Due to the type 3 fonts used, please increase the magnification to view

FV Encoding for Low-Power Data I/O:

Jun Yang

Rajiv Gupta

Department of Computer Science
The University of Arizona
Tucson, Arizona 85721

ABSTRACT

The power consumed by I/O pins of a CPU is significant due
to high capacitances associated with the pins. While highly
effective techniques for reducing address bus switching exist
[1], similarly effective techniques for data bus have not been
developed. We have discovered a characteristic of values
transmitted over the data bus according to which a small
number of distinct values, called frequent values, account
for 58-68% of transmissions over the external data bus. To
exploit this characteristic we have developed a method for
dynamic identification of frequent values and their use in
encoding data values using FV (frequent value) encoding
scheme. Our experiments show that FV encoding of 32 fre-
quent values yields an average reduction of 42.7% (with on-
chip data cache) and 67.63% (without on-chip data cache)
in data bus switching activity for SPEC95 benchmarks.

1. INTRODUCTION

In CMOS circuits most power is dissipated as dynamic
power for charging and discharging of internal node capac-
itances. Thus, researchers have investigated techniques for
minimizing the number of transitions inside the circuits.
The capacitances at I/O pins are orders of magnitude higher
than internal capacitances. Thus, the power dissipated by
an IC at these I/O pins is even greater than that dissipated
at internal capacitances. Therefore techniques for minimiz-
ing switching at external address and data buses, even at
the expense of a slight increase in switching at internal ca-
pacitances, are quite useful [1, 2, 3].

Many of the encoding schemes, such as the bus-invert cod-
ing [2], are general and can be applied to both address and
data buses. General techniques can only provide modest
reductions in switching activity. To obtain greater reduc-
tions we must identify special characteristics for informa-
tion transmitted over address and data buses. Using such a

“Supported by DARPA PAC/C Award. F29601-00-1-0183
and NSF grants CCR-0105355, CCR-0096122, ETA-9806525,
and ETA-0080123 to the University of Arizona.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

ISLPED’ 01, August 6-7, 2001, Huntington Beach, California, USA.
Copyright 2001 ACM 1-58113-371-5/01/0008 ...$5.00.

specialized approach that exploits memory reference locality
the method described in [1] reduces the address bus activity
by as much as 66%.

The goal of this work was to develop a technique for data
buses that is as effective as the technique in [1] for address
buses. Till now an effective specialized approach for a CPU’s
external data buses has been illusive. This is because no
suitable characteristic for values transmitted over a data bus
has been found. Unlike memory references that exhibit lo-
cality, the data values do not exhibit similar locality. In
fact the values transmitted over data bus may vary widely
across the range of representable values. We have recently
discovered a characteristic of data values sent over a data
bus that can be employed to develop an effective encoding
scheme. Recently we have shown that a small number of dis-
tinct values, frequent values, occupy majority of the data lo-
cations in memory for a wide range of application programs
[4]. Thus, these values are transmitted very frequently over
the data bus.

100

using fixed fregyent values
using changing frequent values

80

40

% of transmitted values that are frequent

20

o 9 N S N F Q& Q & > @
SR R RGP & &
g F AT &S SRS
N N bv& QM 28 -
N N

N
Figure 1: Data bus traffic due to frequent values.

In Figure 1 we show the percentage of total data bus traffic
that is the result of transferring frequent values for SPEC95
benchmarks. The two sets of data correspond to situations
where the set of frequent values, 32 in all, was kept fized and
allowed to change over the lifetime of the program. As we
can see, on an average 58% (68%) of the traffic is created by
fixed (changing) frequent values.

The remainder of the paper is organized as follows. In
section 2 we present the F'V encoding scheme in detail and

also describe how the frequent values are identified by our
scheme. In section 3 we describe the result of experiments
including experimental comparison of our method with ex-
isting techniques.

2. FREQUENT VALUE ENCODING

Now we present the design of our encoder and decoder
used to reduce the switching activity on the data bus. Our
overall approach is as follows. The frequent values are trans-
mitted over the bus in encoded form while the infrequent val-
ues are transmitted in their original unencoded form. The
set of frequent values are kept in a table implemented as
a CAM at both the encoder and decoder. This table is
searched and if the value to be transmitted is found in it,
then the value is regarded as a frequent value which is then
transmitted in encoded form. In order to ensure that the
decoder can determine whether the transmitted value is in
encoded form or not, additional control signal must be sent
from the encoder to the decoder in some situations. As
we describe later in this section, our method for maintain-
ing frequent values is such that the contents of the frequent
value tables at both the encoder and decoder are identical
to each other.

