
Energy-Efficient Load and Store Reuse�

Jun Yang Rajiv Gupta

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

ABSTRACT
A load and store reuse mechanism can be used for �ltering
memory references to reduce memory activity including on-
chip cache activity. The challenging aspect of this task is
to ensure that energy savings achieved in memory are not
o�set by energy used by the reuse hardware. In this paper
we present the design of a reuse mechanism which has been
carefully tuned to achieve net energy savings. In contrast
to traditional �lter cache designs which trade-o� energy re-
ductions with higher execution times, our approach reduces
both energy and execution time.

1. INTRODUCTION
One source of energy consumption is the data cache which

continues to grow in size and area. One approach that has
been suggested is to introduce a �lter cache between the
CPU and the L1 cache [2]. A �lter cache is small in size and
therefore energy eÆcient. It leads to reduction in energy
consumed by the larger L1 cache at the cost of increased
execution times. In this paper we propose the use of a load
and store reuse unit as a �ltering mechanism. This approach
generally leads to reductions in both the energy consumed
and the execution time.
Extensive research has been carried out on load and store

reuse that are speculative in nature which are typically not
energy eÆcient. In this paper we use non-speculative reuse
techniques. The reuse opportunities can arise in multiple
ways (see Figure 1). A load can be avoided using reuse if
value that it loads from an address was loaded or stored
from the same address by a prior memory instruction and
the contents of that location have not changed since. An
instance of a load instruction can be reused because of a
prior instance of the same or di�erent load instruction, or
a prior instance of a store instruction. A store is avoidable
if the value it writes to a location is already present in that

�Supported by DARPA PAC/C Award F29601-00-1-0183
and NSF grants CCR-0105355, CCR-0096122, EIA-9806525,
and EIA-0080123 to the University of Arizona.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’01, August 6-7, 2001, Huntington Beach, California, USA.
Copyright 2001 ACM 1-58113-371-5/01/0008 ...$5.00.

location. The store reuse can be classi�ed as that arising at
previous instance of the same or di�erent store, and previous
instance of a load. The existing non-speculative techniques
for reuse only target same load reuse opportunities [3].

PC1: Load R1, addr
: : :

PC1: Load R1, addr
(a) Same Load.

PC1: Load R1, addr
: : :

PC2: Load R2, addr
(b) Di�erent Load.

PC1: Store R1, addr
: : :

PC2: Load R2, addr
(c) Store Load.

PC1: Store R1, addr
: : :

PC1: Store R1, addr
(d) Same Store.

PC1: Store R1, addr
: : :

PC2: Store R2, addr
(e) Di�erent Store.

PC1: Load R1, addr
: : :

PC2: Store R2, addr
(f) Load Store.

Figure 1: Opportunities for Load and Store Reuse.

Even though a non-speculative approach will reduce cache
activity, achieving an overall reduction in energy consumed
using reuse is still a challenging task. This is because a load-
store reuse �lter will itself consume energy. To get an overall
reduction in energy consumed we must save more energy in
the cache than is consumed by the reuse mechanism. In fact
we implemented an aggressive reuse algorithm which tries
to capture maximum possible reuse. We used separate table
structures to save the histories of past loads and stores. We
used associative searches on the address �elds of these tables
to determine if a load or store was avoidable. This approach
allowed us to capture all forms of reuse described above. The
sizes of the history tables used were 256 entries each. The
outcome of this experiment is shown in Figure 2. Instead
of saving energy we ended up using more energy. This is
because the reuse mechanism used much more energy than
what is consumed due to the cache activity.
In this paper we present the design of a reuse mechanism

which has been carefully tuned to achieve two objectives.
Our �rst objective is to develop a reuse mechanism that is
able to capture and �lter out a large fraction of reusable
loads and stores. This objective is achieved by designing
reuse hardware which is able to capture reuse arising from
multiple sources. The second objective of this work is to
design a reuse mechanism which performs the �ltering task
in an energy-eÆcient manner. In programs with signi�cant
levels of reuse, we would like to achieve net energy savings
while for programs with little reuse we would like to mini-
mize the net increase in energy consumed. This objective is
achieved in two ways. First we design reuse hardware where
the history of previously executed load and store operations

