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ABSTRACT
A new micro-architectural technique to reduce energy dissi-
pated by queues and stacks is proposed. Similarly to related
research which targets the transition activity in bit-lines, the
technique is based on bitwidth compression. However unlike
them, it utilizes the �xed accessing order embodied in queues
and stacks to exploit input data correlation. The technique
dynamically adjusts the required bitwidth to the number of
bits which changed in comparison to the last access. It is
neither restricted to speci�c bit-patterns such as zero-byte
or precharging value and works eÆciently on read and write
without large area, timing or power overhead. Simulations
show that using this technique, we can save the energy of
instruction queue by up to 30% and the energy of video data
queue by 20%.

1. INTRODUCTION

1.1 Motivation
Queue and Stack are two speci�c register �le organizations

used in modern general purpose processors and DSPs to
implement First-In-First-Out (FIFO) and Last-In-First-Out
(LIFO) data accessing policies, respectively. In micropro-
cessors, for example, queues are emploied for instruction is-
sue [1],[2] register renaming[3], instruction/data bu�ering[4],
etc, while stacks are put to use in instruction reordering, ad-
dress generation[5]. The HP3000, for instance, is keyed to
stack processing. In DSPs and special architectures, queues
and stacks are basic foreground memory blocks [6], [7],which
store and rearrange input data and keep results before writ-
ing them into background storage. With the trend towards
wider instruction issue and larger instruction windows, these
application speci�c register �les grow in size, consuming a
substantial amount of power. A 32-bit 128-entry instruction
queue alone can take as much as 25% of the total energy
dissipated by a typical superscalar processor [1]. Therefore,
lowering the energy consumption in queues and stacks is
important.
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To �rst order, the dynamic energy dissipated by a queue
or a stack may be expressed as the sum of energy con-
sumed per access (Ei) over all memory accesses (N), or

Energy =
PN

i Ei. In contemporary SRAM-based register
�le, most of the energy per access Ei is burned when driving
the bit-lines which are heavily loaded with multiple storage
cells[8]. Given the average physical capacitance, switched
per bit (C), the supply voltage (V ), the signal transition
probability per bit (p), and the bitwidth per access (ni), this
energy can be expressed as, Ei = ni � p � C � V 2. Thus,
we have Energy =

PN

i ni � p � C � V 2. Though reduc-
ing energy dissipation amounts to all the above factors, the
energy saving obtained by lowering the number of memory
accesses (N), the bitwidth (n) and the bit transition proba-
bility (p) is fairly independent of integration technology and
less expensive.
In this paper we focus on power reduction through bitwidth

truncation and propose a new micro-architectural technique
that dynamically adjusts the bitwidth of queues and stacks
per access according to data input data variation.

1.2 Related research
Several approaches to transition activity reduction in reg-

ister �les have been recently proposed. A common one is
to partition the �le into multiple sections, and selectively
gate the clock signal to those sections which are not ad-
dressed in the current clock cycle[9]. Such clustered register
�le organization have been embodied in commercial proces-
sors such as the Alpha 21264[10]. To support variable data
representation and instruction formats, the bitwidth of the
registers, queues and stacks is usually �xed to a maximal
value, regardless of the actual data variation on inputs.
In reality, the transition activity varies along the bitwidth.

Figure 1 shows the transition pro�le of the Alpha-21264's in-
struction queue simulated on SPEC95int mpeg encoder bench-
mark. Because of multiple instructions with both operands
less than or equal to 16-bit, the instruction queue makes
more transitions in the �rst half of the bitwidth than in
the second. Activity pro�le for the register �le input has a
completely di�erent shape (see RF curve). Due to massive
arithmetic with subword parallelism and high data correla-
tion, the bit activity is unevenly distributed along the sub-
words. The Most Signi�cant Bits (MSBs) make 2-3 times
less transitions than 31-st or 63-d bits. Leveraging this bit
uneveness by storing the minimal number of changed bits
can signi�cantly reduce energy consumption.
Although there have been several attempts to exploit this

