Hard Real-Time Scheduling for Low-Energy
Using Stochastic Data and DVS Processors

Flavius Gruian
Department of Computer Science, Lund University
Box 118
S-221 00 Lund, Sweden
Tel.: +46 046 2224673

e-mail: Flavius.Gruian @cs.lth.se

ABSTRACT

The work presented in this paper addresses scheduling for reduced
energy of hard real-time tasks with fixed priorities assigned in a rate
monotonic or deadline monotonic manner. The approach we
describe can be exclusively implemented in the RTOS. It targets
energy consumption reduction by using both on-line and off-line
decisions, taken both at task level and at task-set level. We consider
sets of independent tasks running on processors with dynamic volt-
age supplies (DVS). Taking into account the real behavior of a real-
time system, which is often better than the worst case, our methods
employ stochastic data to derive energy efficient schedules. The
experimental results show that our approach achieves more impor-
tant energy reductions than other policies from the same class.

Keywords
Low-energy, hard real-time, RTOS, scheduling

1. INTRODUCTION

Low energy consumption is today an increasingly important design
requirement for digital systems, with impact on operating time, on
system cost, and, of no lesser importance, on the environment.
Reducing power and energy dissipation has long been addressed by
several research groups, at different abstraction levels. We focus
here on methods applicable at system-level, where the system to be
designed is specified as an abstract set of tasks. Selecting the right
architecture has been shown to have a great influence on the system
energy consumption [4,5]. Recently, with the advent of dynamic
voltage supply (DVS) processors [2,22,25], highly flexible systems
can be designed, while still taking advantage of supply voltage scal-
ing to reduce the energy consumption. Since the supply voltage has
a direct impact on processor speed, classic task scheduling and sup-
ply voltage selection have to be addressed together. Scheduling
offers thus yet another level of possibilities for achieving energy/
power efficient systems, especially when the system architecture is
fixed or the system exhibits a very dynamic behavior. For such
dynamic systems, various power management techniques exist and
are reviewed for example in [1,17]. Yet, these mainly target soft

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or fee.

ISLPED’01, August 6-7, 2001, Huntington Beach, California, USA.
Copyright 2001 ACM 1-58113-371-5/01/0008...$5.00.

46

real-time systems, where deadlines can be missed if the Quality of
Service is kept. Several scheduling techniques for soft real-time
tasks, running on DVS processors have already been described
[3,18,19,23]. Energy reductions can be achieved even in hard real-
time systems, where no deadline can be missed, as shown in
[6,7,10,20,24]. In this paper, we also focus on hard real-time sched-
uling techniques, where every deadline has to be met.

Task level voltage scheduling decisions can reduce even further the
energy consumption. Some of these intra-task scheduling methods
use several re-scheduling points inside a task, and are usually com-
piler assisted [11,16,21]. Alternatively, fixing the schedule before
the task starts executing as in [6,7,8] eliminates the internal sched-
uling overhead, but with possible affects on energy reduction.
Statistics can be used to take full advantage of the dynamic behavior
of the system, both at task level [16] and at task-set level [24]. In our
approach we employ stochastic data to derive efficient voltage
schedules without the overhead of intra-task re-scheduling.

The rest of the paper is organized as follows. In section 2 we
describe our hard real-time scheduling strategy, pointing out the
related work for each decision we make. Section 3 contains several
experimental results conducted both on real life examples and on
randomly generated, large task sets. Finally, we present our conclu-
sions in section 4.

2. RT SCHEDULING FOR LOW-ENERGY

In the work described here, we address independent tasks running
on a single processor. The processor has variable speed (supply
voltage and energy) adjustable at runtime. The tasks arrive with
given periods and have to be executed before certain deadlines. The
priorities are fixed, assigned in a rate-monotonic (RM) or deadline
monotonic (DM) manner [14]. The runtime scheduling also oper-
ates as in RM/DM scheduling with the difference that each task
instance is assigned a maximum allowed execution time. The
scheduling strategies we adopt at task-level are presented in sub-
section 2.1. The allowed execution time are influenced by task
group level decisions, taken both off-line and on-line. The off-line
phase is presented in sub-section 2.2 and the on-line phase in sub-
section 2.3. Sub-section 2.3 also contains a proof that our schedul-
ing method keeps the response times from the original RM/DM
scheduling, and thus does not affect the feasibility of the schedule.

