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ABSTRACT 
As multimedia applications are used increasingly in many 
embedded systems, power efficient design for the applications 
becomes more important than ever. This paper proposes a simple 
dynamic voltage scheduling technique, which suits the multimedia 
applications well. The proposed technique fully utilizes the idle 
intervals with buffers in a variable speed processor. The main 
theme of this paper is to determine the minimum buffer size to 
achieve the maximum energy saving in three cases: single-task, 
multiple subtasks, and multi-task. Experimental results show that 
the proposed technique is expected to obtain significant power 
reduction for several real-world multimedia applications. 

1. INTRODUCTION 
Recently, multimedia applications are being used increasingly in 
many embedded and portable systems, such as mobile phones and 
PDAs, which require low power consumption within throughput 
constraints. Therefore, power reduction methods optimized for the 
applications are becoming more important than ever. In general, 
multimedia applications put less emphasis on latency than on the 
constant rate of output production or input consumption. They 
stabilize fluctuating inter-arrival time of input frames by buffering 
several frames beforehand for constant rate of input consumption. 
Similarly, output buffering is also used to cope with fluctuating 
processing time for constant rate of output production. In short, 
latency can be tolerated to some extent in multimedia 
applications. 
One of the most promising methods to reduce power consumption 
is to use a variable speed processor (VSP), which can change its 
speed by varying the clock frequency along with the supply 
voltage while not degrading the required performance [1]. 
Reducing power consumption of a VSP is achieved by exploiting 
idle intervals of the processor [1]. We identify two kinds of idle 

intervals, and denote them as worst-case slack time (WST) and 
workload-variation slack time (VST) as in [2]. WST occurs 
because the utilization of a processor is usually less than 100% 
even if all tasks run at their worst-case execution time, and is 
extracted from scheduling results before task execution. On the 
other hand, VST comes from run-time variation of execution time 
due to data-dependent computation, over-estimation of worst-case 
execution time, and so on. It can be known only after being 
executed actually. Our focus is on the fact that the more we utilize 
the slack time, the more energy saving can be achieved. In this 
paper, we denote voltage scheduling (VS) as a method that 
assigns a supply voltage for each task of a processor to utilize the 
slack time. 
VS techniques for real-time applications, in either static or 
dynamic manners, were proposed in [3, 4, 5]. The limitation of 
their approaches is that they do not consider the VST. Thus, the 
full potential of energy saving can not be obtained when variation 
of execution time exists. This is overcome in [1, 2, 6, 7]. Besides 
WST, VST is also exploited in their approaches. However, the 
slack time still could not be fully achieved in [1, 2, 6], because 
they can not avoid idle intervals when no task is ready to run. Or, 
they need intra-task analysis to be performed by a programmer 
[2], or by a compiler [7]. In addition, intra-task VS techniques 
usually incur much more frequent voltage switches compared with 
inter-task, or task-by-task, VS techniques. 
In this paper, we propose a simple but novel task-by-task VS 
technique suitable for multimedia applications. We exploit the 
slack time fully by buffering multiple input data or output results 
to let there be always at least one runnable task on the processor. 
The idea to use buffers in power reduction was already proposed 
in [8, 9]. They use buffers to average workload among input 
samples. However, unlike ours, one of their approaches may result 
in buffer overflow [8], and the other adopts a critical assumption 
that exact workloads of all input samples can be known a priori 
[9].1 
The main theme of the proposed technique is to estimate the 
minimum buffer size to achieve the maximum energy saving. As 
mentioned above, the target application of the proposed VS 
technique is soft real-time ones (including multimedia 
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applications), in which latency can be tolerated to some extent. As 
a result, significant energy saving can be achieved. Even if there 
are some latency constraints, the proposed technique is still 
applicable, but the amount of energy saving may be reduced 
because the slack time may not be fully used up due to the 
constraints. 
The remainder of the paper is organized as follows: In the next 
section, we discuss the motivation of our VS technique, and 
introduce the algorithm with a simple example. In section 3, we 
estimate the minimum buffer size to achieve the maximum energy 
saving in three cases: single-task, multiple subtasks and multi-
task. In section 4, we prove the effectiveness of the proposed 
technique with several real-world multimedia applications, and 
draw conclusions in section 5. 