5772

Due to the type 3 fonts used, please increase the magnification to view

124.m
88ks

im

126.gcc

132.ijp
eg

147.vo
rte

x
130.li

129.co
mpress

102.sw
im

145.fp
ppp

146.w
ave

5

141.apsi

125.tru
b3d

ave
rage

0

2

4

6

8

10

12

256 entries

Figure 2: An Aggressive Reuse Scheme.

is accessed through indexed tables - associative lookups are
kept to a minimum. Second our algorithm is not too aggres-
sive, and in fact if it fails to detect reuse, it backs o� from
certain types of reuse detection so that the energy consumed
by reuse detection hardware can be kept to a minimum.
The remainder of the paper is organized as follows. In

section 2 we present the hardware design of our reuse mech-
anism and develop an energy-eÆcient algorithm for using
this mechanism. In section 3 we present the results of the
performance evaluation.

2. REUSE HARDWARE DESIGN

Reuse studies. To develop an energy-eÆcient design we
carried out studies which guided the design of such a mech-
anism. First study measured the amounts of di�erent types
of reuse opportunities. We concluded that while all types
of load reuse should be exploited, it is useful to prioritize
the reuse detection process: we �rst looked for same load
reuse, then di�erent load reuse, and �nally store to load
reuse. Each load is put only in the �rst category that it is
found to satisfy. Most of the reuse for stores is due to same
or di�erent stores. Therefore we only considered these two
types of reuse for avoiding stores.
The second study guided the selection of table sizes and

the decisions relating to the complexity of algorithms for
capturing di�erent load/store reuse. We considered di�erent
tables sizes to save load and store history since the energy
consumed by these tables increases with their size. We found
that separate load and store history tables both of sizes of
32 or 64 entries are quite suÆcient. If we increase the table
sizes further the energy consumed grows much more rapidly
that the increase in the amount of reuse. We also intended to
design reuse hardware which minimizes high energy consum-
ing associative searches and mainly uses indexed accesses
whenever possible. For this purpose, other than the same
load/store reuse cases, we explicitly link the two instruc-
tions involved in the reuse. An instruction may be able to
reuse results from many di�erent instructions. Thus it is
unclear how many links need to be allowed. Again creating
more links will cause increased energy consumption both in
their creation and use. We found through our experiments
that linking a load with one other load is suÆcient - linking
it with more loads �nds only small amounts of additional
reuse. We also evaluated the bene�t of linking a store to

di�erent prior stores and found that providing such links is
not very useful.

Reuse unit. We now present the design of the Reuse Unit
(RU), the hardware structure for detecting and �ltering load
and store instructions. The various pieces of the reuse unit
are not always used by every memory instruction. We selec-
tively prevent their use to reduce activity and save energy if
we feel that their use will not result in additional load and
store �ltering.

Load

instruction

LTLLT

STSLLT

Update

Update

Result

completed store

instruction

completed load

instruction

Reuse Test

LTLLT

ST

Update

Result

completed store

instruction

completed load

instruction

Store PC

Store

instruction
Redundancy Test

Store Redundancy RemovalLoad Reuse

SLLT

Update

(a) Block Diagram.

0 Link

VA1

V
VA1

V

1 link

LTLLT

hashed PC

0

Different load reuse

1 link

hashed PC

Load reuse from store

SLLT

VA1

V

VA1

V

ST

V3A0

V2A

ST or LT

0

Table entry invalidation Update links

A

A V1

V1

load instruciton

(1)hashed PC

1j

1i

SLLT or LLT

j

(3) read out

(1)

(2) reindex (3) match

(2) mismatch
(1)

(3) match

(1) hashed PC
(2) match

(3) read out

SLLT or LLT

Diff. reuse
failure or

reset
valid bit

address match
value mismatch

A V1
search searchsearch search

address & value match

(2) fill j & set valid bit

LT

(1) hashed PC

Same load reuse

(2) match

(4) read out

(2) index

(4) read out

ST

Remove redundant store

load reuse
failure

Store to

Link invalidation

store instruciton

(1)

(b) RU Operations; A stands for address, V stands for value

Figure 3: The Reuse Unit (RU).

