
Power-Aware Modulo Scheduling for
High-Performance VLIW Processors�

Han-Saem Yun
School of Computer Science and Engineering

Seoul National University

hsyun@davinci.snu.ac.kr

Jihong Kim
School of Computer Science and Engineering

Seoul National University

jihong@davinci.snu.ac.kr

ABSTRACT
For high-performance processors, the step power and peak power,
which are closely related to the chip reliability, are important design
constraints, often more than the average power. In VLIW proces-
sors where a single instruction may contain a variable number of
operations, the step power and peak power vary significantly de-
pending on the parallel schedule generated by a parallelizing com-
piler. In this paper, we propose a power-aware modulo scheduling
algorithm for high-performance VLIW processors. The proposed
algorithm reduces both the step power and peak power by produc-
ing a more balanced parallel schedule while not compromising per-
formance. Experimental results show that the proposed scheduling
technique significantly improves the power characteristics of high-
performance processors over an existing power-unaware modulo
scheduling technique.

1. INTRODUCTION
Power dissipation has become an important design constraint for

high-performance processors such as modern superscalar proces-
sors and VLIW processors. Although performance is still the most
important requirement for high-performance processors, increasing
power dissipation is becoming a major obstacle to performance im-
provements in future microprocessors. In particular, the step power
and peak power, which are closely related to the chip reliability, are
important design issues, often more than the average power con-
sumption, in high-performance processors.

1.1 Step Power and Peak Power
The step power [16], which is defined as the difference in the

average power between consecutive clock cycles, represents the
inductive noise Ldt=di at the microarchitectural level. Inductive
noise, also known as ground bouncing, is a voltage glitch induced
at power/ground buses due to switching currents passing through
the wire inductance associated with power or ground rails. A large
voltage surge due to the inductive noise may cause timing and logic

�This work was supported in part by Korea Research Foundation
Grant (KRF-2000-041-E00287).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’01, August 6-7, 2001, Huntington Beach, California, USA.
Copyright 2001 ACM 1-58113-371-5/01/0008 ...$5.00.

errors, thus may reduce the chip reliability. For high-performance
processors, the inductive noise problem is becoming more seri-
ous because the increasing clock frequency, the growing number
of gates, and the wider datapath result in larger surge current to
charge/discharge the power/ground buses in a shorter time leading
to larger inductive noise. Even worse, with the growing usage of
aggressive clock gating for reducing the average power consump-
tion, the cycle-by-cycle current swing is getting larger.

The peak power, the maximum power dissipation during the exe-
cution of a given program, is closely related to the chip temperature
[2], to which the chip reliability and sub-threshold leakage power
are exponentially related [5]. Higher peak power leads to the device
degradation, reducing the chip lifetime. As a result, complex cool-
ing systems (which add significantly to the manufacturing cost) are
used to avoid overheating and to ensure system reliability.

1.2 Related Work
Most previous work has been focused on hardware mechanisms

to control the step power and peak power. Pant et al. [9, 10] pro-
posed an improved version of clock gating to reduce the spike cur-
rent by slowly turning on and off clock gated units at a modest
cost in additional hardware and performance. Tang el al. [16] fur-
ther enhanced this mechanism to reduce the performance loss. The
work by Brooks et al. [2] controls the peak power in the context of
dynamic thermal management.

There has been little published work that approached the prob-
lems of step-power reduction and peak-power reduction from the
software perspective. The work by Toburen et al. [18] controls
the peak power dissipation in VLIW processors by modifying the
instruction scheduling algorithm of an optimizing compiler. Their
power-aware scheduler places as many instructions as possible in a
given VLIW instruction until the given power threshold is reached.
However, their work is based on traditional list scheduling, which
is not effective in exploring the high instruction-level parallelism
available from modern multiple-issue processors such as VLIW
processors. Therefore, their work is not applicable to most high-
performance VLIW processors.

1.3 Contribution
In this paper, we propose a power-aware modulo scheduling al-

gorithm for high-performance VLIW processors. In VLIW proces-
sors where a parallel instruction consists of several operations, the
step power and peak power consumption varies significantly de-
pending on how the parallel schedule is generated by a paralleliz-
ing compiler. The proposed algorithm reduces both the step power
and peak power by constructing a more balanced parallel schedule
while not compromising performance.

