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ABSTRACT
The increasing importance of energy e�ciency has produced
a multitude of hardware devices with various power manage-
ment features. This paper investigates memory controller
policies for manipulating DRAM power states in cache-based
systems. We develop an analytic model that approximates
the idle time of DRAM chips using an exponential distri-
bution, and validate our model against trace-driven simula-
tions. Our results show that, for our benchmarks, the simple
policy of immediately transitioning a DRAM chip to a lower
power state when it becomes idle is superior to more sophis-
ticated policies that try to predict DRAM chip idle time.

1. INTRODUCTION
Energy e�ciency is becoming an increasingly important

target for optimization in many system designs. Mobile
computing devices require techniques to extend battery life-
time, while others must reduce power to meet heat or fan
noise limitations (e.g., medical applications). Even desktop
and server systems should be energy e�cient for economical
and environmental considerations. Main memory is consum-
ing an increasing proportion of the power budget and thus
motivates e�orts to improve DRAM energy e�ciency.
DRAM manufacturers are meeting this demand by de-

veloping DRAM chips with multiple power states such as
active, standby, nap and powerdown. The chip must be in
the active state to service a request. The remaining states
are in order of decreasing power consumption but increasing
time to transition back to active. Energy e�ciency can be
improved by placing the chips in a lower power state when
not used. The challenge for the system designer is to utilize
these modes most e�ectively.
In our previous work [5], we investigated memory con-

troller policies for making DRAM chip power state transi-
tions in conjunction with software page placement policies.
The power-aware page allocation policies exploit working
set locality to increase the opportunity for the memory con-
troller to make e�ective transition decisions.
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The goal of this work is to understand the characteristics
of memory access patterns in a cache-based memory archi-
tecture and how those patterns a�ect the design of controller
policies that transition among power states. For a memory
system without caches, there is work showing potential ben-
e�ts of an adaptive policy that attempts to predict the time
between consecutive accesses as a basis for deciding when to
make transitions [1]. By contrast, we consider the behav-
ior of policies for memory requests generated by representa-
tive productivity applications and �ltered through a 2-level
cache. We consider access patterns produced by random
page allocation as well as the sequential �rst-touch policy
previously shown to be e�ective [5] when used in conjunc-
tion with simple power-aware controller policies. The basic
question is whether simple policies are adequate to capture
the relevant features of cache-�ltered accesses.
To characterize memory access patterns, we de�ne the no-

tion of gap as the interval between clustered accesses. We
�nd that most memory traces from our workload �ltered
by 2-level cache have gap distributions that can be approxi-
mated by an exponential distribution. They also have large
average gap values (greater than 200ns). A critical parame-
ter in the design of memory controller policies is the length
of time spent in the current power state before a transition
to a lower state is made. We refer to this as the threshold.
We analyze the relationship between threshold values and
a model of exponentially distributed memory access gaps.
The analytical result shows that, for our benchmarks, the
simple instant transition policy (threshold = 0) produces
maximum bene�t. Finally, we experimentally validate this
theoretical conclusion through trace-driven simulation.
The remainder of this paper is organized as follows. In

the next section, we provide background on power-aware
memory design. We identify the primary factors that char-
acterize memory access patterns and a�ect the behavior of
power control. Then, we introduce our evaluation metric
and our method of generating cache-�ltered memory traces.
Section 4 examines gap distributions and analyzes the rela-
tionship between gaps and thresholds. We present simula-
tion results and show how close they are to the theoretical
analysis. Section 5 concludes.

2. BACKGROUND
This section reviews modern DRAM power management

features and appropriate memory controller policies for ex-
ploiting these features. We also identify the important char-
acteristics of DRAM access patterns and how they interact
with memory controller power management policies.
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Power State Power Time
Transition (mW) (nS)
Active Pa = 300 tacc=60
Standby Ps = 180 -
Nap Pn = 30 -
Powerdwn Pp = 3 -
Stby ! Act Ps!a = 240 Ts!a = +6
Nap ! Act Pn!a = 165 Tn!a = +60
Pdn ! Act Pp!a = 152 Tp!a = +6000

Table 1: RDRAM Power State and Transition Val-
ues: All accesses incur the 60ns active access time. Ad-

ditional delay (denoted by the +) is incurred for clock

resynchronization.