In Figure 3 we �rst show the high level block diagram of
the RU(a). Next we describe the various structures in the
RU and then later we describe how it is maintained through
di�erent operations(b).

LOAD TABLE (LT): LT stores histories of loads that have
already been executed. It is designed as a small direct map
array so that we can achieve low access times and energy.
Each entry contains the e�ective address, data value at that
address, and a mem-valid bit. The mem-valid
ags the va-
lidity of current contents of the entry. The entry is invalid
if nothing has been stored in it or the value stored in the
entry is stale.
LOAD LINK TABLE (LLT): This table is needed to cap-
ture di�erent load reuse opportunities. It is also a direct
mapped structure which provides a link between a load and
another load whose results can be reused. The link is in
form of LT index corresponding to the load at which reuse
originates. The LLT contains the same number of entries as
the LT and there is one-to-one correspondence between the
LT and LLT entries. An additional bit in each LLT entry

5873

is used to indicate the usability of the link stored in that
entry. A link marked unusable is not used to index the LT.
This bit helps in reducing energy consumed by eliminating
unnecessary look ups of the LT.
STORE TABLE (ST): ST is the counterpart of LT - it stores
the history of past stores that have been executed. It serves
two purposes. First, it provides a means for detecting store
to load reuse. And second, it helps in the detection of same
store reuse. It is also a small direct mapped array. The
ST contains �elds for memory address, its value, and the
mem-valid bit.
STORE to LOAD LINK TABLE (SLLT): This table aids
in detecting store to load value reuse. It basically links
each load in LT with an entry in ST. Like the LLT, there is
also a single bit corresponding to every link which indicates
whether the link is usable or not.
A load's PC is hashed into a LT entry in order to attempt

same load reuse. If this entry is valid, address stored in
the table and the load's e�ective address are compared for
reusability. The load can use the value stored in the entry if
the address comparison succeeds. The load's PC is hashed
into a LLT entry for di�erent load reuse. If the link in LLT
is marked as usable, the corresponding entry pointed to by
the link will be tested in the same manner as the same load
reuse test. If the load passes this check we have succeeded
in di�erent load reuse. Otherwise, the load's PC is hashed
into SLLT to attempt store to load reuse.
Filtering of stores is carried by simply using the ST his-

tory. Filtering of a store means it is not sent to or deleted
from the store queue and therefore it never reaches the
cache.

RU updates. On completion of each load/store instruc-
tion, the LT/ST table is updated by setting the address and
value �elds and also setting the mem-valid bit. LLT links
are set up only if they are needed, that is, only if same load
reuse has failed we create these links to attempt to �nd dif-
ferent load reuse. Similarly the SLLT link for a load is set
up only if we fail to �nd di�erent load reuse. The LLT and
SLLT links are set up following an associative search of the
address �elds in LT and ST. A link is set to be usable when
it is �rst created. It remains set if it is used successfully,
that is, its use results in �ltering. A link is marked unusable
when the reuse test using that link fails.
The above strategies of creating a LLT link only if same

load reuse fails, creating a SLLT link only if di�erent reuse
fails, and marking links as unusable if their use fails to de-
tect reuse all greatly reduce RU activity and were therefore
extremely important in obtaining an energy eÆcient design.