As will be shown later in the paper, the proposed algorithm is

3740

quite effective in reducing the step power and peak power con-
sumption in VLIW processors. This is because a parallelizing com-
piler can fully control the usage of all the functional units in a
VLIW processor. On the other hand, the hardware-assisted tech-
niques such as [9, 16] are often limited to the power reduction in
a specific functional unit only without considering the processor-
wide effect.

The rest of the paper is organized as follows. In Section 2, we
describe our target VLIW machine model and its power model.
We briefly review modulo scheduling in Section 3. The proposed
power-aware algorithm is explained in Section 4 while experimen-
tal results are presented in Section 5. We conclude with a summary
and future work in Section 6.

2. TARGET VLIW MACHINE MODEL AND
ITS POWER ESTIMATION METHOD

VLIW machines use long instruction words to execute multiple
operations simultaneously. In this paper, we assume a VLIW ma-
chine model with a MIPS-like integer pipeline and an UltraSPARC-
like floating-point (FP) unit pipeline. For an 8-issue VLIW model,
we assume that there are one integer ALU (including a branch unit),
two load/store units, one integer MPY/DIV, two FP ALUs and two
FP MPY/DIVs. For a 16-issue VLIW model, we assume that the
number of each functional unit is doubled over that of the 8-issue
model. In a target VLIW model, each operation takes different cy-
cles to execute. For example, load operations require one cycle in
the execution stage while FP DIV operations spend 10 cycles in the
execution stage.

For a given VLIW machine, we estimate the power consumption
at the cycle level, taking the pipelined executions into account. For
each operation op, we associate a power cost p(op; i) that repre-
sents the power consumed by operation op at the i-th pipeline stage
(1 � i � ns) where ns denotes the number of pipeline stages. In
this paper, we assume that p(op; i) values were given. They can
be obtained from actual measurements of a target processor (e.g.,
[3]) or simulations of a detailed processor model. For experiments,
we used p(op; i) values extrapolated from information available in
[14] and [17].

Given a program execution trace T , let Ti represent the set of
operations in the VLIW instruction executed at the i-th cycle of T .
Then power dissipation Pi at the i-th cycle is estimated as follows:

Pi =
ns

∑
j=1

∑
op2Ti� j+1

p(op; j) (1)

Since our main goal is not to develop a cycle-accurate power
model of VLIW processors, but to devise a power-aware schedul-
ing algorithm for VLIW processors, admittedly, our power estima-
tion method is rather simple and has many weaknesses. For exam-
ple, in computing Pi, we do not consider inter-instruction effect or
inter-operation effect as done in [18]. That is, we assume that each
operation (instruction) contributes to the total power consumption,
independently of other operations (instructions). However, the pro-
posed algorithm can be easily extended to work with more accurate
power estimation models, because the proposed algorithm does not
depend on a particular power estimation technique.

3. MODULO SCHEDULING OVERVIEW
Software pipelining is an aggressive loop scheduling technique

for VLIW processors. It transforms a sequential loop so that new
iterations can start before preceding ones finish, thus overlapping
the execution of multiple iterations in a pipelined fashion. Modulo

scheduling [6, 13] is one of the scheduling algorithms for imple-
menting software pipelining.1 Since a large number of loops con-
tain no conditionals, we concentrate on loops with no control flows
in this paper. For loops with control flows, we assume a hardware
mechanism that supports predicated execution. If-conversion [1,
11] can be performed to eliminate conditionals in loops with con-
trol flows under this hardware mechanism.

A loop L is modeled as a double-weighted directed graph G =
(V;E;δ;d), called a data dependence graph (DDG)2, where V is the
set of operations in the loop, δ is a function from V to the positive
integers representing the latency of each operation, E is the edge
set of G and d is a function from E to non-negative integers. E and
d specify dependences among operations. An edge e = (v;v0) 2 E
with a weight d(e) states that for every iteration i� d(e) of the loop,
operation v0 depends on the outcome of operation v in iteration i�
d(e) and cannot be initiated until the completion of v. Figure 1(b)
shows the DDG of an example loop in Figure 1(a).

Given a loop with the form of a DDG G and a specific resource
constraint, the problem of software pipelining is defined as find-
ing the minimal initiation interval (II) and constructing a schedule
σ that is a function from V �N to N such that the following con-
straints are met (σ(v; i) denotes the execution cycle in which the
instance of operation v in iteration i is initiated):

Periodicity constraint: σ should be represented as a periodic
form such that

8v 2V 8i 2 N ; σ(v; i) = σ(v;0)+ II � i :

Dependence constraint: For every v and v0 such that e=(v;v0)2
E, the instance of operation v0 in iteration (i+d(e)) should not be
initiated until the completion of the instance of operation v in iter-
ation i.