In the remainder of the section we first describe our en-
coding scheme in detail. Then we describe our method for
finding frequent values, that is, we describe how the contents
of the frequent value tables are maintained.

Encoding-decoding scheme. Our method for encoding
frequent values has the flavor of one-hot encoding with one
important difference. Our encoding scheme overcomes the
major drawback of one-hot encoding in that it does not need
exponential number of wires (2", where n is the number of
bits representing the value) to transfer data. Instead, it uses
the same number of wires as the data bus width (we assume
that this number is 32) and maintains the desired property
of low switching activity.

We are able to achieve the above goal as follows. The
”hot” wire generated from the encoder is not used to rep-
resent the true decimal value being transfered but rather it
indicates in which entry of the frequent value table in the
encoder or decoder that frequent value can be found. In
other words if the i** entry is found to hold the same value
as the one to be transmitted, the i** output wire is set as 1
and all the remaining wires are set as 0. Thus a code with
only one wire at high voltage is formed and sent over the
data bus, completing the coding process.

When the decoder receives the code from the bus, it reads
out the value from the i** entry indicated by the code. We
will show later how our method for maintaining the contents
of the tables at the encoder and decoder ensures that the
contents of the two tables are identical and thus the value
is correctly decoded.

The infrequent values are transmitted in unencoded form.
If a value to be transmitted is an infrequent value it can-
not be found in the encoder CAM. Thus, the encoder does
not attempt to generate a code. Instead, it simply passes
the original value onto the data bus. When the decoder re-
ceives the value and finds more than one hot wires in it, it
concludes that the transmitted value is not encoded.

It is possible that a value being transmitted in unencoded
form contains a single high bit and all of its remaining bits
are zeros. We ensure that the decoder does not incorrectly

85

decode this value by sending a single bit control signal from
the encoder telling the decoder to skip decoding. Our ex-
perimental results also include the switching overhead from
sending the control signal.

With continuously occurring frequent values, FV encoding
will send out codes one after another with "hot” bits at dif-
ferent position, resulting in 2 switching transitions for each
pair of frequent values. We can further reduce the switching
down to 1 using an approach used in [1, 3]. By XORing
current code with the previous value sent over the data bus
as shown in Figure 2 such a reduction is achieved. Moreover
now even if a frequent value follows an infrequent value, re-
duction is switching can be substantial since frequent values
contain mostly zero bits.

Send, = Send,—1 ® Code,
DCode,, = Send,, ® Send,,_1

Encoder Decoder

Send (n) Send (n)

DCode (n)
OR

2]

Send (n-1)

Figure 2: FV encoding setup.

Identifying frequent values. Having described our en-
coding scheme, let’s now discuss how we fill and update the
encoder and decoder tables with data values. There are two
ways of doing this that we consider in this paper:

1. A fized set of values known in advance to initialize both
encoder and decoder can be used. The set of values
can be obtained through ranking of the frequency of
values that appeared in a previous run of the program.

2. A changing set of frequent values can be maintained as
the program runs. Thus, the contents of the frequent
value tables adapt to changes in the frequent values
for different parts of execution.

Using fixed values to preset the encoder and decoder has
the advantage that the coders do not have to change the
contents of the table dynamically thus reducing the runtime
overhead. However, it requires that values be known be-
fore hand and different program needs different values. The
second method, on the other hand, does not need a priori
information of data values and does not distinguish among
different programs. With these features, we pay the price of
identifying the frequent values on the fly.

In our previous work [4] we have always used a small num-
ber of fixed frequent values for encoding. This was because
the application we considered in the past was that of storing
compressed (encoded) data in data cache to improve on-chip
cache performance. Frequent values cannot be varied in this
case because every time the encoding changes, the contents
of the cache must be flushed or reencoded. This operation
is too costly and therefore not practical. However, the ap-
plication that we are considering in this paper does not have
similar constraints — we can easily exploit changing frequent
values by changing the contents of the frequent value tables.

The changing frequent value scheme has the potential for
giving better performance. This is because a value with high
frequency in one span of time may not occur as frequently
in another span of time during a program run. We con-
ducted an experiment to determine whether the need for an
adaptive scheme exists. In this experiment we divided the
execution of a program into smaller time intervals and for
each of these intervals we found the best 32 frequent val-
ues. We considered the commonality between this nearly
ideal set of values and the values used in our changing value
scheme (described later in this section) as well as the fixed
set of frequent values. The plot in Figure 3 shows that
the overlap between the changing set and the near ideal
set is much greater (around 20 or higher for most of the
time) than the overlap between the fixed set and the near
ideal set (slightly less than 10). This plot is for the su2cor
benchmark and represents a time period which corresponds
to 256% of the program run over which three million values
were transmitted over the data bus. We favor the dynamic
encoding scheme but will also include experimental results
for fixed value scheme in the experimental section. Next we
will describe how we find the frequent values dynamically.