2. PROPOSED METHOD 
2.1 Motivation 
Consider a periodic task of which the deadline is equal to the 
period and the actual execution time is half of the worst-case. If 
we assume that the worst-case execution time is equal to the 
period, there is no worst-case slack time in this example. A typical 
inter-task VS technique without input buffering can not exploit 
the VST fully, because a new instance of the task can not be 
scheduled before the release point of the task. Thus, the processor 
is in idle state during half of the time, as shown in Figure 1(a). On 
the other hand, we can schedule the next instance of the task to 
exploit the slack time fully by buffering one input packet 
beforehand, as shown in Figure 1(b). Even though the processor 
in idle state may go into the power-down mode in the former case, 
there is more energy saving in the latter case. As depicted by 
arrows in Figure 1, buffering increases latency. So, the buffering 
scheme can be used as long as buffering delay is acceptable. 

2.2 Algorithm 
The proposed technique is not restricted to the single-task 
environment, but also extensible to the multi-task environment. 
Even though the proposed technique is applicable to both input 

buffering and output buffering case, our presentation is based on 
input buffering case for simplicity. To sketch the algorithm, we 
first define the following notations (Figure 2). 

����    sj : the jth scheduled instance of a given task set (j ≥ 1), 

����    WSTj : worst-case slack time of sj, 

����    VSTj : workload-variation slack time of sj, 

����    WETj : worst-case execution time of sj at full supply voltage, 

����    BETj : best-case execution time of sj at full supply voltage, 

����    AETj : actual execution time of sj, 

����    OPj : occupation period of sj, which is the maximum duration 
that sj can run without violating the timing constraints. 
OPj is the sum of VSTj-1, WETj, and WSTj as shown in 
Figure 2. 

We assume that, for all j, WETj and BETj are known or 
approximately estimated. We also assume that the task set is 
already scheduled with a fixed-priority scheduling algorithm. 
From the schedule, we obtain sj, WSTj and WETj, as shown in 
Figure 2. Now the proposed technique runs as in Figure 3. 

Figure 1. A motivational example. (a) VS technique without 
input buffering (b) VS technique with input buffering Figure 2. Proposed VS technique. 

1. Initially, buffer input packets up to the size as estimated in 
section 3, and set VST0 = 0. 

2. For j ≥ 1, 

2a. OPj = VSTj-1+WETj+WSTj. 

2b. Execute sj with the reduced voltage to utilize the OPj 
fully. 

2c. VSTj = OPj – AETj. 

3. Repeat 2.  

Figure 3. Algorithm of the proposed VS technique. 
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2.3 Comparison 
Consider two periodic tasks τ1(20,10,5) and τ2(30,10,5) as shown 
in Figure 4, where τi(Ti,WETi,AETi) is characterized by period Ti, 
worst-case execution time WETi, and actual execution time AETi. 
We assume that the deadlines of tasks are equal to their periods. 
The tasks are to be scheduled on a VSP. Four types of voltage 
scheduling techniques are evaluated, and the corresponding 
energy consumption is calculated. Power is normalized to 1 at full 
speed of the processor, and power-delay model is assumed to be 

2/1 DelayPower ∝  for simple comparison. Figure 4(a) shows 
the most energy dissipation when no VS technique is applied, that 
is 25.0. If we exploit the VST on a task basis as in Figure 4(b), 
and on a timeslot basis as in Figure 4(c), energy dissipation 
decreases to 20.8 and 15.1, respectively.  
The proposed method, shown in Figure 4(d), consumes energy 
about 15.6, nearly equal to the result of the intra-task VS 
technique. However, when we proceed the task execution one 
more hyper period (least common multiple of tasks’ periods) 
again, energy dissipation of the proposed method decreases to 
10.5 within a period, while other approaches maintain the same 
amount of energy dissipation. The reason is that the proposed 
method can exploit the slack time over the period bound of tasks. 
In summary, the proposed technique achieves about 30 to 58% of 
energy saving in this simple example, compared with other 
approaches in the long run. Even though the amount of energy 

saving is dependent on workload variation, we expect noticeable 
energy reduction by adding input buffers within latency 
constraints. 