8e = (v;v0) 2 E 8i 2 N ; σ(v0; i+d(e)) � σ(v; i)+δ(v)

Resource constraint: Let nRk represent the number of avail-
able Rk functional units and let τ(v) represent the functional unit
in which v is executed. For each functional unit Rk, no more than
nRk operations are initiated in the same cycle:3

8Rk 8t 2 N ; jf(v; i)jτ(v) � Rk ^σ(v; i) = tgj � nRk

From the periodicity constraint, it is sufficient to find II and
σ(v;0) for v 2 V , called a flat schedule. The dependence con-
straint and resource constraint are translated as follows under the
flat schedule:

8e = (v;v0) 2 E; σ(v0;0) � σ(v;0)+δ(v)� II �d(e)

8Rk ; 8 0 � t < II ;

jf(v;0)jτ(v) � Rk ^σ(v;0) � t (mod II)gj � nRk

Figure 1(c) shows a flat schedule with the initiation interval of 3
cycles for the DDG of Figure 1(b).

It is well-known that the problem of determining if a flat sched-
ule exists for a given II is NP-hard and several heuristic approaches
have been developed to find the minimal II and the flat schedule.
The minimum initiation interval (MII) is a lower bound on the II

1Software pipelining is essentially equivalent to the retiming technique which is
widely used in VLSI high level synthesis [4] and logic level synthesis [8].
2Such a graph is called a data flow graph (DFG) in the context of synchronous VLSI
circuits.
3For simplicity, we assume that the functional units are fully pipelined. Complex
resource constraints can be handled by resource reservation table [13].

3841

(2) r2 = op2(r1,r5)

(1) r1 = op1(r3)

(3) r3 = op3(r2)

(4) r4 = op4(r3)

(5) r5 = op5(r2)

(6) r6 = op6(r6)

(a)

NOP NOP NOP

NOPNOPNOP

(1)

(2)

(3)

n

n

n

(6)
n

(4)
n-1

(5)
n-1

NOP NOP

NOPNOP

(1)

(2)

(3)

n

n

n

(6)
n

(5)
n

(4)
n-1

NOPNOP

(b)

(1)

(2)

(3)

0

0

1

0

0

1

1
(6)

(c) (d)

(5)

(4)

Figure 1: An example power-aware schedule: (a) An example
loop, (b) its data dependence graph with d(e) values (assuming
operation latency = 1), (c) a performance-driven schedule, and
(d) a power-aware schedule.

for which a flat schedule exists. The MII is obtained by separately
considering the dependence constraint and the resource constraint,
and taking the larger value between two [6]. The candidate II is
initially set to the MII and increased until a legal modulo schedule
is found.

4. POWER-AWARE MODULO SCHEDUL-
ING ALGORITHM

In this section, we present a power-aware modulo scheduling al-
gorithm that reduces both the step power and peak power. Our main
requirement in designing such algorithms is that performance must
not be sacrificed for the reduced power consumption.

4.1 Problem Formulation
Using the periodicity constraint, we can formulate the power

consumption at each time slot of the software pipelined loop LSP

of a sequential loop L as follows. (The superscript SP is used to
distinguish the software pipelined loop from the original sequential
loop.) Let OLSP

;i be the set of operations (including NOPs) sched-
uled at the time slot i for 0 � i < II. Then the power consumed at
time slot i, written by PLSP

;i , is estimated by

PLSP
;i =

ns

∑
j=1

∑
op2OLSP

;t where t=(i� j+1) mod II

p(op; j) (2)

If we consider the infinite execution of LSP, which is repre-
sented by the execution trace TLSP , the peak power is equal to
maxifPLSP

;ij 0� i< IIg and the step power at the cycle i is jPLSP
;i mod II�

PLSP
;(i�1)mod II j.