data asymmetry for processing elements[11]-[13], data and

1922

Due to the type 3 fonts used, please increase the magnification to view



Bitwidth

Tr
an

si
tio

n 
P

ro
ba

bi
lit

y

0.0

0.2

0.4

0 7 15 23 6331 38 45 54

0.1

0.3

0.5

LSBMSB

instruction queue

RF

Figure 1: Activity pro�le for the Alpha-21264 in-

struction queue and data queue on the SPEC95int

benchmark

address busses[14]-[16], only a few works have targeted mem-
ory structures. Hu and Martonosi[17] exploit temporal lo-
cality of accesses by bu�ering the register �le with a "value
aging bu�er ". Since the bu�er is smaller than a typical reg-
ister �le, it has better power characteristics. Park et al[18]
propose to conform memory data to the precharging value.
Depending on the value, a decision is made to store a datum
in either true or complement form, so as to minimize the bit-
line discharging during the memory read. To indicate the
form in which values are being stored, an extra line is added
to each memory byte. Villa et al. [19] advocate a Dynamic
Zero Compression, which attaches an extra bit to each data
byte to indicate whether the byte contains all zero bits. The
technique allows to shrink the accessing bitwidth to only one
bit if the byte is zero. Its performance, however, strongly
depends on the number of zero bytes in accesses. Canal, et
al.[20] describe a compression scheme that maintains only
signi�cant bytes with 2 or 3 extension bits appended to indi-
cate signi�cant byte positions. The eÆciency of this scheme
also is conditional to amount of bytes with all zeros or ones.
Yet timing overhead of the bit-encoder may be a problem.
The above techniques proved to be useful in general pur-

pose applications, which involve representation of short ope-
rands in the full word size. However, their application for
the special-purpose hardware is not e�ective. The problem
is that the number of bytes which have all zeros or ones is
small. In video streams, for example, the percentage of such
bytes is less than 1%.

1.3 Contribution
In this paper we present a novel approach for bitwidth re-

duction in application speci�c register �les, such as queues
and stacks. Similarly to existing techniques, the approach
is based on bit compression. However unlike them, it ex-
ploits the unique accessing features of queues and stacks in
order to minimize the transition activity in bitlines. The
method dynamically adjusts the active bitwidth in queues
and stacks to those bit segments which vary in comparison
to the previous access. It is neither restricted to the special
bit-patterns such as zero-byte or value of precharging and
works eÆciently on read and write without a large area,
timing or power overhead.
The rest of this paper is structured as follows. Section 2

presents the approach and describes the necessary circuitry
changes to implement it. Section 3 shows the simulation
results. Conclusions are given in Section 4.

2. ADAPTIVE BITWIDTH COMPRESSION

2.1 Main idea
The approach we propose is based on two key features of

queues and stacks: (1) the �xed accessing order and (2) the
uneveness of bit-activity along the bitwidth. In queue, the
order of read repeats the order of writing, while in stack, the
order of reading and writing are inverse to each other. Due
to high correlation of data, adjacent words (or subwords) in
a stream di�er by a few bits. So, reading and writing all
the bit-lines per each access is unnecessary. Moreover, it is
prohibitly expensive from the energy perspective, since each
bit-line activation dissipates a large amount of power.
By analogy with the other techniques, which target the

amount of transitions occurring on the bit-lines, we attach
an additional bit to a group of multiple bits. However in our
formulation, this extra bit indicates the equality between
the current datum and the datum which was the most re-
cently accessed. Our main idea is to split the bitwidth into
m multibit groups and compare on each access, the corre-
sponding groups of the current entry, X, and the entry, Y ,
accessed recently. (Note that the size of the groups may
vary). If in a group j, the values Xj and Yj have all bits
equal in pairs, we prevent writing Xj into the queue (stack),
while storing only the equality bit (EBj) to indicate that the
current value of the group (j) equals the value of the last
access. Formally, the EBj is de�ned as:

EBj =

�
1 if ANDi=k�1

i=0 (xj;i � yj;i&cj;i�1)=1
0 otherwise

where k is the size of the group, c[j; 0] = 1 and � is the
Equivalence operator de�ned by the logic function F = ab+
a0b0.
When Xj and Yj are not equal, both the EBj and all

bits of Xj are stored. On a read access, we prevent bitline
discharge by disabling the local word line for the group j
when the EBj is zero. If the EBj bit is set to one, all
the bits in the group are read normally. Thus instead of
accessing the �xed n-bit width, we use an adaptively one,
whose size dynamically is changed from (n+1) bits to (k+1)
bits according to input data variation.

2.2 Implementation scheme

2.2.1 Queue
Figure 2 outlines an implementation scheme for 8-bit two-

port decoder-based queue, whose bitwidth is segmented in
two groups of 4 bits each. (The shifter-based implementa-
tion is similar). On a write access, each decision logic com-
pares in pairs the corresponding four bits of the input value
Xin with the bits of the last data written to the queue (reg-
isters I1; I2 keep copies of these bits) and generates the EBj

signal. The zero EBj disables the corresponding segment
(j) of the queue's bit-lines, reducing the active bitwidth in
the segment to (EBj). Otherwise, both the four bits of Xin

and the EBj are written to the queue. On a read access, the
zero EBj bit disables the local word line to the bit-segment j
at the output. The disabled part of the output word is taken
from the output register Oj , whose content is renewed when
EBj is set to one.
Figure 3 illustrates how the scheme works, assuming that

the data is written to the queue sequentially according to
the numbers depicted on the left. As �gure shows, only the
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Figure 2: Implementation scheme for queue
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queue

�rst word of the stream requires full n + 1-bit representa-
tion, while all the others are stored in the compressed form.
Numbers at the bottom indicate the total number of bits
which have to be activated to store the data stream in the
queue.

2.2.2 Stack
In comparison to queue, the application of the proposed

technique to stack is rather simpler. Since read and write
accesses use the same pointer, the implementation scheme
involvesm decision units only, as shown in Figure 4. Because
data is pushed onto the stack and \popped" o� the stack in
reverse order (last-in-�rst-out), and the registers Rj keep the
copy of last data accessed, the stack is accessed only when
its input is changed. Figure 5 illustrates the compression on
the same data stream as in Fig.3. The columns on the right
display the content of registers R1 and R2. We assume that
each write operation pushes the stack pointer up, and each
read pops it down. When the �rst word 11110011 of the
stream comes to the stack, we save it on registers R1; R2 ,
without writing into the stack. Since the MSBs of the next
three words are equal to R1, we keep the R1 unchanged
until the forth word appears at the input. When \popping"
the data o� the stack, we read the registers R1; R2, but not
the stack. The stack bit-lines are read if and only if either
EB1 or EB2 is set to one, i.e. when the register values are
renewed.

2.2.3 Decision logic
Figure 6 depicts the internal circuitry of the Decision
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Figure 4: Implementation scheme for stack
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Logic for the case of k = 4. In this �gure, y0 � y3 are
the 
ip-
ops to store the MSB of the last word written into
the queue (stack). The operation proceeds as follows. When
CLK is low, the nodes c1; c2; c3; c4 are precharged to Vdd.
During computation, when CLK goes high, the n pull-down
transistor on the left and the n pull-up transistor on the right
turn on. Upon comparison of input bit signals in pairs, each
XNOR generates gi; (i = 1; 2; ::), making the low potential
from the left to propagate through the transistor chain to
the right. If xi and yi are equal, then gi is high; in this
case, the node ci�1 is connected to the node ci; condition-
ally discharging it. The low ci gates the clock signal, clki,
to the bit, i, discarding it from the further computations.
Note that the clock clki to the bit i will be gated if and only
if all the senior bits 0; 1; :::; i� 1 are also gated.