Integration into a superscalar. The reuse mechanism is
incorporated into a superscalar pipeline as shown in Fig-
ure 4. An extra stage, the load store reuse (LSR) stage,
is introduced immediately preceding the data cache access
stage. This stage uses the RU to determine if the load or
store instruction is reusable and therefore need not be sent
to the cache. If the instruction is not found to be reusable
because all reuse tests fail, we send it to the cache. There-
fore the load/store instructions that are not reusable pay
an extra penalty of one cycle in this implementation. The
ones that are found to be reusable bene�t because they are
completed in one cycle.

LSR

.........

R
eu

se
U

ni
t

IS
SU

E
W

IN
D

O
W

W
A

K
E

U
P

SE
L

E
C

T

R
E

G
IS

T
E

R
FI

L
E

WAKEUP
SELECT

EXECUTE
BYPASS

D
E

C
O

D
E

R
E

N
A

M
E

B
Y

PA
SS

D
A

T
A

D
A

T
A

C
A

C
H

E
−

1

C
A

C
H

E
−

n

FE
T

C
H

−
1

FE
T

C
H

−
n

REG READ
REG WRITE

COMMIT
DCACHE
ACCESS

L
SR

RENAMEDECODEFETCH

Figure 4: Superscalar Processor with Reuse.

3. PERFORMANCE EVALUATION
We have implemented the techniques described in this

paper and now we describe the experimental setup used
in this work. The experiments are based upon an 8-issue
superscalar processor with the pipeline structure shown in
Figure 4. The baseline processor has one less stage since
it does not carry out load and store �ltering. Therefore
if load/store reuse always fails, our processor will take one
more cycle than the baseline processor for each data cache
access. The data cache is a 32 Kb direct-mapped cache with
32 byte line size and 6 cycle miss penalty. There are 2 read
and 2 write ports to the data cache.
The table sizes used in these studies are 32 and 64 for both

load and store history tables. The cache energy models were
obtained from the SimplePower [4] simulator and the energy
models for the reuse hardware were implemented using the
models for array and CAM structures used in Wattch [1],
both using 0.8 micron technology.
We ran experiments where the number of cycles for data

cache access was varied { 2 and 6 cycle accesses were consid-
ered. This was motivated by the observation that future gen-
eration processors are devoting increasing number of stages
to data cache access due to reduced cycle times which are
too small to perform cache accesses in a single cycle. All
data except the IPC improvements are presented assuming
that data cache access takes 2 stages. This is because all
other data shows very small changes when the number of
stages is changed.

Energy savings. We measured the energy consumed by
the cache with and without reuse hardware as well as the
energy consumed by the reuse hardware. In Figure 5, the
�rst graph gives us the reduction in energy consumed by
the cache. As we see the reductions are substantial and on
the average 15% and 18% reductions were observed for ta-
ble sizes of 32 and 64 respectively. The second graph gives
the energy consumed by the reuse hardware as a percent-
age of energy used by the cache. As we can see, our reuse
hardware design is quite energy eÆcient as the 32 (64) entry
table consumes energy that is only 4% (7%) of the energy
consumed by the cache.
We de�ne the net savings in the cache energy as the dif-

ference between the cache energy savings and the energy
consumed by reuse hardware. The net energy savings are
plotted in the third graph of Figure 5. As we can see the
savings are substantial ranging from a few percent to as
much as 47%. For benchmarks with low levels of reuse with
table size of 64 there is a net loss in energy. However, the
loss is less than 3% in these cases. Thus we have achieved
our objective of designing reuse hardware which provides
substantial energy savings when high levels of reuse is cap-
tured and very little increase in energy is observed when
little reuse is found.