A software pipelined loop LSP has the minimum peak power
and minimum step power when all the PLSP

;i values (0� i < II) are
equal to PLSP(ideal). PLSP(ideal) is given by as follows:

PLSP(ideal) = [∑
op2[II�1

k=0 OLSP
;k

ns

∑
j=1

p(op; j)] = II (3)

For such an LSP, the peak power is equal to PLSP(ideal) and the

step power is zero for the whole execution trace TLSP .4 In order
to reduce the step power and peak power, our basic approach is to
schedule operations in such a way that the resulting PLSP

;i function
becomes as flat as possible. As a figure of merit for the flatness of
LSP, we use the following function F (LSP) :

F (LSP) =
II�1

∑
i=0

[PLSP
;i �PLSP(ideal)]

2 (4)

Our goal in power-aware modulo scheduling is to find LSP
opt such

that F (LSP
opt) � F (LSP

k) for all k, where LSP
k represents the k-th

software pipelined loop schedule of the sequential loop L . For such
an LSP

opt, PLSP
opt;i

is as balanced as possible.
Consider an example loop shown in Figure 1, which has the MII

of 3 cycles. Both schedules in Figures 1(c) and 1(d) are optimal
in terms of performance achieving their IIs equal to the MII value.
However, in terms of the step power and the peak power, the latter
is better than the former. (The superscript n in the operation number
indicates the n-th loop iteration.) For example, if we assume equal
p(op; j) values, the schedule in Figure 1(c) has the twice bigger
peak power over the schedule in Figure 1(d). Similarly, for the step
power, the schedule in Figure 1(d) has no power difference while
the schedule in Figure 1(c) has the largest value between the first
and second instructions.

This example clearly demonstrates that there exist large differ-
ences in power characteristics among the schedules with the equal
execution times. Our goal is to find the power-efficient schedules
among such performance-driven schedules without compromising
performance.

4.2 The Base Algorithm : Iterative Modulo
Scheduling (IMS)

We start with Rau’s iterative modulo scheduling (IMS for short)
as the base algorithm [13]. It outperforms the best-known modulo
scheduling algorithm by Lam [6]. Figure 2 describes a simplified
version of the IMS algorithm. (Rau’s original algorithm includes
a sophisticated backtracking procedure. For brevity, we do not in-
clude it in Figure 2.)

IMS calls FINDFLATSCHEDULE with successively larger values
of II, starting with an initial value equal to the MII until the legal
schedule is found. FINDFLATSCHEDULE repeats picking the high-
est priority operation and then selecting the best desirable time slot
in which the operation is to be scheduled.

Rau used the priority function based on the length of the criti-
cal dependence cycle. Before selecting the best desirable time slot,
COMPUTESLACK is called to compute the range of time slots (i.e.,
slack) where the operation may be placed without violating depen-
dence constraints with the operations already scheduled.

Given a path p= v1 ! v2 !���! vk , let δ(p) and d(p) represent

∑k�1
i=1 δ(vi) and ∑k�1

i=1 d((vi;vi+1)), respectively. Assume that v has
been already scheduled and v0 is about to be scheduled. Adding

dependence constraints along v
p1
; v0 and v0

p2
; v yields:

σ(v)+δ(p1)� II �d(p1)� σ(v0)� σ(v)�δ(p2)+ II �d(p2)

Thus, the slack interval, [MinTime,MaxTime], of v0 is computed

4Of course, an ideal LSP generally does not exist because of the dependence constraint
and resource constraint.

3942

as:

MinTime = max
vs

[σ(vs)+δ(vs; v0)� II �d(vs; v0)]

MaxTime = max
vs

[σ(vs)�δ(v0; vs)+ II �d(v0; vs)]

where vs is any scheduled operation.
From the computed slack, FINDTIMESLOT picks the best desir-

able time slot. Rau’s original algorithm selects the earliest time slot
in which resource conflict is not incurred. If no conflict-free slot is
found, the operation cannot be scheduled unless some operations
in the partial schedule are unscheduled. (The detailed description
of unscheduling procedure can be found in [13].)

procedure IMS
II := MII(); /* initialize the candidate II to MII */
while (FINDFLATSCHEDULE(II) != SUCCESS)

II := II + 1;
end procedure

function FINDFLATSCHEDULE(II)
/* compute the priority of each operations */
COMPUTEPRIORITY();

/* repeat picking the highest priority operation and
selecting the best desirable time slot at which the
operation is to be scheduled until all operations
have been scheduled */

while (some operation is not scheduled)
/* pick the highest priority operation */
CurrOper := HIGHESTPRIORITYOPERATION();

/* compute the time bounds in which the selected
operation can be scheduled satisfying the
dependence constraint */

(MinTime, MaxTime) := COMPUTESLACK(CurrOper);

/* select the best desirable time slot */
TimeSlot := FINDTIMESLOT(

CurrOper, MinTime, MaxTime);

/* schedule the operation at TimeSlot. */
SCHEDULEOPERATION(CurrOper, TimeSlot);

end while

if (all operations are scheduled) return SUCCESS;
else return FAIL;

end function

Figure 2: Original IMS algorithm.