3. EVALUATION
We chose to evaluate the activity savings of the proposed

approach by simulating benchmarks from the SPECint95[21]
and MediaBench[22] suites. Table 1 outlines the benchmarks
used in the study. The second column in the table shows the
number of instructions considered. The benchmarks were
simulated using a modi�ed version of SimpleScalar [24] pro-
gram, compiled for the Alpha instruction set using optimiza-
tion options as speci�ed by the SPEC Make�le: -migrate

-std1 -O5 -ifo -nonshared. The simulator has been ex-
tended to gather statistics on presents of equal values in
instruction queue accesses. The main parameters of the pro-
cessor architecture are described in Table 2. As can be seen,
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Table 1: Benchmarks and descriptions

Benchmark Instr. Description
name (106)

gcc 1497 GNU C compiler version 2.5.3
li 1,120 Lisp interpleter

mpeg(enc) 14,432 MPEG2 video encoder
mpeg(dec) 9,724 MPEG2 video decoder

ijpeg 577 JPEG 24-bit image compression
adpcm 17 Adaptive speech compression

our model architecture closely resembles Alpha 21264[10]
with the key di�erence to that we do not model a clustered
organization.
We �rst investigated how various granularities of adap-

tive bitwidth compression would a�ect the possible activity
savings. Figure 7 shows the reduction in bitline transitions
observed when we apply the adaptive bitwidth compression
to various sized bit �elds of instruction queue on read access
(write accesses have a similar pattern). We show the results
for byte, half-word, word, and double-word groups. All the
�gures include the bitline transitions of the additional EBs
in each group. We see that the byte granularity gives the
greatest savings overall.
In order to obtain energy consumption �gures, we de-

signed a prototype 32-word 16-bit queue (Fig.8) in 0.35�m
CMOS process (2.5V voltage supply) and used HSPICE sim-
ulation of the extracted layout. In total, the extra circuitry
imposes around an 8% area overhead. The delay penalty
introduced by the 8-bit decision logic is around two FO4
gate. Table 3 shows a breakdown of the queue energy con-
sumption. The main observation that write take over twice
the energy of read primarily because of the greater energy
burned in driving the bitlines full swing. As we see, most
energy is dissipated in the bitlines.
Based on simulations we found that though the proposed

approach disables eight lines from a nine-line wide bit slice,
there is a �xed cost that all accesses must incur regardless
of data patterns caused by the decoders, decision making
mechanism and clocking circuitry. Also, discharging of the
bitlines and I/O busses depends on the data patterns. Table
4 outlines the energy dissipation numbers in one queue slice
for either all the 8-bitlines are disabled or not. As expected,
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Figure 6: The decision logic circuitry

Table 2: Processor con�guration

Parameter Con�guration

Decode width 4 instructions/cycle
Issue width 4 instructions/cycle

Commit.width 4 instructions/cycle
Branch Combined, Bimodal 4K table
predictor 10bit history, 4K Chooser

32 entry Return Stack
I-Queue 80x 64bit, divided in ready queue

and �rst-use queue as in [23]
Issue policy Out-of-order
Func.Units 4 int.ALU, 1-int.mul/div

2 FP ALU, 1-FP mul/div
I-cache 64KB, 2-way, 32bit

1 cycle hit, 3 cycles miss
D-Cache L1 64KB, 32-bit, 2-way, 32B blocks

1 cycle hit, 3 cycles miss
U-Cache L2 1M, 64-bit, 4 way, LRU

32B blocks, 12 cycles latency
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Figure 7: Reduction in bitline transitions vs. vari-

ous sized bit �elds

writes give much larger savings than reads, because of the
greater energy used to swing the bitlines full rail.
Using the above numbers, we estimated the energy sav-

ings for the instruction queue (Figure 9). The savings vary
from around 12% for li to 30.5% for jpeg, with an average
of 23%. Due to the �xed peripheral circuit costs, the en-
ergy reduction is around 25% less than the average bitline
transition activity reduction shown Fig.7).
In order to obtain energy �gures for data queue, we sim-