2.1 Task-level Scheduling Decisions

Task-level voltage scheduling has captured the attention of the
research community rather recently [8]. Fine grain scheduling,
where several re-scheduling points are used inside a task were pre-

sented in [11,16]. In [16] statistical data is used to improve the task
level schedule, by slowing down different regions of a task accord-
ing to their average execution time. Our approach produces voltage
schedules only when a task starts executing, while using stochastic
data more aggressively both at task level and task-set level. At task
level we generate voltage schedules that are correlated with the task
execution length probability distribution. For task-set level schedul-
ing decisions see sub-section 2.3.

In our model a task T, can be executed in phases, at different avail-
able voltages, depending on its allowed execution time A;. The ideal
case states that the most energy is saved when the processor uses the
voltage for which the task exactly covers its allowed execution time.
This corresponds to an ideal voltage which may not overlap with the
available voltages. A close to optimal solution is to execute the task
in two phases at two of the available voltages. These two voltages
are the ones bounding the ideal voltage [6,8].

An important observation is that tasks may finish, and in many
cases do finish, before their worst case execution time (WCET).
Therefore it makes sense to execute first at a low voltage and accel-
erate the execution, instead of executing at high voltage first and
decelerate. In this manner, if a task instance is not the worst case,
one skips executing high voltage (and power eager) regions.

In the following we will distinguish between three modes of execu-
tion for a task, as depicted in Figure 1. The ideal case (mode 1) is
when the actual execution pattern (the number of clock cycles)
becomes known when the task arrives. We can stretch then the
actual execution time of the task to exactly fill the allowed time.
This mode requires rather accurate execution pattern estimates,
depending on the input data, and therefore is rarely achievable in
practice. The second mode (mode 2) is the WCE stretching - the
voltage schedule for the task is determined as if the task will exhibit
its worst case behavior. These two modes use at most two voltage
regions, and therefore at most one DC-DC switch. The third mode
(mode 3), described in more detail next, uses stochastic data to
build a multiple voltage schedule. The purpose for using stochastic
data is to minimize the average case energy consumption. Note that
the voltage schedules in all these three modes are decided at a task
instance arrival. Unlike in [11,21] no rescheduling is done while the
task is executing. The only overhead during task execution is the
one given by the changes in the supply voltage. For instance, the
IpARM processor [2] needs at most 70us to switch from 1.2 to 3.8V.
For closer voltage levels, the switch occurs faster. Depending on the
actual task execution time, this delay may have some impact on the
schedule. The same goes for the energy lost during the DC-DC
switch. Although our discussion does not cover these, the methods

actual ET WCET

Used
Energy

|]
swi) pamoje

mode 1 {

B s P

I
Figure 1. Voltage scheduling modes for tasks: 1) ideal schedule,

2) WCET oriented schedule, 3) stochastic schedule.

mode 2

mode 3

47

presented here can be adapted to accommodate both the DC-DC
delay and energy loss whenever the actual processor requires it.

The stochastic voltage schedule (mode 3 in Figure 1) for a task is
obtained using the probability distribution of the execution pattern
for a task (the number of clock cycles used). This probability distri-
bution can be obtained off-line, via simulation, or built and
improved at runtime. Let us denote by X the random variable asso-
ciated with the number of clock cycles used by a task instance. We
will use the cumulative density of probability function, cdf,, asso-
ciated with the variable X, cdf, = P(X<x). This function
reflects the probability that a task instance finishes before a certain
number of clock cycles. If WX is the worst case number of clock
cycles, cd fyx = 1.Deciding a voltage schedule for a task, means
that for every clock cycle up to WX we decide a specific voltage
level (and processor speed). Each cycle y, depending on the voltage
adopted, will consume a specific energy, e,. But each of these cycles
are executed with a certain probability, so in average the energy
consumed by cycle y can be computed as (1 —cdf) - e, . To obtain
the average energy for the whole task, we have to consider all the
cycles up to WX:
E= X

0<ys<Wwx
This is the value we want to minimize by choosing appropriate volt-
age levels for each cycle. Since WX may be a large number in
practice, in our implementation we group several consecutive clock
cycles into equal size groups. For the sake of brevity and clarity we
describe here only the simpler case, when the voltage levels are
decided clock cycle by clock cycle.