4.3 Balanced IMS (BIMS) for Reduced Peak
Power and Step Power Consumption

As explained in Section 4.1, our goal is to find schedule(s) with
the most balanced power dissipation distribution while not sacrific-
ing the performance that can be obtained from the original IMS.

IMS always places an operation as early as possible (ASAP)
within the partial schedule constructed so far, resulting in a skewed
schedule with an unbalanced power dissipation distribution. This
ASAP policy has been widely used by software pipelining researchers
but is somewhat a legacy from an over-reliance on the intuition un-
derlying acyclic list scheduling.

In contrast, our algorithm tries to build balanced schedules us-
ing a heuristic guided by the F (LSP) cost function which indi-
cates how much a power dissipation distribution is balanced over
the entire program execution. In order to make the original IMS

algorithm to be power-aware, we make the following two modifi-
cations:

� Priority Function Modification

Instead of the length of the critical dependence cycle, we
use the reciprocal of the slack width as the priority function
for an unscheduled operation. Therefore, we need to recom-
pute the priority values at each iteration of the while loop in
FINDFLATSCHEDULE. With the modified priority function,
operations with smaller slack widths are scheduled early so
that performance is not sacrificed. If these operations are
scheduled later, it is more likely that, for the current II value,
no legal schedule can be found. Although the re-computation
of the priority at each iteration of the while loop may in-
cur additional compilation time, we believe that the dynamic
priority adjustment provides more accurate critical-path in-
formation, thus guaranteeing that the resulting schedule does
not suffer any performance loss.

� Time Slot Selection Modification

When selecting the best desirable time slot for the current op-
eration to be scheduled, the balancing cost function is used
so that the partial schedule is constructed as balanced as pos-
sible. That is, the operation is positioned into the time slot
at which incurs the least increase of the flatness measure
F (LSP) among all the conflict-free time slots in the slack.
When PL(ideal) is computed, only the operations in the par-
tial schedule are considered. Ties are broken by the ASAP
policy as in the original IMS to assist the critical-path con-
sideration.

In short, two major IMS decisions are modified so that both
performance and power dissipation distribution are simultaneously
considered.

5. EXPERIMENTAL RESULTS
In order to evaluate the power reduction effect of the BIMS algo-

rithm over the original IMS algorithm, we implemented the BIMS
algorithm as well as the original IMS algorithm on a SPARC-based
VLIW testbed environment [12]. We incorporated our power model
into the scheduling modules as well as the simulator, so that the
detailed instruction-level power statistics are collected. We exper-
imented with two machine configurations, an 8-issue VLIW ma-
chine and 16-issue VLIW machine, as described in Section 2. As
test programs, SPEC95 FP benchmark programs were used.

Since the performance of parallel schedules produced by the
BIMS algorithm should be as good as that of the schedules by
the IMS algorithm, we first compared the execution cycles of the
schedules from two algorithms. In all the benchmark programs,
there was negligible performance impact (< 0:5%), which was due
to the code differences in prolog and epilog code sections, which
are outside software-pipelined loop bodies.

We also evaluated the performance of the schedules by the IMS
algorithm. If the performance is close to optimum, it implies that
the schedule is tight and there is not much freedom in scheduling
each operation, resulting in small exploration space for the BIMS.
The quality of the IMS was evaluated by comparing the actual II
values with the theoretical MII values. 99.2% of the loops tested
achieved their IIs equal to the MII values, indicating that the IMS
algorithm finds high-quality schedules in terms of the performance.
Even under this restrictive search space for power-aware schedules,
the BIMS algorithm is quite effective in reducing the peak power
and step power consumption as shown in the next subsections.

4043

5.1 Impact on Peak Power Consumption

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

normalized power

pe
rc

en
ta

ge
 o

f c
yc

le
s

0%

20%

40%

60%

80%

100%

120%

pe
rc

en
ta

ge
 o

f c
yc

le
s

IMS
BIMS
IMS-CDF
BIMS-CDF

Figure 3: Normalized power distribution for an 8-issue VLIW
machine.

