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Abstract— In this paper, we propose a reconfiguration mec-
hanism that allows multiple instruction compression to reduce
both code size, which in turn reduces the cost, and (instruction
fetch) power, which enhances the battery lifetime, two key con-
siderations in embedded DSP systems. We enhance Texas Instru-
ments DSP core TMS320C27x to incorporate this mechanism
and evaluate the improvements on code size and instruction fetch
energy using real life embedded control application programs.
We show that even with minimal hardware overhead, we can im-
prove code size by over 10% and instruction fetch energy by over
40%.

1. Introduction
In embedded control applications, system cost and power are impor-
tant considerations. The chip area, for such applications, is domi-
nated by the program memory. Hence, reducing program memory
is very important for reducing system cost. The processors used in
these applications use several techniques like variable length instruc-
tions [2] [1], complex instructions and many addressing modes [2] to
reduce code size.

Several compression techniques have been proposed for general pur-
pose and application specific architectures [13] [7] [4]. The mecha-
nism proposed in [13], uses the instruction cache as a decompression
buffer that stores uncompressed copies of recently used blocks of
instructions. Code compression using operand factorization is pro-
posed in [4].

All these work focussed on using short variable length code words to
represent a list of instructions. Huffman coding is commonly used to
achieve higher compression ratios [13] [7]. However, this increases
the latency of decompression. A system with less hardware overhead
was proposed in [5]. [8], [9] noted that most compression on DSP
architectures can be attributed to single instruction patterns. Com-
pressing only single instructions helps in a simpler decompression
unit.

In all these work, the encoding of a sequence or a single instruction
to a smaller code word happens once in the beginning of running
an application. In this paper, we propose a mechanism to use short
encodings effectively by allowing the meaning of the encodings to
change during different phases in running an application program.
Also all these earlier work focussed only on code size reduction and
the re-usability of the same mechanism for power reduction was ei-
ther not applicable or not evaluated.

Fetching Instructions from the memory consumes considerable part
of the total power. Code compression has also been used to target
power reduction [11] [10]. [6] trades off programmability to reduce
power using instruction sub-setting. Power reduction by reducing
number of toggles on address bus using Gray code is discussed in
[12]. Our experimental results indicate that the number of toggles
on program data bus amounts to 80% of the total number of toggles

Hence we focus on reducing toggles on program data bus.

We propose a common reconfiguration mechanism that can be used
for both code size and power reduction. The proposed mechanism
encodes (or compresses) instructions to reduce code size and power,
unlike any other approach discussed in related work.

2. Re-configurable Instruction Encoding for
Code Size Reduction

In our re-configurable architecture, the encodings of instructions are
not fixed and can be re-mapped to different encoded values. This re-
mapping can be done either statically, once prior to running a given
application (static configuration), or possibly many times while run-
ning a given application program (dynamic configuration). An in-
struction re-mapped to a shorter length encoding is referred as a com-
pressed instruction.

2.1 Static Configuration
In case of static configuration, we encode the instructions to binary
values of different lengths, once prior to running a given applica-
tion with the objective of reducing the code size for that particular
application. Thus each application has fine tuned encodings for the
instructions. Hence, this method achieves better code size compared
to having the same fixed encodings for the instructions for all appli-
cations.

In this method, each of the application program is individually pro-
filed to get instruction usage information. Using this information,
we identify top � most frequently used instructions and configure
(map) them to codes of shorter length. This configuration is done by
adding the configuration sequence at the beginning of the code. (refer
to Section 3 for details) After the configuration, � most commonly
used instructions have smaller width for their binary representation
and hence occupy less space in program memory. In other words,
now the code size has reduced.

In computing the code size for the compressed code, we take into
account the configuration overhead (re-map table size and the in-
structions added for configuring the re-map table) and the overhead
due to the additional bit for each uncompressed instruction (refer to
Section 3.1 for details).