(l—cdfy)-ey (D

A task has to complete its execution during an allowed execution
time, A. If we denote the clock length associated to clock cycle y by
ki, this constraint can be written as:
ky<A
0<ysWX

The clock cycle length k& dependency on the supply voltage V and
threshold voltage Vis according to: k ~ V/(V - V)" where B is
the velocity saturation index. If Vis small enough or we use a vari-
able threshold technology [22], this dependency is simplified to:
k~v P The clock cycle energy e is directly dependent on the
square of the supply voltage as in: e ~ V™ [6]. Eliminating V from
the last two expressions we obtain the dependency between the
clock cycle energy2 and length:

2

e~1/kP! 3)
For clarity we will bound now B = 2, but the rest of the calculus
can be carried out for any other reasonable value of 3. If we substi-
tute (3) in (1), we obtain:

- (1 Cczify) @

0<y< WX k ¥

which is the value to be minimized. By mathematical induction one
can prove that the right hand side of (4) has a lower bound (using

also (2)); 2
1
LB = O<ysWX 2—2(2 m) ®)
ky A" Mo<yswx
0<y<sWX

This lower bound can only be obtained if and only 13
(6)

ky= A-(fl-cdf)/| Y, Ji-cdf,
0

<y< WX

These are the optimal values for the clock cycle length in each clock
cycle up to WX. In practice these values may not overlap with the
available clock lengths so they have to be converted to real clock
cycles. This conversion is done in a similar way to deriving a dual
level voltage schedule from an ideal one [6,8]. We find the two
bounding available clock cycles CK; < ky < CK,; ., and distribute
the work of the ideal cycle in two such that
k} Aw;-CK;+ (1 -Aw;) - CK; |, where Aw; is the work
given to CK and the rest is the work given to CK;, ;. Thus, each
cycle in the task will distribute its work between two of the several
available clock lengths. Finally, the accumulated work loads for
each available clock cycle is rounded to integers, since one can only
execute full clock cycles.

Note that the coefficient of A in (6) can be computed off-line or, if
the probability distribution is built at runtime, on-line from time to
time. Therefore, the on-line computational complexity for obtain-
ing the stochastic voltage schedule is given by the steps subsequent
to (6). One has to compute the ideal clock cycle for each of the WX
clock cycles. Finding the bounding clock cycles takes logarithmic
time of the number of voltage levels, N,. This gives a complexity of
O(WX -logN,) .

Two examples of stochastic voltage schedules are given in Figure 2.
We assumed a normal probability distribution with the mean of 70
cycles, and standard deviation of 10. WX is 100. Assuming we only
have four available clock frequencies f, {/2, f/3, and f/4, we give two
voltage schedules obtained for two different values of the allowed
execution time. The schedules are given in number of clock cycles
executed at each available frequency. The allowed execution time is
reported in percentage of the time needed for executing the worst
case behavior (WX) at the highest clock frequency (f). Some exper-
imental results on how stochastic voltage schedule contribute at
saving energy are presented in section 3.