3. BUFFER SIZE ESTIMATION 
In order to utilize the VST fully, the input buffers should be large 
enough to make tasks runnable at all times. In this section, we 
estimate the minimum buffer size to achieve the maximum energy 
saving ignoring the latency constraints. In section 4, we 
investigate the effect of latency constraints on energy saving. 
To make the problem more tractable, we make some assumptions, 
which are not inherent to the proposed technique, thus can be 
removed later. 

� All tasks are periodic. 

� The deadline of a task is equal to the period of the task. 

Suppose there are n periodic tasks Τ = {τ1, τ2, …, τn} to be 
scheduled on a single VSP. Associated with each task τi, there are 
three parameters, deadline (Ti), worst-case execution time (WETi), 
best-case execution time (BETi), and which are computed at the 
full supply voltage. In this paper, we solve the problem in three 
cases separately: 1) single-task, 2) single-task that consists of 
multiple subtasks with different parameters and 3) multi-task. 

3.1 Single-Task Case (n=1) 
The basic observation is that the maximum VST is obtained when 
tasks are always executed at their best-case execution cycles and 
the supply voltage is maximally reduced to fully exploit the VST. 
Then, the length of the VST is dependent upon the ratio between 
WET and BET1. The steady state of the worst-case scenario is 
depicted in Figure 5(b). The current execution remains the same 
amount of the VST as the previous execution. Therefore, 

VSTT
T

WET
BET

+
= , which is reduced to 






 −=−= 1

BET
WETTT

BET
WETTVST                                               (1) 

where T is the period of the task. For the task to exploit the VST 
fully, the input data should be ready earlier than the scheduled 
time by the VST. Therefore, the buffer size h should satisfies the 
following inequality: 





 −=



≥ 1

BET
WET

T
VSTh .                        (2) 

                                                                 
1 Since execution time = execution cycles / clock frequency, the 

ratio between the worst-case and the best-case execution cycles 
is equivalent to the ratio between WET and BET. 

Figure 4. Comparison of VS techniques. (a) no VS technique 
with power-down (b) inter-task VS technique (c) intra-task 
VS technique (4 timeslots) (d) VS technique with input 
buffering 

Figure 5. Worst case scenario for the maximum VST. 
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Thus, the minimum buffer size hmin becomes 




 −1

BET
WET , which is 

dependent only on the ratio r, 
BET
WETr = . 

Example 1: Consider a task τ(20,10,3). Then we have 

31
3

10
min =



 −=h . 

3.2 Multiple-Subtask Case 
In case of a MPEG video application, the task shows different 
workload distribution depending on the frame type (I, B and P). 
Also, the periodic behavior is defined in the unit of the GOP 
(group of picture) that consists of a fixed sequence of input 
frames: for example four input frames {I, P, B, B} may define a 
GOP. Figure 6(a) shows a general task schedule whose period 
contains N subtasks { }js  that have the same deadline T, but 

different parameters WETj, and BETj. Note that there may be 
WSTs after a subtask since the deadline is chosen as the maximum 
of WETs of the subtasks. If we ignore such workload variation 
between frame types, we can apply the similar formula of the 
previous section as follows: 

{ } { }
{ } 





−= 1

min
maxmax

BET
WETWETVST                                             (3) 

where maximum is taken among frame types. 

There is a better approach to tackle this problem. We regard a 
different workload distribution as a separate subtask. For example, 
the MPEG video decoder task consists of a fixed sequence of 
three different subtasks. The VST will increase as the actual 
execution time becomes shorter than the deadline. Then, we 
decrease the supply voltage to reduce the VST. Thus, the 
maximum energy saving is expected when all subtasks take their 
best-case execution times and the supply voltage is reduced 

maximally and remains uniform during the task period as shown 
in Figure 6(c). To achieve this behavior we have to reassign the 
deadline of each subtask, Tj, somehow considering the BETs and 
WETs of the subtasks within the interval NT (Figure 6(b)). Then 
the Tj and the VSTj for each subtask becomes as follows: 

( )11 −− +−=
∑ jjjj BETWETWET

BET
NTT                       (4) 

( )11 −− −=
∑ jjj BETWET

BET
NTVST .                       (5) 

Proof of equations (4) and (5): Let sj denote the jth subtask in the 
sequence of subtasks (SOS) within a period. Due to the periodic 
behavior, Tj is reassigned within time interval NT. 