-~~~ using fixed frequent values
ol 1 MV +—— using changing frequent values
14

5 HF I 'J
MW ﬂ il Iﬁ i MW W WM,
2o‘l | ‘ ‘hﬂe “Hf U MM ﬂw LWV
141M " I
WH*'W i
g 10 T‘* \J\, ‘u, 'ﬂ‘ ! ;j{?»] J\"‘"f‘"" i W Q“.\,‘h“f’,}r {‘(~'v\m’ }‘w, ,«r(‘\;‘“;ﬁq‘g,’n&."‘).f,v.};{,’ .‘\ :

i e
0 0l 1 1e;06 28-‘!—06 3e+06

Cummulative amount of data values transmitted

Figure 3: Changing set vs fixed set.

LRU policy. We use the LRU replacement policy for fill-
ing and updating both encoder and the decoder frequent
value tables. To gain time ordering information, we use a
reference bit and a n-bit timestamp for each value recorded
in the coder. The reference bit is set when the value appears
at the input. At regular intervals, the reference bit is shifted
right into the high-order bit position of the n-bit timestamp
causing all bits in the timestamp also to be shifted right and
the lowest-order bit in the timestamp being discarded. This
operation is performed for all entries in the two tables and
at the same time all the reference bits are reset. Thus, the
timestamp keeps the history of value occurrences for the last
n time periods. The timestamp of 000 means this value did
not appear during the last three time intervals, timestamp
100 means it was just seen in the last interval, and the times-
tamp 000 with reference bit set means it is encountered in
the current time slot. When an entry is required and a value
is to be evicted, the entry that is selected is the one with the
smallest timestamp and clear reference bit. The new value

86

is put in with a fresh reference bit and timestamp (all 0’s)
in this selected entry.

Keeping encoder/decoder consistent. It is extremely
important to keep the sender side encoder and the receiver
side decoder consistent all the time. We use the same re-
placement policy for both to assure they contain the same
values. In more detail, if there are multiple entries that have
the same timestamp, both the encoder and the decoder fol-
low the same rule for picking up a victim, say the first victim
they encounter during searching. By doing so, we guaran-
tee both sides contain not only the same values but also the
same indices for every value. The grounds for this to be true
is that they have the same timestamp value and reference
bit. This can be easily achieved by using the same time
interval for updating the timestamp and the reference bit.

3. EXPERIMENTAL EVALUATION

We conducted experiments by executing a subset of the
SPEC95 benchmarks and measuring the switching activity
on the external data bus. The results of the various exper-
iments conducted are described next. In all of these exper-
iments a one bit timestamp was used because we observed
that increasing the size of the timestamp has very little im-
pact on performance.

Switching activity reduction. We measured the reduc-
tion in switching activity for the two schemes: one in which
the frequent values are kept fixed and the other in which
they are allowed to dynamically change during program ex-
ecution. These results were gathered for varying number of
frequent values (2, 4, 8, 16 and 32). The results are given
in Figure 4. From the data in Figure 4 we can draw three
conclusions.

e The reduction in switching activity at the data bus
is greatly reduced using FV encoding when the set of
frequent values is allowed to change. An average re-
duction of 42.7% and a maximum reduction of 81.65%
is observed when a changing set of 32 frequent values
are used.

e We can see that the reductions in switching activity in-
creases significantly with an increase in allowable fre-
quent values. The average reduction increases from
15.2% for 2 changing frequent values to 42.7% for 32
changing frequent values.

e Finally the changing value scheme outperforms the
fixed frequent value scheme by greater and greater de-
gree as the number of allowable frequent values is in-
creased. For 32 values the fixed value scheme provides
only 29.06% reduction in contrast to 42.7% reduction
in switching achieved by changing value scheme.