2.2 Off-line Task Stretching

The scheduling condition proposed by Liu and Layland [14] is a
sufficient one and covers the worst possible case for the task group
characteristics. Yet, an exact analysis as proposed in [13] may
reveal possibilities for stretching tasks and still keeping the dead-
lines. Based on this, [20] describes a method to compute the
maximum required frequency for a task set (or the minimum
stretching factor). In similar way, we go further and compute mini-
mal stretching factors {0}, ., for each task T, in the task
group {t;},_ .., - A task is a defined by the triple
T, = (C, T;, D;) composed of the WCET, period and deadline for
task T; . Note that throughout the paper C; refers to the worst case
execution pattern WX running at the fastest clock frequency. We

1] ‘ 1-cdf function
0.8 - cd for a normal
0.6 distribution
0.4 with mean 70
0.2 and standard

o deviation 10.

o 20 20 60 80 100 '

[a7efa [25@7/3 B 20@f] X et oot

Allowed is 200%

27@f/3 m of WX at clock f

Figure 2. Two stochastic voltage schedules for a task with normal
distribution execution time and worst case behavior of 100 cycles

48

consider that the tasks in the group are indexed according to their
priority, computed as in RMS.

We compute the stretching factors in an iterative manner, from the
higher to the lower priority tasks. An index g points to the latest task
which has been assigned a stretching factor. Initially, ¢ = 0. Each
of the tasks T;,g <i<n has to be executed before one of its sched-
uling points S; as defined in [13]:

= {ij‘l <j<i;l SkSLTi/TjJ},if T,=D;.1f T,#D, ,
we only need to change the set of scheduling points according to

= {t|(te S;) A(t<D;)} v {D,} . For each of this scheduling

points S ;i € S;, task T; exactly meets its deadline if:
Zac(w - C, (W—SU 7
I<r<q T, g<p<i p

Note that for the tasks which already have assigned a stretching fac-
tor we used that one, o, , while for the rest of the tasks we assumed
they will all use the same and yet to be computed stretching factor,
0y » which is dependent on the scheduling point. For the task T, the
best scheduling choice, from the energy point of view, is the largest
of its o; ik At the same time, from (7), this has to be the equal for all
tasks T;,g <i<n. There is a task with index m for which its best
stretching factor is the smallest among all other tasks:
max(o,;) = mln(max(oc)) Note that this in not necessarily the
ladt task, n. If ¢'= 07 this task sets the minimal clock frequency as
computed in [20]. Having the index m, all tasks between ¢ and m
can be at most stretched (equally) by the stretching factor of m.
Thus, we assign them stretching factors as
o, = max (o, 1) g < r<m . With this an iteration of the algorithm
for ﬁndlﬁg the stretching factors is complete. The next iteration then
proceeds for ¢ = m . Finally the process ends when ¢ reaches n,
meaning all tasks have been given their own off-line stretching
factors.

An example is given in Table 1. Note that tasks 3 and 4 can be
stretched off-line more than 1 and 2, while 5 has the largest stretch-
ing factor. The processor utilization changes from 0.687 to 0.994.
We use the utilization after off-line stretching in computing the
energy reduction upper bound in our experiments. For T,>D, ,
the difference between the stretching factors grows.

Table 1: Numerical Example for Off-line Stretching

Task T Off-line Stretching factor o

No. WCET (C) Period (T) value iterations needed
1 1 5 1.428 1
2 5 11 1.428 1
3 1 45 1.785 2
4 1 130 1.785 2
5 1 370 2.357 3

2.3 On-line Slack Distribution

At runtime it is important to use the variations in execution length
of the various task instances to be able to stretch other tasks and
thus consume less energy. In [20] the only situation when a task is
stretched is when it is the only one running and has enough time
until the next task arrives. In all other situations tasks are executed
at the speed dictated by the off-line analysis. In [11] tasks are

stretch at their WCET at runtime, independent of other tasks, using
several checking/re-scheduling points during a task instance. The
work in [10] uses only two voltage levels. The slack produced by
finishing a task early is entirely used to run the processor at the low
voltage. As soon as this slack is consumed, the task starts running
at high voltage. Our method is perhaps most resemblant to the opti-
mal scheduling method OPASTS presented in [7]. Yet, OPASTS
performs analysis over task hyperperiods, which may lead to work-
ing on a huge number of task instances for certain task sets. Our
method keeps a low and the same computational complexity,
regardless of the task set characteristics.

