
��������	
���
�����������
������������
���
���
����

��������������������
�������
� �������

���������	
�
�����
�����
�������
�����������������

��
���������������

����
��������
�������������

����
�������

�� � ��! "�#��

���
$����%���%��%���

&���������
�
�����
�����
�������
�����������������

��
���������������

����
��������
�������������

����
�������

�� � ��! "�#��

�����$����%���%��%���

��������&��
����

�����
�������
�����������������

��
���������������

����
��������
�������������

����
�������

�� � ��! "�#��

���$����%���%��%���

�

�

ABSTRACT
As multimedia applications are used increasingly in many
embedded systems, power efficient design for the applications
becomes more important than ever. This paper proposes a simple
dynamic voltage scheduling technique, which suits the multimedia
applications well. The proposed technique fully utilizes the idle
intervals with buffers in a variable speed processor. The main
theme of this paper is to determine the minimum buffer size to
achieve the maximum energy saving in three cases: single-task,
multiple subtasks, and multi-task. Experimental results show that
the proposed technique is expected to obtain significant power
reduction for several real-world multimedia applications.

1. INTRODUCTION
Recently, multimedia applications are being used increasingly in
many embedded and portable systems, such as mobile phones and
PDAs, which require low power consumption within throughput
constraints. Therefore, power reduction methods optimized for the
applications are becoming more important than ever. In general,
multimedia applications put less emphasis on latency than on the
constant rate of output production or input consumption. They
stabilize fluctuating inter-arrival time of input frames by buffering
several frames beforehand for constant rate of input consumption.
Similarly, output buffering is also used to cope with fluctuating
processing time for constant rate of output production. In short,
latency can be tolerated to some extent in multimedia
applications.
One of the most promising methods to reduce power consumption
is to use a variable speed processor (VSP), which can change its
speed by varying the clock frequency along with the supply
voltage while not degrading the required performance [1].
Reducing power consumption of a VSP is achieved by exploiting
idle intervals of the processor [1]. We identify two kinds of idle

intervals, and denote them as worst-case slack time (WST) and
workload-variation slack time (VST) as in [2]. WST occurs
because the utilization of a processor is usually less than 100%
even if all tasks run at their worst-case execution time, and is
extracted from scheduling results before task execution. On the
other hand, VST comes from run-time variation of execution time
due to data-dependent computation, over-estimation of worst-case
execution time, and so on. It can be known only after being
executed actually. Our focus is on the fact that the more we utilize
the slack time, the more energy saving can be achieved. In this
paper, we denote voltage scheduling (VS) as a method that
assigns a supply voltage for each task of a processor to utilize the
slack time.
VS techniques for real-time applications, in either static or
dynamic manners, were proposed in [3, 4, 5]. The limitation of
their approaches is that they do not consider the VST. Thus, the
full potential of energy saving can not be obtained when variation
of execution time exists. This is overcome in [1, 2, 6, 7]. Besides
WST, VST is also exploited in their approaches. However, the
slack time still could not be fully achieved in [1, 2, 6], because
they can not avoid idle intervals when no task is ready to run. Or,
they need intra-task analysis to be performed by a programmer
[2], or by a compiler [7]. In addition, intra-task VS techniques
usually incur much more frequent voltage switches compared with
inter-task, or task-by-task, VS techniques.
In this paper, we propose a simple but novel task-by-task VS
technique suitable for multimedia applications. We exploit the
slack time fully by buffering multiple input data or output results
to let there be always at least one runnable task on the processor.
The idea to use buffers in power reduction was already proposed
in [8, 9]. They use buffers to average workload among input
samples. However, unlike ours, one of their approaches may result
in buffer overflow [8], and the other adopts a critical assumption
that exact workloads of all input samples can be known a priori
[9].1
The main theme of the proposed technique is to estimate the
minimum buffer size to achieve the maximum energy saving. As
mentioned above, the target application of the proposed VS
technique is soft real-time ones (including multimedia

This work is sponsored by Brain Korea 21 project.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISLPED ’01, August 6-7, 2001, Huntington Beach, California, USA.
Copyright 2001 ACM 1-58113-371-5/01/0008…$5.00.