∑ = NTT j .               (6) 

Also we have 

( ) NTBETj =∑γ                                         (7) 

where γ is the ratio of execution times between when tasks are 
executed at the minimum supply voltage and at the maximum 
voltage. And for the individual sj we have 

γ=
+

j

jj

WET
TVST , for Nj ≤≤1 ,                                                    (8) 

because the maximum energy saving is achieved when the supply 
voltage is uniform for all sj. Finally, we have 

jjjj BETVSTTVST γ+=+ +1 , for 11 −≤≤ Nj .                         (9) 

VSTj+1 is the workload variation slack time for the next subtask 
after the current subtask js  tasks jBETγ  during the occupation 

period (VSTj+Tj). Now there are 2N+1 unknown variables and the 
same number of equations. From equation (8) and (9), 

( )jjj BETWETVST −=+ γ1 . Since 
∑

=
jBET

NTγ  from (6), we 

obtain equation (5). From equation (8) and (5), we also obtain 
equation (4). QED. 

Compared with equation (3), equation (5) gives a shorter VST 
value. From the VSTj value, we can obtain the minimum buffer 
size hmin. We count the number of buffers needed within each 
VSTj according to the given subtask sequence, which we denote as 
hj. Then hmin becomes { }jhmax . 

Example 2: Consider a task τ(10, 10, 4) with two subtasks sA(10, 
10, 9) and sB(10, 5, 4) and SOS = {sA, sB, sB}. From equation (3), 
the minimum buffer size becomes 2, while it becomes 1 from 
equation (5). 

Actually, it is difficult to know beforehand the exact deadline 
assignment that gives best energy saving for the actual workload. 
Therefore, there could be other deadline assignment methods 
which are more energy-efficient for some workload patterns. 
Another deadline assignment policy we used in the experiments is 
to use average workload. The deadlines can be obtained when 
BETs in equation (4) are replaced by average execution times. It 
gives better result in our experiments. 

Figure 6. Multiple subtask case. 
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3.3 Multi-Task Case 
Multi-task case is similar to the multiple-subtask case except that 
each task has a separate deadline and needs a separate buffer. Also 
the schedule period of this multi-task scenario becomes the hyper 
period of the given task set. Therefore, we rewrite the equations of 
the previous section as follows: 

( )11 −− +−=
∑ jjjj BETWETWET

BET
HT                                  (10) 

( )11 −− −=
∑ jjj BETWET

BET
HVST                                           (11) 

where H is the hyper period of the given task set. Also the 
minimum buffer size of τi, hmin(i), can be obtained in the manner 
similar to the multiple-subtask case. That is, 

{ }j
s

i hh
ij

max)min(
τ∈

=                        (12) 

where hj is the size of buffers needed within each VSTj according 
to the given multi-task schedule. 

Example 3: Consider two tasks τ1(20, 10, 7) and τ2(30, 8, 3), and 
the schedule is {τ1, τ2, τ1, τ2, τ1}. From the equation (11) and (12), 
the minimum buffer sizes are calculated: hmin(1) = 1 and hmin(2) = 1. 
Since the VST of a task is relatively shorter in multi-task case 
than in single-task, the buffer requirement for each task is usually 
small. 
In this section, we made a pessimistic assumption that all tasks 
run at their BETs. However, if we use average-case execution time 
instead of the best-case, the average buffer size is estimated, and it 
has importance at a practical viewpoint. 

4. EXPERIMENTAL RESULTS 
Table 1 lists several real-world multimedia applications we use for 
experiments. For single-task experiments, all applications in Table 
1 are used, and for multi-task experiments, a video phone 
application is used, which is composed of MPEG-4 video 
encoder/decoder and VSELP (Vector-Sum-Exited Leaner 
Prediction) voice encoder/decoder. All execution times are 
measured on an UltraSPARC-II CPU that operates at 450MHz. 
The BETs and the WETs are determined from the simulation 
results; supposing that the execution times of the applications 
follow a normal distribution, we take 3σ variations around the 
mean of the distribution as boundary values. In single-task 
experiments, we assign the period with the WET, and in multi-task 
experiments, we assign the periods as long just enough for the 
task set to be schedulable. As for the voltage scalable processor, 
we used the power-delay curve of ARM8 microprocessor core 
form the author [10, 11, 12]. The processor can operate from 
80MHz with 3.4V down to 8MHz with 1.2V. 