We describe next our strategy for slack distribution. In short, an
early finishing task may pass on its unused processor time for any
of the tasks executing next. But this time slack can not be used by
any task at any time since deadlines have to be met. We solve this
by considering several levels of slacks, with different priorities, as
in the slack stealing algorithm [12]. If the tasks in the task set
{t,=(C, T, Di)}1 <i<n have m different priorities, we use m
levels of slacks {S j}l <i<m Without great loss of generality con-
sider that the tasks have éifferent priorities, m = n. The slack in each
level is a cumulative value, the sum of the unused processor times
remaining from the tasks with higher priority. The invariant
describing the state of the slacks in every level, at any time is given
by (10). Initially, all level slacks S; are set to zero. To maintain the
relation between slack levels, the levels are managed at runtime as
follows:

* whenever an instance k of a task T, with priority i starts exe-
cuting, it can use an arbitrary part AC; of the slack available
at }evel i,S;.So Ehe allowed execution time for task T; will be:
A; = C;+AC;. The remaining slack from level i will
degrade into level i+ slack. Each level slack will be updated
according to: 0,j<i

S = 8
J {sj—Acf.‘,pi()

¢ whenever a task instance finishes its execution, it will %(enerate
some slack if it ﬁpishes before its allowec} time, If E b is tl)}e
actual execution time, the generated slackis AA; = A; - E; .
This slack can be used by the lower priority tasks. In this case
the level slacks are updated according to:

SpJ<i

(©)]

s =
! {SJ+AAf,j>i
* idle processor times are subtracted for all slacks. This ensures
that the critical instance from the classic RM analysis remains
the same.
The computational complexity required by the on-line method is
linearly dependent to the number of slack levels.

Note that task instances can only use slack generated from higher
priority tasks and produce low priority slack. We call this slack deg-
radation. Whenever the lowest priority task starts executing, all
level slacks are reset. Note also that not necessarily all slack at one
level is used by a single task. Various methods can be used, but we
mention here only the two we used in our experiments:
. Gre(zdy: the task gets all the slack available for its level:
AC; = S;
* Mean proportional: we consider the mean execution time L;
for each task instances waiting to execute (in the ready queue).
The Elack is propprtionally distributed according to these:
AC; = Si'“i/(Hjj
j€ ReadyQ

49

The strategy of managing the slack we just described allows us to
keep the critical instance response time for all tasks, as we prove
next. The response time R;(¢) for task T; is computed as
R,(t) = A;+1,(t), where A; is its allowed execution time, as
before, and I,(t) is the interference from the other tasks. From the
managing strategy given before, the cumulated slack on each level,
at a certain time ¢ is of form:
(;w (10)
Ti -1

k
S0 =S8;_ (=D AC;,_;"+ D AA;_,
k k
The slack of level i is composed of all slack from level i-/, less the
slack used by the instances of tasks with priority i-/ but plus all the
slack generated by these. The number of instances executed, &, is
determined by the task period. Note that S; is always zero. Elimi-
nating the iteration in the previous formula:
k=|L1] «an
T

Jj<i
=1
The task with the highest priority will never receive slack and there-

s =Y (ZAAjk—ZACjk)
j= k k
fore, AClk =0.

K=

The interference from the high priority tasks is the time used to exe-
cute all arrived instances of these high priority tasks:
J<i
=Y YE" k= (H
j=1k J
With the notations from the slack managing algorithm
Ef = a5-aak = ¢+ ac/ A Intoducing this in (12):
Jj<i
1) = Y (€ +AC -AAY k= (TLW (13)
j=1k J
The last two terms in the sum are actually giving the slack of level
i, as in (11), so we can re-write (13) as:
Jj<i
() = Y kC;=S(1) k= (TLW
j=1 J
Note that the maximal response time for a task is obtained when it
uses all the slack available at its level: R;(#) = C;+1,(t) +S,().
From the last two equations:
Jj<i

R(t) = C;+ Y (Tilcj
j=17

which is exactly the response time when all tasks execute at WCET.
Thus, if the RM analysis decides that a task set is schedulable, it
remains valid when using our on-line policy.

12)

(14)

(15)

In our implementation we additionally used a method similar to the
on-line method presented in [20]. Namely, whenever there are no
tasks in the Ready queue, the currently executing task can stretch
until the closest arrival time of a task instance. We will refer to this
in our experiments as the /stretch method.