2.1 Rambus DRAM
Memory technology has developed to respond to the needs

of mobile computer designers to limit power consumption in
the face of increasing demand for performance. One concrete
example is Direct Rambus DRAM (RDRAM)[7]. The Direct
Rambus technology delivers high bandwidth (1.6GB/sec per
device), using a narrow bus topology operating at a high
clock rate. As a result, each RDRAM chip can be activated
independently. RDRAM o�ers four power modes: active,
standby, nap, and powerdown. Because of the narrow topol-
ogy, each chip can be independently set to an appropriate
power state.
An RDRAM device must be in the active state to perform

a read or write transaction, which takes 60ns and consumes
300mW. A chip that is not servicing a memory request can
be in any of the lower power states. However, these states
incur additional delay for clock resynchronization. Standby
is fast and uses 60% of the power of active mode. Greater
power savings can be achieved by using nap mode (10% of
the power of active) with an additional resynchronization
time required to transition to the active state in order to
service a memory request. Powerdown mode has the min-
imal power consumption (1% of active), but a signi�cant
delay for clock synchronization (100 times that needed by
nap mode) to enter the active state. Table 1 shows the
power states with the power cost values used in this study
as well as the possible transitions and additional transition
times into active mode [7, 4].

2.2 DRAM Power Management
The challenge for the memory controller designer is to uti-

lize these modes e�ectively. It is not only the availability of
these power states but the ability to transition between them
dynamically on a per-chip basis that gives the RDRAM its
potential for power management. The key for the memory
controller policy is to determine when the bene�t of transi-
tioning to a low power state is greater than the penalty for
transitioning back to the active state.
The time between DRAM accesses is the important char-

acteristic that in
uences the memory controller policy de-
sign. Furthermore, we note that any DRAM chip access
that arrives during the service time of the previous access
can immediately be serviced and will increase the time the
chip is in the active state. We call a sequence of such DRAM
chip accesses clustered accesses since the DRAM chip can not
transition to a lower power state. Therefore, it is actually
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Figure 1: Power Management

the time between clustered accesses|called the gap|that a
DRAM chip could reside in a lower power state.
By monitoring the gap we can establish a memory con-

troller power management policy that exploits the trade-
o� between potential energy savings and resynchronization
costs. The power management policy works as follows (see
Figure 1): a given DRAM chip remains in the active state
until the gap exceeds a threshold amount of time, it then
transitions to the low power state until the next access. The
key to this policy is to determine the appropriate threshold
value to maximize energy e�ciency. However, this depends
on the DRAM access characteristics in terms of gap. The
following section outlines our methodology for exploring the
relationship between gap and threshold.

3. METHODOLOGY
To evaluate energy e�ciency, we use the Energy�Delay

product (E �D) [2]. This metric captures our goal of achiev-
ing high performance (seconds) while minimizing energy con-
sumption (Joules). Although total system energy consump-
tion is important, it is highly dependent on speci�c design
choices (e.g., processor, display type, wireless network inter-
face, etc.). Therefore, we concentrate only on DRAM energy
consumption, and ignore the energy consumed by all other
system components.
To fully explore the relationship between DRAM access

gaps and the memory controller threshold values, we use
a combination of trace-driven simulation (described below)
and analytic evaluation (see Section 4). The trace-driven
simulator is used to both characterize the DRAM access
patterns and to validate our analytic model.
The trace-driven simulator processes instruction and data

address traces of personal productivity applications [6] and
uses a simpli�ed RDRAM model. This simulator models
a two-level cache hierarchy with a 16KB L1 and a 256KB
L2 cache, both caches are direct-mapped with 32B blocks
and can support 8 outstanding misses. Higher associative
caches do not qualitatively change our results. We model the
individual RDRAM chips and their associated power state,
but do not model memory bus contention or the internal
DRAM banks. In these studies we only model the transition
from the lower power state to active. The transitions from
active to lower power states do not incur any delay or energy
consumption.
For timing considerations (necessary to compute energy

consumption), we use a simpli�ed processor model that exe-
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Figure 2: Examples of Gap Distribution

cutes one instruction per cycle, and never stalls due to long
latency operations (i.e., execution only stalls when the max-
imum number of outstanding misses is reached). We assume
a 500Mhz processor clock, the level one cache takes 2 cycles
to access, while the level two cache incurs an additional 10
cycles. We simulate a non-interleaved main memory system
with eight 32Mb RDRAM chips, for a total main memory
capacity of 32MB.

4. EVALUATION
Recognizing that gap and threshold are two factors that

may a�ect our power control e�ectiveness, we study the re-
lationship between E �D and these two factors.