3134

applications), in which latency can be tolerated to some extent. As
a result, significant energy saving can be achieved. Even if there
are some latency constraints, the proposed technique is still
applicable, but the amount of energy saving may be reduced
because the slack time may not be fully used up due to the
constraints.
The remainder of the paper is organized as follows: In the next
section, we discuss the motivation of our VS technique, and
introduce the algorithm with a simple example. In section 3, we
estimate the minimum buffer size to achieve the maximum energy
saving in three cases: single-task, multiple subtasks and multi-
task. In section 4, we prove the effectiveness of the proposed
technique with several real-world multimedia applications, and
draw conclusions in section 5.

2. PROPOSED METHOD
2.1 Motivation
Consider a periodic task of which the deadline is equal to the
period and the actual execution time is half of the worst-case. If
we assume that the worst-case execution time is equal to the
period, there is no worst-case slack time in this example. A typical
inter-task VS technique without input buffering can not exploit
the VST fully, because a new instance of the task can not be
scheduled before the release point of the task. Thus, the processor
is in idle state during half of the time, as shown in Figure 1(a). On
the other hand, we can schedule the next instance of the task to
exploit the slack time fully by buffering one input packet
beforehand, as shown in Figure 1(b). Even though the processor
in idle state may go into the power-down mode in the former case,
there is more energy saving in the latter case. As depicted by
arrows in Figure 1, buffering increases latency. So, the buffering
scheme can be used as long as buffering delay is acceptable.

2.2 Algorithm
The proposed technique is not restricted to the single-task
environment, but also extensible to the multi-task environment.
Even though the proposed technique is applicable to both input

buffering and output buffering case, our presentation is based on
input buffering case for simplicity. To sketch the algorithm, we
first define the following notations (Figure 2).

���� sj : the jth scheduled instance of a given task set (j ≥ 1),

���� WSTj : worst-case slack time of sj,

���� VSTj : workload-variation slack time of sj,

���� WETj : worst-case execution time of sj at full supply voltage,

���� BETj : best-case execution time of sj at full supply voltage,

���� AETj : actual execution time of sj,

���� OPj : occupation period of sj, which is the maximum duration
that sj can run without violating the timing constraints.
OPj is the sum of VSTj-1, WETj, and WSTj as shown in
Figure 2.

We assume that, for all j, WETj and BETj are known or
approximately estimated. We also assume that the task set is
already scheduled with a fixed-priority scheduling algorithm.
From the schedule, we obtain sj, WSTj and WETj, as shown in
Figure 2. Now the proposed technique runs as in Figure 3.

Figure 1. A motivational example. (a) VS technique without
input buffering (b) VS technique with input buffering Figure 2. Proposed VS technique.

1. Initially, buffer input packets up to the size as estimated in
section 3, and set VST0 = 0.

2. For j ≥ 1,

2a. OPj = VSTj-1+WETj+WSTj.

2b. Execute sj with the reduced voltage to utilize the OPj
fully.

2c. VSTj = OPj – AETj.

3. Repeat 2.

Figure 3. Algorithm of the proposed VS technique.

3235

2.3 Comparison
Consider two periodic tasks τ1(20,10,5) and τ2(30,10,5) as shown
in Figure 4, where τi(Ti,WETi,AETi) is characterized by period Ti,
worst-case execution time WETi, and actual execution time AETi.
We assume that the deadlines of tasks are equal to their periods.
The tasks are to be scheduled on a VSP. Four types of voltage
scheduling techniques are evaluated, and the corresponding
energy consumption is calculated. Power is normalized to 1 at full
speed of the processor, and power-delay model is assumed to be