3. EXPERIMENTAL RESULTS

The first experiment examines the energy gains of using a stochastic
voltage schedule at task level. For this we considered a single task
with execution time varying between a best case (BCE) and a worst
case (WCE) according to a normal distribution. All distributions
have the mean (BCE+WCE)/2 and standard deviation (WCE-
BCE)/6. For a several cases ranging from highly flexible execution
time (BCE/WCE is 0.1) to almost fixed (BCE/WCE is 0.9) we built
stochastic schedules for a range of allowed execution times (from

WCE to 3x WCE). We assumed that our processor has 9 different
voltage levels, equally distributed between f and /3. For a large
number of task instances generated according to the given distribu-
tion we computed both the energy of the stochastic schedule (mode
3 in Figure 1) and the WCE-stretch schedule (mode 2 in Figure 1).
We depict in Figure 3 the average energy consumption of the sto-
chastic schedule as a part of the WCE-stretch schedule. Note that
when the allowed time approaches either WCE or 3-times WCE,
the energy consumptions become equal. The lowest possible clock
frequency is f/3 which anyway means 3-times WCE, so there is no
better schedule for these cases. On the other hand when the allowed
time closes WCE, there is no other way but to use the fastest clock.
Somewhere between the slowest and the fastest frequencies
(Allowed/WCE = 2) is the largest energy gain since the stochastic
schedule can use the whole spectrum of available frequencies. Note
that the energy gains become more important when the task execu-
tion time varies much (BCE/WCE closes 0.1). It is important to
notice that WCE-stretch already gains very much energy compared
to the non-scaling case. For example when the allowed time is twice
the WCE, the WCE-stretch energy is around 25% of the no-scaling
energy. But a stochastic approach contributes even more to these
gains, as the figure shows.

Next we took two real-life hard-RT applications [9, 15] and applied
several energy reduction strategies. The results are depicted in Fig-
ure 4. We assumed tasks with normal distributions, with the same
characteristics as in the previous experiment. The 100% energy is
the energy obtained by running all tasks as fast as possible and exe-
cuting NOPs when no tasks are supposed to run. We assumed that
the NOP instruction consumes only 20% of the average power, as
in [20]. The virtual processor used for these experiments has 14
voltage levels, with clock frequencies varying between f=100MHz
and 11MHz. A power-down mode is also available, in which the
processor consumes 5% of the highest frequency average energy.

The curves named “Upper Bound” depict the upper bound of the
energy reduction possibilities. These were obtained in a post-execu-
tion analysis, by considering that the tasks are uniformly stretched
up to maximum processor utilization as computed in sub-section
2.2.2. This limit is hardly achievable in practice, since the actual
execution patterns for all task instances are never available before-
hand. Moreover, this optimum obtained by uniformly stretching all
instances may violate some deadlines, being therefore useless in
practice. A more realistic bound is given by the “Ideal stretch.”

The curves named “Offline+1stretch” were obtained by using only
the off-line stretching method and the /stretch method mentioned
in sub-section 2.2.3. The “All” labeled curves were obtained by

Levels

95.5%

90.8% —
86.1% - -
81.4% —
76.6% - -

4
SELL g
' 3 'SBgE/WCE

0.1
Allowed/WCE

Stochastic schedule energy
compared to WCE-stretch

Figure 3. The average energy consumption of a stochastic voltage
schedule vs. the energy consumption of a WCE- stretch schedule.

50

using the off-line strategy, the on-line strategy with “mean propor-
tional” slack distribution (sub-section 2.3), plus the stochastic
execution task model (mode 3 in Figure 1). The curves labeled
“Ideal stretch” were obtained by using the same method as the “All”
curves, except using an ideal-stretch task execution model (mode 1
in Figure 1). Note that this method implies knowing the actual exe-
cution time at a task arrival, which is unlikely in reality. For the last
three methods, “Offline+1stretch,” “All,” and “Ideal-stretch,” when-
ever the processor is idle, it goes to a power down mode.

