to estimate because they generally use larger bit
widths during computation. A significant portion of the in-
teger benchmarks use less than a quarter of the available bit
width [4].

5. OVERALL POWER ESTIMATES

Despite small inaccuracies in component usage and activ-
ity, the average power estimates depicted in Figure 4 closely
follow Wattch’s power measurements for all of the bench-
marks examined. Fortunately, the largest component us-
age errors are in units that account for a relatively small
amount of the total power. The error introduced by activ-
ity is also small for most of the benchmarks. Integer and
floating point benchmarks are approximated equally well.
Fortunately, discrepancies in floating point activity were not
large enough to hamper the estimation scheme in general.
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Figure 4: Alpha Model - Overall Estimated Power vs. Mea-
sured Power.
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Figure 5: Alpha Model - Component Power Breakdown.

Finally, in Figure 5 we can see that the estimated com-
ponent breakdowns also match the Wattch results. Error is
typically less than 5

6. MEASUREMENTSON REAL HARDWARE

Obviously, the end goal of our Castle project is to provide
real measurements on hardware. Here we present a proto-
type of our run-time power measurement scheme.

6.1 Methodology

Our platform was an Intel Pentium Pro 200MHz based
computer with 128MB and a 2GB hard drive, running Linux
2.2.16. All power measurements were collected by an HP
34401A Digital Multimeter which broadcast readings to a
second computer. These samples were then logged and av-
eraged.

To measure total CPU power, we applied an approach sim-
ilar to [20]. We placed a known shunt resistance between the
computer’s power supply and the processor’s motherboard
power terminal as depicted in Figure 1. By observing the
voltage over this resistor, we were able to determine the cur-
rent being drawn and hence the total power consumed. Since
the processor and chipset share terminals, we subtracted the



chipset power from total power observed and finally deduced
the CPU power.

We extended the scheduler inside the Linux kernel to im-
plement our estimation scheme. To sample processor events,
we used the Pentium Pro performance counters. We limited
our interest to 12 distinct events, and sampled the maxi-
mum of two at a time. The events were switched once every
timer interval.

Our power estimates were based solely on resource usage.
Since IA32 only has eight general purpose integer registers,
register based activity estimates seemed inappropriate. A
hybrid technique that couples register sampling with pointer
analysis and memory data sampling might yield better re-
sults.

We used the familiar SPEC Int95 benchmarks in conjunc-
tion with the pointer intensive Olden benchmarks[13]. All
programs were compiled by egcs-2.91 with the O2 optimiza-
tion level.

6.2 Modeing Pentium Pro Power

Without a circuit-level knowledge of the Pentium Pro, it
was difficult to construct a suitable power model. While we
managed to gather maximum component power figures for
most of the larger microarchitectural structures including
caches, decode logic, and the reorder buffer, we were un-
able to isolate power estimates for a large number of smaller
structures including the BTB and address generation units.
In total, these smaller structures constituted as much as 24%
of the remaining processor power. With such a large frac-
tion of the microarchitecture unaccounted for, we made the
conservative assumption that these unidentified structures
had constant, maximum power utilization.

We also assumed that the decoder, issue logic, and re-
order buffer were constantly utilized. To calculate memory
access and floating point power, we relied on the related per-
formance counter events. For integer functional unit power,
we estimated the number of uops decoded and subtracted by
the number of executed floating point and memory opera-
tions. Finally, we assumed that the global clock distribution
power was constant.

6.3 Reaults
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Figure 6: Pentium Pro - Overall Estimated Power vs. Mea-
sured Power.

In Figure 6 we plot Castle prototype power estimates ver-
sus the direct measurements. Our estimates track the rela-
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tive power consumption fairly well, considering limited avail-
ability of Pentium Pro power data. This prototype could be
significantly improved by an enhanced Pentium Pro power
model.

One interesting trend is the relatively small differential
between the high and low wattage benchmarks in compari-
son to the Alpha power simulations in Figure 4. The most
likely cause is the degree of clock-gating in the two proces-
sors. Our Alpha simulation used an aggressively clock-gated
processor, but the Pentium Pro in our study makes limited
use of conditional clocking.

Our power model makes overestimates for bh, power, and
tsp. This is likely caused by the very conservative decoder
model. The decode behavior of these three benchmarks dif-
fers significantly from the remaining benchmarks. The Pen-
tium Pro decode mechanism is fairly complex, and our initial
attempts to reconstruct more robust power models have had
limited success. We are currently working on a probabilistic
model which may offer better results.

Finally, our Castle based analysis was able to generate
component power distributions similar to those in Figure
5. Our future plans include comparing these to a detailed
power simulator for the Pentium Pro for more complete val-
idation.

7. RELATED WORK

This research contributes to a growing body of work on
microprocessor power measurement and modeling. In pio-
neering work, Tiwari, et al. explored the instruction level
effect of power in microprocessors [16]. This investigation
of the Intel 486DX2 identified energy costs for different in-
struction types, inter-instruction overhead, memory system
power, and stall related effects.

This has been followed by many studies exploring instruc-
tion level power in embedded microprocessors and DSPs in-
cluding [10][14]. These efforts produced software power esti-
mate models suited to a particular processor design. These
models can be used to predict run-time power and guide
energy-aware optimizations [17][18]. Recent work [20][7],
has examined dynamic power measurement in pocket com-
puting and personal digital assistants (PDAs). Like many
of the earlier studies, this work examined embedded micro-
processors and controllers and did not explore the power
modeling of wide superscalar machines.

Architectural level power simulators [5][19] have made sig-
nificant strides toward de-mystifying power dissipation in
more complex processors.

In [2], the author presents a run-time power estimation
scheme which also uses performance counters. The author
observes processor power with a multimeter setup similar to
ours. With some empirical data produced by microbench-
marks, energy weightings are devised and assigned to a few
critical events. Given these weights and counter sampling,
the author outlines an approach for thread-level accounting.

While this proposal offers some novel ideas, it is not com-
plete. Because of the black box approach taken in [2], com-
ponent power distributions cannot be generated. By lever-
aging knowledge of the microarchitecture, we can produce
more detailed power estimates. In addition, this approach
makes no provisions for data-dependent switching activity,
which may have a significant impact on program power con-
sumption. By constructing an appropriate power model,
and considering data dependent switching factors, we can



produce more comprehensive run-time power analysis which
may increase the window for power-aware optimization.

8. CONCLUSION

In this paper, we described a general scheme for estimat-
ing runtime microprocessor power with performance coun-
ters. This approach differs significantly from previous power
estimation techniques. It is applicable in high performance
processors which exhibit complex energy usage patterns, and
more importantly, it provides a rare glimpse of component
power consumption. We prototyped our estimation scheme
on a Pentium Pro platform.

By leveraging information about machine organization and
sizings, one can develop not only a runtime power estimate,
but also component power distributions. In addition, regis-
ter file sampling can approximate bitline activity, and gener-
ate even more accurate power estimates. There is however,
considerable room for improvement in bitline power approx-
imation as witnessed in the floating point benchmarks in
Figure 3. In particular, our current model assumes that all
registers are used with equal frequency. By scanning small
code snippets, a runtime estimator could generate a more
useful weighted average population count. In addition, it
might be worthwhile to examine not just the registers, but
also frequently accessed portions of memory. A more so-
phisticated runtime scheme might be able to identify small
array based loops, and scan those arrays to produce better
population estimates.

Overall, the Castle project offers the benefits of detailed,
but slow power simulations, while providing low-overhead
run-time power measurement. Our future plans include both
expanding on Castle’s accuracy and comprehensiveness as
well as applying the approach in power-oriented architecture
research.
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