2.2 Dynamic Configuration
Inside each given application, the instruction usage may vary across
different segments of code. Static configuration cannot exploit this
property to reduce code size. In dynamic configuration, the instruc-
tions can be re-mapped to smaller encodings on the fly, possibly
many times, while running a given application program. Thus, dy-
namic configuration exploits varying instruction usage inside a given
application, to achieve better code size. Every re-configuration has
an overhead associated with it. An overall improvement in code size
is achieved when the code size of the given application with dynami-



cally configured instructions that includes the re-configuration over-
head is smaller than the original code size.

The application program is first divided into several segments. Each
segment is individually profiled to get instruction usage information
and the top most � commonly used instructions are compressed. In
other words, each code segment can now be viewed as being con-
figured statically. The code size after compression is obtained by
adding the compressed code size of each of the code segment. The
code size for a segment is computed in a manner similar to that in
static configuration.

2.2.1 Key Care-abouts in Dynamic Configuration
In dynamic configuration, same encodings map to different instruc-
tions in different parts of the code. Hence, the branch instructions
that jump from one code segment to the other need special care, if
the two code segments use different configurations. This is taken
care of by inserting a configuration instruction at the entry of the
branch that executes the configuration sequence for the segment into
which the branching has happened.

Subroutines need special care since they can be called from differ-
ent parts of the code which may have different configurations. For
simplicity, we leave the subroutines uncompressed in our analysis.

Branch instructions themselves are not compressed. The branch tar-
get addresses have to be re-adjusted after the replacement of orig-
inal instruction with compressed instructions. We assume that the
instructions are assembled after re-map instructions are introduced.

3. Instruction Re-map Table
To allow configuration of instructions, we propose a mechanism —
Instruction Re-map Table (IRT). IRT can be viewed as a register file.
Each entry in this table can hold a valid uncompressed instruction
of size equal to 16 bits. Each entry in the table has a unique ad-
dress which forms the compressed representation of a valid instruc-
tion stored in that location. A pair of special instructions are added
to the existing instruction set that allows configuration of IRT. Con-
figuring the IRT involves writing the instructions to be compressed,
into it. Once an instruction is written into the table, it can be refer-
enced by the address of it’s location. Since the width of the address
which is the compressed instruction is smaller than that of the actual
instruction, we achieve compression. The details are discussed in the
following section.
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Figure 1: Instruction Re-map Table

3.1 Organization of Re-map Table
The instructions to be compressed are first written into locations�������

to
����� � in the �
	�� shown in Figure 1. Configuring the

re-map table will be discussed in Section 3.2. After the configura-
tion, each of the locations in the re-map table holds a 16 bit instruc-
tion. The width of the address of these locations is equal to 
 ���
� �
where � is the number of locations in �
	�� . Each instruction that

is written into the table can now be referenced by the address of it’s
corresponding location. We add one extra bit to this address to indi-
cate that it is a compressed instruction. This added bit forms the most
significant bit (msb) of the compressed instruction and is set to ’1’ to
indicate that it is a compressed instruction. The msb of all uncom-
pressed instructions are set to ’0’. With this, the program memory is
organized as 17 bit wide. For on chip memories, this non-standard
width is not an issue.

Now, the instructions that are written into the instruction re-map ta-
ble have a unique compressed representation. All these instructions
in the program memory are now replaced by their compressed repre-
sentation. Other instructions appear as uncompressed.

Decompression of compressed instructions is achieved as follows.
The re-map table is indexed with 
 ����� � bits following the ms bit of
the fetched instruction (compressed or uncompressed). The ms bit of
the fetched instruction is used to select either the contents of the in-
dexed location of the re-map table or the fetched instruction (without
the ms bit). Thus the output of the multiplexer is the uncompressed
encoding of the fetched instruction.

3.2 Configuring the Re-map table
An instruction can be compressed by writing it into the instruction
re-map table. A set of instructions that are to be compressed are iden-
tified and are written into the instruction re-map table. The process
of writing instructions into the instruction re-map table is referred as
configuring the IRT. Configuration of the �
	�� is made possible by
adding a pair of special instructions to the existing instruction set.
We call these instructions as ��������� (Begin CONFiguration) and� ������� (End CONFiguration) This pair of instructions is similar
to a

��� 
�
 and �� "!$#%��& instruction pair.