We also tested our scheduling policy on randomly generated task
sets of 50 and 100 tasks. The task sets were generated as follows.
For each set, the task periods (and deadlines) were selected using a
uniform distribution in 100..5000 and 100..10000 respectively. The
worst case execution times were then randomly generated such that
the task set would yield approximately 0.67 processor utilization,
for the fastest clock. The average utilization after off-line stretching
turned out to be 0.92 for the sets of 50 tasks, and 0.85 for the sets of
100 tasks. Using the same processor type as in the previous experi-
ment, we simulated the runtime behavior of several scheduling
methods. We also used post-simulation data to obtain the upper
bounds, as in the previous experiment. The values depicted in Fig-
ure 5 are averages over one hundred sets of tasks. As results from
these experiments, our policy (“All”) performs best, when little
information on task execution is available.

100%
80%f T e
o~ ~ ~ Upper Bound
= < .~
60%}3 ~ st o5l - -
-8 All ~ S =~ . _UpperBound
5 i 90}~ L
40% Eﬁ . g NJdeal stretch iiewmd] s ..
0 e -
20% LE] Offline+stretch ==
BCE/WCE
V=T B B XS

0.
a) avionics, 17 tasks b) CNC, 8 tasks ~ BCE/WCE

Figure 4. The energy reduction for an a) avionics application [15] and
b) a controller CNC [9]. In b) the area between 70-100% is enlarged.

4. CONCLUSIONS

We presented and analyzed a scheduling policy for hard real-time
tasks running on a dynamic voltage supply processor, with the final
purpose of reducing the energy consumption. The policy is
designed for sets of tasks with fixed priorities assigned in a rate/
deadline monotonic manner. It consists of both off-line and on-line
scheduling decisions, taken both at task and task set levels. The off-
line decisions use exact timing analysis to derive off-line voltage
scaling factors for each task. The on-line policy distributes available
processor time on priority basis, using slack levels and statistics.
Task-level voltage schedules are built using stochastic data, with the
goal of minimizing the average case energy consumption. The
paper also contains a proof that our scheduling policy meets all
deadlines. Our method can be fully implemented in the RTOS,
without appealing to special compilers or changing the software.
Yet, combined with the afore mentioned methods, our approach
may yield even greater energy reductions. The experimental results
show that our policy can be successfully used to reduce the energy
consumption in a hard real-time system.

100% sets of 50 tasks

~J
(=3
N
Energy reduction

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
100%
sets of 100 tasks
9% veeaoL
______ Upper Bound
80% e I B e
= -~ ~ T
g -~ s -
Loy = -~ S o
T0% 2 All ~< S|
(2]
60% 2.
5 -
50% | & e —
Offline+1stretch T~ < _
40% e T
30% BCEMICE 3
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5. The energy reduction using different strategies for sets of
50 tasks above and sets of 100 tasks bellow. The value are averages
over a hundred task sets.

5. ACKNOWLEDGMENTS

This work was funded by ARTES - A network for Real-Time
research and graduate Education in Sweden'. The author would like
to thank Petru Eles, Kris Kuchcinski, and Per Larsson-Edefors for
their helpful comments.

6. REFERENCES

[1] Benini, L. and DeMicheli, G. System-level power
optimization: techniques and tools, in ACM Trans. on Design
Automation of Electronic Systems, No. 2, Vol. 5, April 2000,
115-192.

[2] Burd, T., Pering, T., Stratakos, A., and Brodersen, W. A
dynamic voltage scaled microprocessor system in IEEE
Journal of Solid-State Circuits, No. 11, Vol. 35, November
2000, 1571-1580.

[3] Chnadrakasan, A., Gutnik, V., and Xanthopoulos, T. Data
driven signal processing: an approach for energy efficient
computing in Proceedings of ISLPED’96, 347-352.

[4] Dave, B.P, Lakshminarayana, G., and Jha, N.K. COSYN:
hardware-software co-synthesis of embedded systems in
Proceedings of the 34th DAC 1997, 703-708.