2/1 DelayPower ∝ for simple comparison. Figure 4(a) shows
the most energy dissipation when no VS technique is applied, that
is 25.0. If we exploit the VST on a task basis as in Figure 4(b),
and on a timeslot basis as in Figure 4(c), energy dissipation
decreases to 20.8 and 15.1, respectively.
The proposed method, shown in Figure 4(d), consumes energy
about 15.6, nearly equal to the result of the intra-task VS
technique. However, when we proceed the task execution one
more hyper period (least common multiple of tasks’ periods)
again, energy dissipation of the proposed method decreases to
10.5 within a period, while other approaches maintain the same
amount of energy dissipation. The reason is that the proposed
method can exploit the slack time over the period bound of tasks.
In summary, the proposed technique achieves about 30 to 58% of
energy saving in this simple example, compared with other
approaches in the long run. Even though the amount of energy

saving is dependent on workload variation, we expect noticeable
energy reduction by adding input buffers within latency
constraints.

3. BUFFER SIZE ESTIMATION
In order to utilize the VST fully, the input buffers should be large
enough to make tasks runnable at all times. In this section, we
estimate the minimum buffer size to achieve the maximum energy
saving ignoring the latency constraints. In section 4, we
investigate the effect of latency constraints on energy saving.
To make the problem more tractable, we make some assumptions,
which are not inherent to the proposed technique, thus can be
removed later.

� All tasks are periodic.

� The deadline of a task is equal to the period of the task.

Suppose there are n periodic tasks Τ = {τ1, τ2, …, τn} to be
scheduled on a single VSP. Associated with each task τi, there are
three parameters, deadline (Ti), worst-case execution time (WETi),
best-case execution time (BETi), and which are computed at the
full supply voltage. In this paper, we solve the problem in three
cases separately: 1) single-task, 2) single-task that consists of
multiple subtasks with different parameters and 3) multi-task.

3.1 Single-Task Case (n=1)
The basic observation is that the maximum VST is obtained when
tasks are always executed at their best-case execution cycles and
the supply voltage is maximally reduced to fully exploit the VST.
Then, the length of the VST is dependent upon the ratio between
WET and BET1. The steady state of the worst-case scenario is
depicted in Figure 5(b). The current execution remains the same
amount of the VST as the previous execution. Therefore,

VSTT
T

WET
BET

+
= , which is reduced to






 −=−= 1

BET
WETTT

BET
WETTVST (1)

where T is the period of the task. For the task to exploit the VST
fully, the input data should be ready earlier than the scheduled
time by the VST. Therefore, the buffer size h should satisfies the
following inequality:





 −=



≥ 1

BET
WET

T
VSTh . (2)

1 Since execution time = execution cycles / clock frequency, the

ratio between the worst-case and the best-case execution cycles
is equivalent to the ratio between WET and BET.

Figure 4. Comparison of VS techniques. (a) no VS technique
with power-down (b) inter-task VS technique (c) intra-task
VS technique (4 timeslots) (d) VS technique with input
buffering

Figure 5. Worst case scenario for the maximum VST.

3336

Thus, the minimum buffer size hmin becomes




 −1

BET
WET , which is

dependent only on the ratio r,
BET
WETr = .

Example 1: Consider a task τ(20,10,3). Then we have

31
3

10
min =



 −=h .

3.2 Multiple-Subtask Case
In case of a MPEG video application, the task shows different
workload distribution depending on the frame type (I, B and P).
Also, the periodic behavior is defined in the unit of the GOP
(group of picture) that consists of a fixed sequence of input
frames: for example four input frames {I, P, B, B} may define a
GOP. Figure 6(a) shows a general task schedule whose period
contains N subtasks { }js that have the same deadline T, but

different parameters WETj, and BETj. Note that there may be
WSTs after a subtask since the deadline is chosen as the maximum
of WETs of the subtasks. If we ignore such workload variation
between frame types, we can apply the similar formula of the
previous section as follows:

{ } { }
{ } 





−= 1

min
maxmax

BET
WETWETVST (3)

where maximum is taken among frame types.