Figure 7 shows energy dissipation of various VS techniques: 1) 
no VS technique with power-down, 2) intra-task timeslot VS 
technique, 3) the proposed buffering technique, 4) the proposed 
technique with multiple subtasks (for both of best and average 
execution time assumptions). The results show the relative energy 
dissipation compared with no power management case, where the 
maximum voltage is supplied all the time. The proposed technique 
achieves the most energy saving up to 80% compared to the 
reference technique. Compared with the intra-task technique,  

BET (ms) WET (ms) 
 

I P B I P B 

MPEG-2 video 
decoder 

9.8 8.3 12.3 24.8 30.6 18.6 

MPEG-4 video 
encoder 20.4 52.6  30.5 115.0  

MPEG-4 video 
decoder 4.6 1.0  9.7 9.1  

VSELP encoder 8.5 8.7 

VSELP decoder 2.1 2.2 

which is among the most efficient techniques in the previous 
researches, it achieves up to 14% performance improvement 
without intra-task analysis. However, the amount of energy saving 
varies according to the variation of the application execution time. 
In the intra-task technique, we make the timeslot size equal to 1 
msec as assumed in [2]. In two multiple subtask approaches 
discussed in section 3.2, the case of average execution time 
assumption shows better performance than best execution time 
assumption. 

Figure 8 shows the actual buffer sizes through simulation in 
addition to the estimated maximum buffer size. Up to 9 buffers 
are estimated depending on the applications, while actual buffer 
sizes are 1 to 4. Note that smaller buffer sizes, up to 5 buffers, are 
estimated considering the multiple subtasks separately in the case 
of MPEG video applications as discussed in section 3.2. 

Figure 9 demonstrates the effect of latency constraints in energy 
saving. For the experiment, we use the MPEG-4 video decoder, 
which needs maximum 3 buffers as shown in Figure 8(c). The 
energy dissipation is compared to the power-down technique, 
which is Figure 9(d). As shown in Figure 9, the more latency 

Table 1. Test application set. 

Figure 7. Comparison of relative energy dissipation among 
three VS technique. (a) MPEG-2 decoder (b) MPEG-4 
encoder (c) MPEG-4 decoder (d) VSELP encoder (e) VSELP 
decoder (f) Video phone (supposing that b, c, d and e are 
executed on a VSP concurrently) 
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constraints are forced, the less energy saving is achieved. Also it 
shows that most energy saving is achieved with the first extra 
buffer. It means that we can achieve much of energy saving with 
smaller number of buffers than pessimistically estimated although 
there are some latency constraints. It is noteworthy that real 
applications need extra buffers anyhow without any consideration 
of applying the proposed technique. These buffers are needed to 
stabilize the fluctuating input arrival times for networked 
decoding applications or the fluctuating output production times 
for real-time encoding applications. Considering these buffers, the 
extra buffers computed from our estimation is expected to be 
often negligible. 

5. CONCLUSIONS 
In this paper, we propose a novel VS technique suitable for 
multimedia applications. We exploit the slack time fully by 
buffering multiple input frames beforehand. The proposed 
technique is simple but effective as experimental results show. 
Even though buffering increases latency, if the latency can be 
tolerated as usual in multimedia applications, significant energy 
saving can be achieved. Also, we present the estimation methods 
for the minimum buffer size to achieve the maximum energy 
saving in several cases. 

Further Research is needed to eliminate the assumption of 
knowing BET and WET beforehand. Also, the energy overhead of 
additional buffer memory needs to be investigated, and trade-off 
between saved memory due to buffering and consumed energy 
due to additional buffer itself needs to be explored. It is another 
future work to extend the proposed idea considering quality-of-
service(QoS) constraints. 
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Figure 8. Buffer size for the application set of Figure 7. 

Figure 9. The effect of latency constraints in saving energy. 
(a) no constraints (extra buffer size = 3) (b) extra buffer size 
= 2 (c) extra buffer size = 1 (d) no input buffering (extra 
buffer size = 0) 
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