[5] Gruian, F., and Kuchcinski, K. Low-energy directed
architecture selection and task scheduling for system-level
design in Proceedings of the 25th Euromicro Conference,
1999, pp. 296-302.

[6] Gruian, F., and Kuchcinski, K. LEneS: task scheduling for
low-energy systems using variable voltage processors in
Proceedings of ASP-DAC2001, 449-455.

[71 Hong, 1., Potkonjak, M., and Srivastava, M.B. On-line
scheduling of hard real-time tasks on variable voltage

1http://www.artes.uu.se/

processor in Digest of Technical Papers of ICCAD’98, 653-
656.

[8] Ishihara, T., and Yasuura, H. Voltage scheduling problem for
dynamically variable voltage processors in Proceedings of
ISLPED’98, 197-202.

[9] Kim, N., Ryu, M., Hong, S., Saksena, M., Choi, C.-H., and
Shin, H. Visual assessment of a real-time system design: a
case study on a CNC controller, The 17th IEEE Real-Time
Systems Symposium, 1996, 300-310.

[10] Lee, Y.-H., and Krishna, C.M. Voltage-clock scaling for low
energy consumption in real-time embedded systems in
Proceedings of the 6th International Conference on Real-Time
Computing Systems and Applications, 1999, 272-279.

[11] Lee, S., and Sakurai, T. Run-time voltage hopping for low-
power real-time systems in Proceedings of the 37th DAC,
2000, 806-809.

[12] Lehoczky, J., and Ramos-Thuel, S. An optimal algorithm for
scheduling soft-aperiodic tasks in fixed-priority preemptive
systems in Proceedings of RTSS’92, 110-123.

[13] Lehoczky, J., Sha, L., and Ding, Y. The rate monotonic
scheduling algorithm: exact characterization and average case
behavior in Proceedings of RTSS’89, 166-171.

[14] Liu, C.L., and Layland, J.W. Scheduling algorithms for
multiprograming in a hard real time environment in JACM 20
(1), 1973, 46-61.

[15] Locke, C.D., Vogel, D.R., and Mesler, T.J. Building a
predictable avionics platform in Ada: a case study in
Proceedings of RTSS’ 91, 181-189.

[16] Mossé, D., Aydin, H., Childers, B., and Melhem, R.,
Compiler-assisted dynamic power-aware scheduling for real-
time applications. Worksop on Compilers and Operating
Systems for Low-Power, October 2000.

[17] Pedram, M. Power optimization and management in
embedded systems, Proceedings of ASP-DAC 2001, 239-244.

[18] Pering, T., Burd, T., and Brodersen, R., The simulation and
evaluation of dynamic voltage scaling algorithms in
Proceedings of ISLPED’98, 76-81.

[19] Pering, T., Burd, T., and Brodersen, R., Voltage scheduling in
the IpARM microprocessor system in Proceedings of
ISLPED’00, 96-101.

[20] Shin, Y., and Choi, K. Power conscious fixed priority
scheduling for hard real-time systems in Proceedings of the
36th DAC, 1999, 134-139.

[21] Shin, D., Kim, J., and Lee, S. Intra-task voltage scheduling for
low-energy hard real-time applications, Special Issue of IEEE
Design and Test of Computers, October 2000.

[22] Suzuki, K., Mita, S., Fujita, T., Yamane, E., Sano, F., Chiba,
A., Watanabe, Y., Matsuda, K., Maeda, T., and Kuroda, T. A
300MIPS/W RISC core processor with variable supply-
voltage scheme in variable threshold-voltage CMOS,
Proceedings of the ICC’97, 587-590.

[23] Weiser, M., Welch, B., Demers, A., and Shenker, S.
Scheduling for reduced CPU energy in Proceedings of the
First Symposium on Operating Systems Design and
Implementation, November 1994.

[24] Yao, E, Demers, A., and Shenker, S. A scheduling model for
reduced CPU energy in Proceedings of the 36th Symposium
on Foundations of Computer Science, 1995, 374-382.

[25] http://www.transmeta.com

	Main Page
	ISLPED'01
	Front Matter
	Table of Contents
	Author Index