There is a better approach to tackle this problem. We regard a
different workload distribution as a separate subtask. For example,
the MPEG video decoder task consists of a fixed sequence of
three different subtasks. The VST will increase as the actual
execution time becomes shorter than the deadline. Then, we
decrease the supply voltage to reduce the VST. Thus, the
maximum energy saving is expected when all subtasks take their
best-case execution times and the supply voltage is reduced

maximally and remains uniform during the task period as shown
in Figure 6(c). To achieve this behavior we have to reassign the
deadline of each subtask, Tj, somehow considering the BETs and
WETs of the subtasks within the interval NT (Figure 6(b)). Then
the Tj and the VSTj for each subtask becomes as follows:

()11 −− +−=
∑ jjjj BETWETWET

BET
NTT (4)

()11 −− −=
∑ jjj BETWET

BET
NTVST . (5)

Proof of equations (4) and (5): Let sj denote the jth subtask in the
sequence of subtasks (SOS) within a period. Due to the periodic
behavior, Tj is reassigned within time interval NT.

∑ = NTT j . (6)

Also we have

() NTBETj =∑γ (7)

where γ is the ratio of execution times between when tasks are
executed at the minimum supply voltage and at the maximum
voltage. And for the individual sj we have

γ=
+

j

jj

WET
TVST , for Nj ≤≤1 , (8)

because the maximum energy saving is achieved when the supply
voltage is uniform for all sj. Finally, we have

jjjj BETVSTTVST γ+=+ +1 , for 11 −≤≤ Nj . (9)

VSTj+1 is the workload variation slack time for the next subtask
after the current subtask js tasks jBETγ during the occupation

period (VSTj+Tj). Now there are 2N+1 unknown variables and the
same number of equations. From equation (8) and (9),

()jjj BETWETVST −=+ γ1 . Since
∑

=
jBET

NTγ from (6), we

obtain equation (5). From equation (8) and (5), we also obtain
equation (4). QED.

Compared with equation (3), equation (5) gives a shorter VST
value. From the VSTj value, we can obtain the minimum buffer
size hmin. We count the number of buffers needed within each
VSTj according to the given subtask sequence, which we denote as
hj. Then hmin becomes { }jhmax .

Example 2: Consider a task τ(10, 10, 4) with two subtasks sA(10,
10, 9) and sB(10, 5, 4) and SOS = {sA, sB, sB}. From equation (3),
the minimum buffer size becomes 2, while it becomes 1 from
equation (5).

Actually, it is difficult to know beforehand the exact deadline
assignment that gives best energy saving for the actual workload.
Therefore, there could be other deadline assignment methods
which are more energy-efficient for some workload patterns.
Another deadline assignment policy we used in the experiments is
to use average workload. The deadlines can be obtained when
BETs in equation (4) are replaced by average execution times. It
gives better result in our experiments.

Figure 6. Multiple subtask case.

3437

3.3 Multi-Task Case
Multi-task case is similar to the multiple-subtask case except that
each task has a separate deadline and needs a separate buffer. Also
the schedule period of this multi-task scenario becomes the hyper
period of the given task set. Therefore, we rewrite the equations of
the previous section as follows:

()11 −− +−=
∑ jjjj BETWETWET

BET
HT (10)

()11 −− −=
∑ jjj BETWET

BET
HVST (11)

where H is the hyper period of the given task set. Also the
minimum buffer size of τi, hmin(i), can be obtained in the manner
similar to the multiple-subtask case. That is,

{ }j
s

i hh
ij

max)min(
τ∈

= (12)

where hj is the size of buffers needed within each VSTj according
to the given multi-task schedule.

Example 3: Consider two tasks τ1(20, 10, 7) and τ2(30, 8, 3), and
the schedule is {τ1, τ2, τ1, τ2, τ1}. From the equation (11) and (12),
the minimum buffer sizes are calculated: hmin(1) = 1 and hmin(2) = 1.
Since the VST of a task is relatively shorter in multi-task case
than in single-task, the buffer requirement for each task is usually
small.
In this section, we made a pessimistic assumption that all tasks
run at their BETs. However, if we use average-case execution time
instead of the best-case, the average buffer size is estimated, and it
has importance at a practical viewpoint.