ulated the behavior of 8-bit 256-word video input queue
of real-time MPEG2 pixel processor[25] using six standard
video streams: Bicycle, Carousel, Football, Cheer Leader,
Mobile & Calendar, and Table Tennis (frame size: 352�240
pixels; frame rate: 30 f/s). The �rst 150 frames of each
stream were considered. In the study, we experimented with
three levels of compression granularity: (1) Byte; (2) Half-
Byte; and (3) compressing the four most signi�cant bits only.

Figure 10 shows the maximum reduction in bitline swing
observed in the data queue for the tested sequences. Figure

2225



Table 3: Breakdown of energy consumption for 16-

bit queue

Circuit Read Write
(pJ) (%) (pJ) (%)

Decoders 6.4 13.8 6.4 6.8
Word lines 1.3 2.8 1.3 1.5
Data lines 16.9 36.5 65.4 68.9
I/O buses 13.6 29.4 13.6 14.3
Decision

logic+clock 8.1 17.5 8.1 8.5

Total 46.3 100 94.8 100

Figure 8: Layout of the prototype queue

11 presents the energy savings in the queue obtained com-
puted for each sequence. We see that the numbers vary with
sequences and the granularity level. Due to high transition
activity of the Least Signi�cant Bits, the byte compression
becomes ine�ective. Shrinking the compression granular-
ity to the four Most-Signi�cant Bits (denoted by MSB in
the �gure) achieves results similar to (1-2% di�erence) the
half-byte compression. However, it almost halves the area
and delay overhead in comparison to the double-sliced im-
plementation and, therefore, is more bene�cial for the data
queue implementation.
The energy savings for the MSB compression vary from

20.2% for Bicycle to 14.1% for Mobile, with an average of
16:5%. Note, that this is the result of applying the proposed
technique to the narrow 8 bit queue. For the wider queues
we expect better results. Currently we are investigating this
issue for the 16- and 32-bit data queues utilized in video and
audio processors.
Finally, to compare the proposed approach with the re-

lated techniques, we simulated the performance of the Dy-
namic Zero Compression[19] (byte granularity). Due to ex-
tremely small number of zero-bytes per frame for each video
sequence (maximum 109 out of 84480), the use of DZC for
the 8-bit data queue was completely ine�ective (the activity
reduction factor was 0.1%). For the instruction queue, the
DZC was able to reduce the bitline activity up to 26% (the

Table 4: Energy consumption of the bitline slice

Function Read Write
(pJ) (pJ)

Disabled 8.4 12.9
Enabled 23.5 50.4
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the data queue

adpcm benchmark). However, it is less than the activity
reduction factor (37%) obtained by our technique.

4. CONCLUSIONS
A new approach has been presented for reducing power

consumption of queues and stacks. In particular, we tar-
geted the reduction of the number of transitions occurring
on the bitlines when similar values are sequentially accessed.
Our approach eliminates unnecessary bitline activation by
dynamically adjusting the bitwidth to the pixel variation.
The proposed adaptive bitwidth compression allows us to
retain the bene�t of di�erential bitlines while taking advan-
tage of the asymmetric distribution of transition activity
along the bits to reduce energy dissipation. Instead of treat-
ing each bit independently, we group multiple bits together
and attach an equality bit to indicate when the whole bit
�eld repeats the value previously accessed. This approach
also enables us to save energy on write accesses as well as
reads since we only write the equality bit rather than the
whole bit �eld. Simulations have shown that it can save as
much as 30% of energy consumed by the queues in com-
parison to the full resolution access, without a�ecting the
quality of results.
The proposed power reduction scheme is strongly applica-

tion oriented. In fact, it is based on sequential feature of the
read/write accesses which may not be a case for a general-
purpose register �les, where the accesses are of a random
nature.
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