Performance without on-chip cache. In all the exper-
iments described so far we assumed that there was an on-
chip data cache present. We also repeated our experiments
without an on-chip cache. This is because in many em-
bedded and DSP processors from AT&T Microelectronics,
Motorola, Zilog and Texas Instruments there is no on-chip
cache. The results in Figure 5 show that in the absence
of an on-chip cache the reductions in switching activity are

Program 2 freq. values 4 freq. values 8 freq. values 16 freq. values 32 freq. values
fixed | changing fixed | changing || fixed | changing || fixed | changing || fixed | changing]
099.go 24.12 18.49 25.23 20.67 [27.45 25.61 || 34.81 33.15 || 38.02 41.51
126.gcc 13.88 16.53 14.26 18.54 [14.71 23.12 || 18.60 31.29 || 24.14 39.35
130.1i 10.09 11.46 10.29 13.71 [12.82 18.64 || 17.26 27.85 || 24.40 40.58
132.ijpeg || -10.71 -8.46 || -10.61 -4.93 || -9.48 1.05 || -8.12 5.16 || -5.78 9.56
134.perl 14.13 16.55 23.17 18.75 || 26.39 23.17 || 30.55 30.70 || 38.32 42.54
147 .vortex 8.36 12.05 11.04 14.71 || 14.16 19.19 || 17.23 24.94 || 21.90 31.17
124. m88ksim 22.04 25.57 27.19 30.47 || 29.00 35.29 || 32.23 42.67 || 37.93 49.03
10I.tomcatv 4.30 4.33 9.51 9.13 || 12.06 17.38 || 15.82 28.37 || 20.57 43.57
103.su2cor 30.51 38.55 30.80 48.13 || 39.39 60.86 || 41.91 72.58 || 52.06 81.65
104.hydro2d 0.18 16.97 19.02 31.93 || 33.62 41.04 || 36.49 46.28 || 39.09 48.05
(Average [11.69 | 15.20 [15.99 | 20.11] 20.01] 26.54 [23.68 | 34.30] 29.06 | 42.70)
Figure 4: Switching activity reduction in data bus.
even greater. The average reduction for 32 changing values Using 32 values and 1 bit timestamp
increases from 42.7% to 67.63%. o s
using 32 values and 1 bit timestamp E i;:;«?f:&?%ﬂg
100 70
5 with 4K on—chip cache
with no cache o
80 | 5 50 [
H
:,5, 6o r = § 30
= 10
20 |
10 N N & & od
go < 0\\ . o) O o & N ™ oq’ QQ,
o o e o
— N

S & o & & ¢ & & P

R S O S < & ¢ S © @

& @ AP I g
RO N

Figure 5: With on-chip cache vs without on-chip

cache.

Comparison with other schemes. Other techniques that
can be applied to data buses are those that have been de-
signed to apply to general data streams. We compared the
performance of our method with two existing techniques
— bus-invert coding [2] and adaptive coding scheme in [3].
The results in Figure 6 show that on an average bus-invert
scheme reduces switching by 10.44%. In contrast the FV
encoding scheme with 32 changing (fixed) values reduces
switching by 42.7% (29.06%). Thus, the changing (fixed)
value FV encoding scheme outperforms the bus-invert cod-
ing method by nearly a factor of 4 (2). On an average, the
reduction in switching using FV encoding is nearly six times
of that achieved using the adaptive method.

4. CONCLUSIONS

In conclusion, in this paper we have demonstrated that by
exploiting the characteristic of frequently transmitted val-
ues, we can design the FV encoding scheme which reduces
the switching activity on an external data bus substantially.

87

Figure 6: Comparison with bus-invert and adaptive
coding.

The reductions are even greater for processors without on-
chip caches. Furthermore we have demonstrated that the
frequent values at any point during execution can be iden-
tified using a simple hardware mechanism. FV encoding
greatly outperforms both bus-invert coding [2] and the adap-
tive coding in [3].

5. REFERENCES

[1] E. Musoll, T. lang, and J. Cortadella, “Exploiting
locality of memory references to reduce the address bus
energy,” ACM/IEEE ISLPED, pages 202-207, Monterey,
CA, August 1997.

[2] M.R. Stan and W.P. Burleson, “Bus-invert coding for
low power I/O,” IEEE Trans. on VLSI Systems,
3(1):49-58, March 1995.

[3] L. Benini, A. Macii, E. Macii, M. Poncino, and R.
Scarsi, “Synthesis of low-overhead interfaces for
power-efficient communication over wide buses,” ACM
DAC, New Orleans, Louisiana, 1999.

[4] Y.Zhang, J.Yang, and R.Gupta, “Frequent Value
Locality and Value - Centric Data Cache Design, ”
ASPLOS-IX, pages 150-159, Cambridge, MA, November
2000.

	Main Page
	ISLPED'01
	Front Matter
	Table of Contents
	Author Index