5974

124.m
88ksim

126.gcc

132.ijp
eg

147.vorte
x

130.li

134.perl

129.compress

102.swim

145.fp
ppp

146.wave5

141.apsi

103.su2cor

110.applu

125.tu
rb3d

average
0

10

20

30

40

50

C
ac

he
 E

ne
rg

y
S

av
in

gs
[%

]

32 entries
64 entries

124.m
88ksim

126.gcc

132.ijp
eg

147.vorte
x

130.li

134.perl

129.compress

102.swim

145.fp
ppp

146.wave5

141.apsi

103.su2cor

110.applu

125.tu
rb3d

average
0

1

2

3

4

5

6

7

8

9

10

E
ne

rg
y

us
ed

 b
y

T
ab

le
s[

%
 o

f C
ac

he
 E

ne
rg

y]

32 entries
64 entries

124.m
88ksim

126.gcc

132.ijp
eg

147.vorte
x

130.li

134.perl

129.compress

102.swim

145.fp
ppp

146.wave5

141.apsi

103.su2cor

110.applu

125.tu
rb3d

average
−5

5

15

25

35

45

N
et

 E
ne

rg
y

S
av

in
gs

[%
]

32 entries
64 entries

Figure 5: Energy Figures: (a) Cache Savings; (b)
Reuse Hardware Consumption; and (c) Net Savings.

IPC improvements. Next we present the IPC improve-
ments that are observed due to load and store �ltering. In
Figure 6 we present these improvements assuming that data
cache access takes 2 and 6 cycles respectively. As we can
see, the longer the cache latency, the greater are the savings
due to load and store �ltering. The average IPC improve-
ments range between 3% and 15% for di�erent values of
data cache access cycles. For programs with high levels of
reuse the IPC improvements are substantial - even as high as
55%. On the other hand for programs with very low levels of
reuse, reductions in IPC were observed because the baseline
processor has one less stage and therefore completes cache
accesses one cycle earlier. The reductions in IPC are mostly
less than 5%.

124.m
88ksim

126.gcc

132.ijp
eg

147.vorte
x

130.li

134.perl

129.compress

102.swim

145.fp
ppp

146.wave5

141.apsi

103.su2cor

125.tu
rb3d

110.applu

average
−10

0

10

20

E
xe

cu
tio

n
T

im
e

R
ed

uc
tio

n[
%

]

2 stage data cache access

32 entries
64 entries

124.m
88ksim

126.gcc

132.ijp
eg

147.vorte
x

130.li

134.perl

129.compress

102.swim

145.fp
ppp

146.wave5

141.apsi

103.su2cor

125.tu
rb3d

110.applu

average
−5

5

15

25

35

45

E
xe

cu
tio

n
T

im
e

R
ed

uc
tio

n[
%

]

4 stage data cache access

32 entries
64 entries

124.m
88ksim

126.gcc

132.ijp
eg

147.vorte
x

130.li

134.perl

129.compress

102.swim

145.fp
ppp

146.wave5

141.apsi

103.su2cor

125.tu
rb3d

110.applu

average
−5

5

15

25

35

45

55

E
xe

cu
tio

n
T

im
e

R
ed

uc
tio

n[
%

]

6 stage data cache access

32 entries
64 entries

Figure 6: IPC Improvements for Varying Cache La-
tencies.

In conclusion we have demonstrated that programs con-
tain signi�cant levels of load and store reuse opportunities.
By �ltering loads and stores we can achieve signi�cant en-
ergy savings and at the same time generally achieve modest
speedups. Therefore our reuse unit is a superior load and
store �ltering mechanism that traditional �lter caches.

4. REFERENCES
[1] D. Brooks, V. Tiwari, and M. Martonosi, \Wattch: A

Framework for Architectural-Level Power Analysis and
Optimizations," in ISCA-27, pages 83{94, May 2000.

[2] J. Kin, M. Gupta, and W.H. Mangione-Smith. \Filter
Cache: An Energy EÆcient Memory Structure," In
MICRO-30, pages 184{193, December 1997.

[3] A. Sodani and G. S. Sohi, \Dynamic Instruction Eeuse," in
ISCA-24, 1997.

[4] N. Vijaykrishnan, M. Kandemir, M.J. Irwin, H.S. Kim, and
W. Ye, \Energy-Driven Integrated Hardware-Software
Optimizations Using SimplePower," in ISCA-27, pages
95{106, May 2000.

6075

	Main Page
	ISLPED'01
	Front Matter
	Table of Contents
	Author Index