4.1 DRAM Access Characteristics
The �rst step is to capture the distribution of access gaps

in the execution of di�erent benchmarks within our cache-
based architecture. We observe cache misses from each indi-
vidual memory chip and measure the time between clustered
misses. Figure 2 is one of the examples showing the gap
distributions of one chip for the compress95 and winword
benchmarks. Most of our benchmarks have similar distribu-
tions regardless of the number of memory chips and physical
page placement policy.
Related studies trying to statistically characterize cache

misses have not been successful because the distributions
that best characterize the behavior do not have �nite vari-
ance [8]. For our purposes it is su�cient to approximate the

Benchmark Result
Compress95 Pass
Go Pass
Netscape Pass
Acroread Fail
PowerPoint Fail
Winword Fail

Table 2: Chi-Square Test Results

gap distribution. Thus, Figure 2 also plots the exponential
distribution with the same mean gap size.
From Figure 2 we observe that the gap distributions for

compress95 and winword match the general shape of the
exponential. Table 2 shows the results of applying the Chi-
Square test of our observed data to the exponential distribu-
tion of gap sizes [3]. The Chi-Square test reveals that three
of our applications pass the test with signi�cance � = 0:05,
whereas three fail this test. Nonetheless, using the expo-
nential as an approximation of the real gap distribution is
su�cient as it produces results consistent with simulation
(see Section 4.3). Modeling the gap distribution with the
exponential allows us to perform analysis and more exten-
sively explore the design space. We assert that the errors
inherent in this approximation results in a pessimistic bias
in the results.

4.2 Analysis
We use the always-active policy as a baseline for compar-

ison. For simplicity, we choose nap as the low power state
in our 2-state threshold waiting control policy. Let g de-
note the gap between clustered memory accesses and Th be
the waiting threshold before transitioning to the low power
state. Assuming the memory access gap follows an expo-
nential distribution, its density function is:

p(g) =
1

�
e
�
g
�

where � is the mean gap. Then the mean time of staying in
low power is:

tnap =

Z
1

Th

p(g)(g � Th)dg = �e
�
Th
�

With Pa as the active state power consumption and Pn as
the nap state power consumption, the mean energy savings
from staying in low power is:

�e1 = (Pa � Pn)tnap = �(Pa � Pn)e
�
Th
�

Let Tn!a represent the resynchronization time from nap
to active. The mean energy cost for resynchronization is:

�e2 =
1

2
(Pa + Pn)Tn!a

Z
1

Th

p(g)dg

=
1

2
(Pa + Pn)Tn!ae

�
Th
�

Therefore the mean energy cost (increased energy con-
sumption) for each gap is:

�e = �e2 ��e1 (1)

= [
1

2
(Pa + Pn)Tn!a � (Pa � Pn)�]e

�Th
� (2)
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The mean increased delay for each gap is simply:

�d =

Z
1

Th

Tn!ap(g)dg = Tn!ae
�Th
� (3)

With these per-gap mean delay and energy changes, we
compute the change of total E�D product in one run. From
Figure 1, the per-gap mean energy consumption with the
always-active policy is:

e0 = Pa(tacc + �) (4)

and the mean delay is:

d0 = tacc + � (5)

With the power transition policy, the per-gap mean energy
consumption e and mean delay d are:

e = e0 +�e d = d0 +�d

Let D0 and E0 denote the original runtime and energy
consumption with the always-active policy, D and E are
those with power state transition. Assume n is the number
of gaps in the same run. Since E = ne, D = nd, E0 = ne0
and D0 = nd0, the total change of E �D is calculated by:

�(E �D) = E �D �E0 �D0 (6)

= n
2(d0�e+�de0 +�d�e) (7)

We de�ne per-gap mean change in energy delay product
as �(e � d).

�(e � d) = d0�e+�de0 +�d�e (8)

From Equation 7 we see the change in total energy delay
product �(E�D) is linear to the per-gap mean change �(e�
d). So we use this �(e � d) as the metric to evaluate the
control policy. If it is positive, the policy is worse than the
always-active policy; if it is negative, the policy is better.
As �(e � d) decreases, the bene�t increases.
From Equations 2-5 and Equation 8 we have:

�(e � d) = f(�; Th) (9)

Now, we can use this analytic result to explore the pa-
rameter space. We use the parameter values in Table 1 to
model a single RDRAM chip. By substituting these parame-
ter values into our formulas, we obtain Figure 3 and Figure 4.
Figure 3 shows �(e � d) as a function of � (mean gap) with
di�erent �xed threshold values. Figure 4 shows �(e�d) as a
function of threshold with di�erent mean gap values. Since
our empirical gap distributions have relatively large average
gap values, we �rst focus on the case where � is large. As
we can see from the two graphs, when threshold is �xed
and � is large enough, �(e � d) is a monotonically decreas-
ing function of �; while with �xed �, �(e � d) increases as
threshold increases. Threshold 0 produces maximum bene-
�t on �(e�d). When � is large, the energy savings can over-
come the extra transition cost. Because of the memoryless
property of exponential distribution, waiting for a threshold
amount of time does not provide any knowledge about the
future access. Therefore the instant transition policy is the
best policy for the distributions with large mean gaps.
When � is small (the part left of the crossover point in