0%

5%

10%

15%

20%

25%

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

normalized power

pe
rc

en
ta

ge
 o

f c
yc

le
s

0%

20%

40%

60%

80%

100%

120%

pe
rc

en
ta

ge
 o

f c
yc

le
s

IMS
BIMS
IMS-CDF
BIMS-CDF

Figure 4: Normalized power distribution for a 16-issue VLIW
machine.

Figures 3 and 4 show the impact on the peak power consumption
of the proposed BIMS for the 8-issue and 16-issue VLIW machine
configurations, respectively. The x axis of the graphs shows the nor-
malized power consumption values, 1 being the maximum power
dissipated under the given machine configuration. The y axis indi-
cates the relative ratio (in percentage) of the cycles that consumed
the corresponding normalized power during the benchmark execu-
tions. The curves in the graphs represent the cumulative distribu-
tion functions (CDFs) of the normalized power consumption.

As shown in Figures 3 and 4, the average power of the schedules
generated from the BIMS algorithm are clustered around 0.57. On
the other hand, under the IMS, the benchmark executions spend the
large number of cycles at high power consumption levels. For ex-
ample, for the 8-issue VLIW machine, the IMS-generated sched-
ules spend 58.9% of their execution cycles consuming more than
70% of the maximum power. However, under the BIMS, only 8.8%
of program executions were spent consuming more than 70% of the
maximum power.

Figures 3 and 4 also illustrate the balancing effect of the BIMS
algorithm on the PLSP

;i distribution. For example, in Figure 3, the
standard deviation of the normalized power distribution under the
IMS is 0.31 while it is reduced to 0.08 for the BIMS. As the number
of resources increases, the search space to find alternative schedules
becomes bigger, thus the BIMS algorithm finds better schedules for
machine configurations with longer instruction words.

5.2 Impact on Step Power Consumption

0%

2%

4%

6%

8%

10%

12%

14%

16%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

normalized step power

pe
rc

en
ta

ge
 o

f c
yc

le
s

0%

20%

40%

60%

80%

100%

120%

pe
rc

en
ta

ge
 o

f c
yc

le
sIMS

BIMS
IMS-CDF
BIMS-CDF

Figure 5: Normalized step power distribution for an 8-issue
VLIW machine.

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

normalized step power

pe
rc

en
ta

ge
 o

f c
yc

le
s

0%

20%

40%

60%

80%

100%

120%

pe
rc

en
ta

ge
 o

f c
yc

le
s

IMS
BIMS
IMS-CDF
BIMS-CDF

Figure 6: Normalized step power distribution for a 16-issue
VLIW machine.

Figures 5 and 6 illustrate the impact on the step power consump-
tion of the BIMS for the 8-issue and 16-issue VLIW machine con-
figurations, respectively. The x axis of the graphs shows the nor-
malized step power consumption values, 1 being the maximum step
power value under the given machine configuration. As with the
peak power experiment, the schedules from the BIMS algorithm
has smaller step power values over ones from the IMS algorithm.
For example, for the 16-issue VLIW machine, the geometric mean
of step power values when the IMS is used is 0.41 while it is re-
duced to 0.24 when the BIMS is used.

6. CONCLUSION AND FUTURE WORK
We have described a power-aware modulo scheduling algorithm,

Balanced IMS (BIMS), for high-performance VLIW processors.
The BIMS algorithm reduces the step power and peak power con-
sumption (which affect the processor reliability) from performance-
critical loop bodies. The main characteristics of the schedules from
the BIMS algorithm is that their power consumption distributions
are better balanced over power-unaware modulo scheduling algo-
rithms. Experimental results using SPEC95 FP benchmark pro-
grams show that the proposed algorithm is effective in reducing
both the step power and peak power; In the case of step power con-
sumption, the BIMS reduces on average 37.1% over the original
IMS algorithm.

4144

The current version of the BIMS algorithm can be further en-
hanced in several directions. For example, the BIMS algorithm can
be integrated with post-pass low-power scheduling techniques such
as [15, 7]. Although post-pass techniques work independently of
the BIMS algorithm, it will be interesting to evaluate quantitatively
the combined effect on the power consumption. We also plan to
investigate how the BIMS affects the energy efficiency of aggres-
sively clock-gated processors. Since the BIMS tries to spread the
operation distribution evenly while clock gating prefers skewed ex-
ecutions, it will be an interesting future work to extend the BIMS
algorithm for such processors.