4. EXPERIMENTAL RESULTS
Table 1 lists several real-world multimedia applications we use for
experiments. For single-task experiments, all applications in Table
1 are used, and for multi-task experiments, a video phone
application is used, which is composed of MPEG-4 video
encoder/decoder and VSELP (Vector-Sum-Exited Leaner
Prediction) voice encoder/decoder. All execution times are
measured on an UltraSPARC-II CPU that operates at 450MHz.
The BETs and the WETs are determined from the simulation
results; supposing that the execution times of the applications
follow a normal distribution, we take 3σ variations around the
mean of the distribution as boundary values. In single-task
experiments, we assign the period with the WET, and in multi-task
experiments, we assign the periods as long just enough for the
task set to be schedulable. As for the voltage scalable processor,
we used the power-delay curve of ARM8 microprocessor core
form the author [10, 11, 12]. The processor can operate from
80MHz with 3.4V down to 8MHz with 1.2V.

Figure 7 shows energy dissipation of various VS techniques: 1)
no VS technique with power-down, 2) intra-task timeslot VS
technique, 3) the proposed buffering technique, 4) the proposed
technique with multiple subtasks (for both of best and average
execution time assumptions). The results show the relative energy
dissipation compared with no power management case, where the
maximum voltage is supplied all the time. The proposed technique
achieves the most energy saving up to 80% compared to the
reference technique. Compared with the intra-task technique,

BET (ms) WET (ms)

I P B I P B

MPEG-2 video
decoder

9.8 8.3 12.3 24.8 30.6 18.6

MPEG-4 video
encoder 20.4 52.6 30.5 115.0

MPEG-4 video
decoder 4.6 1.0 9.7 9.1

VSELP encoder 8.5 8.7

VSELP decoder 2.1 2.2

which is among the most efficient techniques in the previous
researches, it achieves up to 14% performance improvement
without intra-task analysis. However, the amount of energy saving
varies according to the variation of the application execution time.
In the intra-task technique, we make the timeslot size equal to 1
msec as assumed in [2]. In two multiple subtask approaches
discussed in section 3.2, the case of average execution time
assumption shows better performance than best execution time
assumption.

Figure 8 shows the actual buffer sizes through simulation in
addition to the estimated maximum buffer size. Up to 9 buffers
are estimated depending on the applications, while actual buffer
sizes are 1 to 4. Note that smaller buffer sizes, up to 5 buffers, are
estimated considering the multiple subtasks separately in the case
of MPEG video applications as discussed in section 3.2.

Figure 9 demonstrates the effect of latency constraints in energy
saving. For the experiment, we use the MPEG-4 video decoder,
which needs maximum 3 buffers as shown in Figure 8(c). The
energy dissipation is compared to the power-down technique,
which is Figure 9(d). As shown in Figure 9, the more latency

Table 1. Test application set.

Figure 7. Comparison of relative energy dissipation among
three VS technique. (a) MPEG-2 decoder (b) MPEG-4
encoder (c) MPEG-4 decoder (d) VSELP encoder (e) VSELP
decoder (f) Video phone (supposing that b, c, d and e are
executed on a VSP concurrently)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(a) (b) (c) (d) (e) (f)

E
n
e
r
g
y

d
i
s
s
i
p
a
t
i

power-down timeslot

buffer buffer (BET subtasks)

buffer (AET subtasks)

3538

constraints are forced, the less energy saving is achieved. Also it
shows that most energy saving is achieved with the first extra
buffer. It means that we can achieve much of energy saving with
smaller number of buffers than pessimistically estimated although
there are some latency constraints. It is noteworthy that real
applications need extra buffers anyhow without any consideration
of applying the proposed technique. These buffers are needed to
stabilize the fluctuating input arrival times for networked
decoding applications or the fluctuating output production times
for real-time encoding applications. Considering these buffers, the
extra buffers computed from our estimation is expected to be
often negligible.