���������(' ��� &*),+ �.-�- �� �/�/�0
This instruction is decoded as a ��1 �2� instruction by the decoder.
In addition, a configuration bit in the re-map table is set. Then the
instructions are fetched from the location ' �3� &*)%+ �
-�- �� �/�/�0 in the
program memory. The configuration bit in the instruction re-map ta-
ble, when set, shuts off the instruction decoder and enables the write
controller of the re-map table. The write controller generates write
address to the instruction re-map table starting from the first location.
So a set of consecutive locations are written with the instructions that
are fetched from ' ��� &*),+ �.-�- �� �/�/40 . This configuration happens
till an

� ������� instruction is fetched.
� �������
A simple comparator is used to decode

� ������� instruction. This
instruction resets the configuration bit in the the write controller of
the instruction re-map table. This turns on the instruction decoder.
This instruction is decoded as a �� 5!6#%��& instruction and returns back
to the calling program and starts executing the instructions.

For static configuration, the �
	�� is configured once in the begin-
ning of the program. For dynamic configuration, �
	�� gets config-
ured multiple times, to exploit the varying instruction usage within
an application program.

We insert an additional configuration instruction at branch target ad-
dresses, if the target address is reachable by a branch from a different
segment. This will reconfigure the re-map table to the configuration
required by the target code segment.

It can be seen that our proposed implementation of configuring the
re-map table using �7�����8� and

� ������� is both versatile and
efficient. Note that the �7�����8� instruction enables writing the un-
compressed instructions on successive locations in the re-map table
starting from

�������
, until a

� ������� instruction is encountered.
Thus, it is possible to only re-write a part of the re-map table during
each configuration leaving the rest of the re-map table unchanged.
Thus, a combination of single (static) and multiple (dynamic) encod-
ing can be achieved by writing the instructions to be mapped stati-



cally into locations at higher addresses (that can be left unchanged)
and the instructions to be re-mapped dynamically into locations at
lower addresses which are re-written multiple times.

3.3 Architectural Support for Instruction Re-
map Table

We use Texas Instruments DSP core TMS320c27x [2] as the base
architecture to evaluate our proposal. TMS320c27x DSP core has
8 pipeline stages, viz. Initiate-Fetch, Complete-Fetch, Predecode,
Decode, Initiate-Read, Complete-Read, Execute and Write stages.
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Figure 2: Modifications to CPU due to Instruction re-map table

The address of the instruction to be fetched from program memory
is put on the address bus in Initiate-Fetch stage of the pipeline. Dur-
ing Complete-Fetch stage, the memory drives the instruction on the
program data bus. The fetched instruction is decoded in two stages -
predecode and decode. If the instruction needs data from data mem-
ory the same is fetched with a two stage data memory read. Then it is
executed in the Execute stage and the results are stored in write stage
of the pipeline.

We enhance the DSP core with the inclusion of instruction re-map
table. The instruction re-map table fits in the pre-decode stage of
the pipeline as indicated in Figure 2. The same can be implemented
outside the core. But since memory access time is the bottleneck,
we include the re-map table in the pre-decode stage where the access
time of small table of size less than 128 entries, can be hidden.

4. Experimental Results: Code Size Reduction
We use two real life embedded control application programs1 to eval-
uate the improvement in code size. These benchmarks are named
BM1 and BM2. Table 1 summarizes the code size reduction for
various re-map table sizes. Columns 2, 3, 4 and 5 in Table 1 rep-
resent the percentage reduction in code size for static and dynamic
re-configuration for the two benchmarks. In columns 6 and 7, we
report the number of unique instructions that get re-mapped during
dynamic re-configuration. For static re-configuration, the number of
unique instructions compressed is equal to the re-map table size. In
computing the reduction in code size, we have taken into account the
re-configuration overhead as mentioned in Section 2.

We observe that even with a small table size of 128 entries the gains
are over 10% for dynamic configuration. Since we configure only
once in static configuration, higher table sizes are needed to cover a
good portion of commonly used instructions. In dynamic configura-
tion, since the instructions are configured many number of times, the
number of unique instructions compressed are high and this results
in good improvements even for smaller table sizes. We also observe
that for large table sizes (1024 and 2048), the improvement in code
size reduces for both static and dynamic re-configuration.