Figure 3, the line �(e �d)(� = 50; Th) in Figure 4), a larger
threshold performs better than a smaller threshold but worse
than the original always-active policy. This is because with
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a small mean value most gaps cannot bring a potential en-
ergy saving large enough to cover the transition cost. The
larger threshold causes fewer power state transitions and
thus avoids some resynchronization costs. The always-active
(no transition) policy is the best for this case.

4.3 Validation
To validate our analytic model we use trace-driven simu-

lation of both random and sequential �rst-touch page allo-
cation policies [5]. By comparing �(e�d) obtained from the
simulation to that obtained from the model, we can gauge
the accuracy of the model. For this analysis we focus only
on the transitions from active to nap.1 Therefore, with se-
quential �rst-touch page allocation, only one DRAM chip is
used. In an actual implementation, the unused chips would
transition to the powerdown state, independent of the ac-
tive to nap threshold. For random allocation, although all
eight DRAM chips are active, for brevity we consider only
the four chips with the smallest average gap. We present re-
sults for only the benchmarks compress95 and winword. We
note that winword produces the largest error between the
simulation and the model. The other benchmarks produce
results similar to these two benchmarks.
Figure 5 shows the �(e � d) values obtained from both

simulation and the model. Table 3 shows the raw simula-

1Given our average gap sizes, our analytic results suggest
no viable role for the intermediate standby state.
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Figure 5: Model Validation (compress95 and win-
word):

tion data and the relative di�erence between the model and
the simulation for compress95. Each row of the table cor-
responds to one DRAM chip for the given threshold, hence
only one chip per threshold with sequential �rst-touch and
four chips per threshold with random page allocation.
From these results we see that for compress95, in most

cases, the results from the model are within 5% of the sim-
ulation results. For winword, the error is larger, approach-
ing 50% in some cases. Although this error seems large,
the qualitative result is the same for both simulation and
the model|zero threshold performs best. Furthermore, the
trend in the results is the same, zero threshold performs
best and increasing the threshold decreases the energy ben-
e�ts. We note that the relative di�erence increases as the
threshold increases, and is generally larger for sequential
�rst-touch page allocation than for random page allocation.
For sequential-�rst-touch allocation, the absolute �(e�d)

values are small, so small changes produce large relative
errors. This page allocation policy bene�ts mostly from
the unused chips entering powerdown. Nonetheless, a zero
threshold is the best solution for both the simulation results
and the model. The increasing relative di�erence as the
threshold increases is due to the approximated gap distribu-
tion di�ering from the real distribution. For larger thresh-
olds this di�erence is magni�ed, while for the zero threshold
�(e � d) is distribution independent (see Equations 2-3).

Th Average �(e � d)(108mW � ns2) Di�
Gap(ns) analysis simulation

Sequential First-touch Page Allocation
0 331.3 -0.289 -0.286 1.0%
100 318.1 -0.184 -0.204 9.8%
200 316.5 -0.128 -0.161 20.5%

Random Page Allocation
0 961.1 -2.515 -2.514 0.04%
0 1037.1 -2.928 -2.927 0.04%
0 1290.8 -4.534 -4.525 0.01%
0 1824.5 -9.047 -9.046 0.01%
100 950.5 -2.200 -2.228 1.3%
100 1039.5 -2.658 -2.712 2.0%
100 1274.8 -4.075 -4.114 1.0%
100 1811.9 -8.429 -8.679 2.9%
200 946.0 -1.949 -2.003 2.7%
200 1035.3 -2.382 -2.469 3.5%
200 1275.4 -3.759 -3.839 2.1%
200 1803.0 -7.881 -8.163 3.5%

Table 3: Comparison between Analysis and Simu-
lation (Compress95): For random allocation each row

for a given threshold represents an individual chip (1 of

4), while there is only one active chip for sequential.

5. CONCLUSION
Modern DRAM chips provide power management features

to help meet the increasing demand for energy e�cient com-
puting. The challenge is to develop memory controller poli-
cies that best exploit these features. This paper explores
DRAM power management policies for cache-based systems
using analytic modeling validated with trace-driven simula-
tion. Our results reveal that, for most workloads on cache-
based systems, DRAM chips should immediately transition
to a lower power state when they become idle and will not
bene�t from sophisticated power management policies.
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