5. CONCLUSIONS
In this paper, we propose a novel VS technique suitable for
multimedia applications. We exploit the slack time fully by
buffering multiple input frames beforehand. The proposed
technique is simple but effective as experimental results show.
Even though buffering increases latency, if the latency can be
tolerated as usual in multimedia applications, significant energy
saving can be achieved. Also, we present the estimation methods
for the minimum buffer size to achieve the maximum energy
saving in several cases.

Further Research is needed to eliminate the assumption of
knowing BET and WET beforehand. Also, the energy overhead of
additional buffer memory needs to be investigated, and trade-off
between saved memory due to buffering and consumed energy
due to additional buffer itself needs to be explored. It is another
future work to extend the proposed idea considering quality-of-
service(QoS) constraints.

6. REFERENCES
[1] Y. Shin, K. Choi and T. Sakurai, “Power Optimization of

Real-Time Embedded Systems on Variable Speed
Processors,” Proc. Int’l Conf. on Computer-Aided Design,
pp. 365-368, 2000.

[2] S. Lee and T. Sakurai, “Run-Time Voltage Hopping for
Low-Power Real-Time Systems,” Proc. Design Automation
Conference, pp. 806-809, 2000.

[3] I. Hong, D. Kirovski, G. Qu, M. Potkonjak and M. B.
Srivastava, “Power Optimization of Variable-Voltage Core-
Based Systems,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 18, no 12, pp. 1702-
1713, Dec. 1999.

[4] I. Hong, M. Potkonjak and M. B. Srivastava, “On-Line
Scheduling of Hard Real-Time Tasks on Variable Voltage
Processor,” Proc. Int’l Conf. on Computer-Aided Design, pp.
653-656, 1998.

[5] T. Okuma, T. Ishihara and H. Yasuura, “Real-Time Task
Scheduling for a Variable Voltage Processor,” Proc. 12th
Int’l Symp. on Systems Synthesis, pp. 24-29, 1999.

[6] Y. Shin and K. Choi, “Power Conscious Fixed Priority
Scheduling for Hard Real-Time Systems,” Proc. Design
Automation Conference, pp. 134-139, 1999.

[7] D. Shin, J. Kim and S. Lee, “Intra-Task Voltage Scheduling
for Low-Energy Hard Real-Time Applications,” IEEE
Design & Test of Computers, vol. 18, no. 2, March-April
2001.

[8] V. Gutnik, “Variable Supply Voltage for Low Power DSP,”
Master’s thesis, Massachusetts Institute of Technology,
1996.

[9] L. H. Chandrasena and M. J. Liebelt, “A Rate Selection
Algorithm for Quantized Undithered Dynamic Supply
Voltage Scaling,” Proc. Int’l Symp. on Low Power
Electronics and Design, pp. 213-215, 2000.

[10] Thomas D. Burd, Trevor A. Pering, Anthony J. Stratakos,
and Robert W. Brodersen, “A Dynamic Voltage Scaled
Microprocessor System”, IEEE Int’l Solid-State Circuits
Conference Digest of Technical Papers, pp. 294-295, Feb.
2000.

[11] Thomas D. Burd and Robert W. Brodersen, “Design Issues
for Dynamic Voltage Scaling”, Proc. Int’l Symp. on Low
Power Electronics and Design, 2000.

[12] Thomas D. Burd and Robert W. Brodersen, “Processor
Design for Portable Systems”, Journal of VLSI Signal
Processing, Aug. 1996.

�

Figure 8. Buffer size for the application set of Figure 7.

Figure 9. The effect of latency constraints in saving energy.
(a) no constraints (extra buffer size = 3) (b) extra buffer size
= 2 (c) extra buffer size = 1 (d) no input buffering (extra
buffer size = 0)

0

1

2

3

4

5

6

7

8

9

10

(a) (b) (c) (d) (e) (f)

B
u
f
f
e
r

s
i
z

measured estimated estimated (subtasks)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) (b) (c) (d)

E
n
e
r
g
y

d
i
s
s
i
p
a
t
i

3639

	Main Page
	ISLPED'01
	Front Matter
	Table of Contents
	Author Index