7. REFERENCES
[1] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren.

Conversion of Control Dependence to Data Dependence. In
Proc. of the 1983 Symposium on Principles of Programming
Languages, pages 177–189, 1983.

[2] D. Brooks and M. Martonosi. Dynamic Thermal
Management for High-Performance Microprocessors. In
Proc. of the 7th International Symposium on
High-Performance Computer Architecture (HPCA-7), 2001.

[3] N. Chang, K. Kim, and H. Lee. Cycle-Accurate Energy
Consumption Measurement and Analysis: Case Study of
ARM7TDMI. In Proc. of International Symposium On Low
Power Electronics and Design, pages 185–190, 2000.

[4] L.-F. Chao and E. Sha. Scheduling Data-Flow Graphs via
Retiming and Unfolding. IEEE Transactions on Parallel and
Distributed Systems, 8(12):1259–1267, 1997.

[5] A. Dhodapkar, C. H. Lim, and G. Cai. TEM2P2EST : A
Thermal Enabled Multi-Model Power/Performance
ESTimator. In Proc. of Workshop on Power-Aware Computer
Systems, 2000.

[6] M. Lam. Software Pipelining: An Effective Scheduling
Technique for VLIW Machines. In Proc. of the SIGPLAN
1988 Conference on Programming Language Design and
Implementation, pages 318–328, 1988.

[7] C. Lee, J. K. Lee, T. Hwang, and S.-C. Tsai. Compiler
Optimization on Instruction Scheduling for Low Power. In
Proc. of the 13th International Symposium on System
Synthesis, pages 55–60, 2000.

[8] C. E. Leiserson and J. B. Saxe. Retiming Synchronous
Circuitry. Algorithmica, 6:5–35, 1991.

[9] M. Pant, P. Pant, D. Wills, and V. Tiwari. An Architectural
Solution for the Inductive Noise Problem Due to
Clock-gating. In Proc. of International Symposium On Low
Power Electronics and Design, pages 255–257, 1999.

[10] M. Pant, P. Pant, D. Wills, and V. Tiwari. Inductive Noise
Reduction at the Architectural Level. In Proc. of
International Conference on VLSI Design, pages 162–167,
2000.

[11] J. C. H. Park and M. S. Schlansker. On Predicated Execution.
Technical Report HPL-91-58, Hewlett Packard Laboratories,
1991.

[12] S. Park, S. Shim, and S.-M. Moon. Evaluation of Scheduling
Techniques on a SPARC-Based VLIW Testbed. In Proc. of
the 30th Annual International Symposium on
Microarchitecture (Micro-30), pages 104–113, 1997.

[13] B. R. Rau. Iterative Modulo Scheduling: An Algorithm for
Software Pipelining Loops. In Proc. of the 27th Annual
International Symposium on Microarchitecture (Micro-27),
pages 63–74, 1994.

[14] M. Sami, D. Sciuto, C. Silvano, and V. Zaccaria.
Instruction-Level Power Estimation for Embedded VLIW
Cores. In Proc. of the 8th International Workshop on
Hardware/Software Codesign (CODES2000), pages 34–38,
2000.

[15] D. Shin and J. Kim. An Operation Rearrangement Technique
for Low Power VLIW Instruction Fetch. In Proc. of
Workshop on Complexity-Effective Design, 2000.

[16] Z. Tang, N. Chang, S. Lin, W. Xie, S. Nakagawa, and L. He.
Ramp Up/Down Floating Point Unit to Reduce Inductive
Noise. In Proc. of Workshop on Power Aware Computer
Systems, 2000.

[17] V. Tiwari, S. Malik, and A. Wolfe. Power Analysis of
Embedded Software: A First Step Towards Software Power
Minimization. IEEE Transactions on VLSI Systems,
2(4):437–445, 1994.

[18] M. C. Toburen, T. Conte, and M. Reilly. Instruction
Scheduling for Low Power Dissipation in High Performance
Microprocessors. In Proc. of the Power Driven
Microarchitecture Workshop, 1998.

4245

	Main Page
	ISLPED'01
	Front Matter
	Table of Contents
	Author Index