In the results presented in Table 1, we have obtained code size re-
duction by assuming the size of the compressed instruction size to be
�
Due to proprietary nature of these applications, we do not disclose

the names of these applications

Remap Static config. Dynamic configuration
Table %CSR %CSR uniq instr

Size (m) BM1 BM2 BM1 BM2 BM1 BM2
8 � 0.67 � 1.76 2.99 4.49 321 361

16 2.01 0.22 5.72 7.36 593 534
32 4.42 2.06 8.07 9.43 590 606
64 6.66 4.16 9.66 10.21 591 872

128 8.86 5.82 11.11 10.08 608 969
256 10.73 6.96 11.30 9.06 394 1083
512 11.66 6.92 11.66 7.49 512 963

1024 10.88 5.07 10.88 5.07 1024 1024
2048 6.98 0.02 6.98 0.02 2048 2048

Table 1: Code size reduction��� 
 ����� (re-map table size). However to make the hardware imple-
mentation simple, uniform and more practical, we restrict the com-
pressed instruction size to 8 bits for all the table sizes less than or
equal to 128. Table 2 summarizes the code size reduction where the
size of the compressed instruction is 8 bits irrespective of the table
size. With the 8 bit restriction, out of which 1 bit is used to indicate
if it is a compressed instruction, we have only �

�
possibilities for

compressed instructions. So we restrict maximum table size to 128
entries in our evaluations. In this, we observe a slight decline in the
code size reduction compared to the results presented in Table 1.

Remap Static config. Dynamic configuration
Table %CSR %CSR uniq instr

Size (m) BM1 BM2 BM1 BM2 BM1 BM2
16 � 0.25 � 1.56 0.86 2.17 593 534
32 2.26 0.37 4.19 5.29 590 606
64 5.20 2.97 7.36 7.64 591 872

128 8.86 5.82 11.11 10.08 608 969

Table 2: Code size reduction : Restricted size

5. Re-configuration for Low Power
In this section, we detail the approach to reduce power consump-
tion using re-configurable instructions. In a processor, instruction
fetching contributes to a significant portion of the overall power con-
sumption. This power spent depends on the switching activity on
the program address bus and that on the program data bus. Our ex-
perimental results indicate that program data bus contributes to over
80% of the total number of toggles. Hence we focus on reducing the
number of toggles on program data bus.

The number of toggles on program data bus depends on the choice of
encodings for the consecutive instructions in the dynamic sequence
and the total number of fetches made. With re-configurable instruc-
tions, we reduce both the number of fetches needed and the number
of toggles between consecutive fetches of the compressed instruc-
tions Firstly, we reduce the number of bits fetched by compressing
a set of most commonly occurring instructions in the dynamic se-
quence. Further, using Gray codes for encoding the instructions, we
reduce the number of toggles between consecutive fetches of com-
pressed instructions. In this analysis we allow two fixed sizes — 4
bits or 8 bits — for compressed instructions. Table sizes less than 16
locations use 4 bit encodings and table sizes from 16 to 128 locations
use 8 bits encodings for the compressed instructions.

5.1 Static Configuration
The entire dynamic sequence of instructions is profiled to get instruc-
tion usage information. Based on this information, a set of top most
commonly used instructions are chosen and are compressed. Due to
this, the number of bits fetched reduces. The compressed instruc-
tions, fetched in consecutive accesses, are assigned with Gray coded
values to further reduce the number of toggles.

5.2 Dynamic Configuration



% reduction in number of toggles Energy spent (Normalized) # of re-configurations
�
	 � static dynamic static dynamic (dynamic)
Size bm-A bm-B bm-C bm-A bm-B bm-C bm-A bm-B bm-C bm-A bm-B bm-C bm-A bm-B bm-C

0 – – – – – – 1 1 1 1 1 1 0 0 0
4 � 3.7 32.4 11.0 6.5 39.7 29.4 1.06 0.71 0.92 0.98 0.65 0.75 27 124 52
8 2.5 36.3 30.3 24.5 47.0 47.9 0.99 0.66 0.75 1.13 0.59 0.63 129 63 75
16 25.9 43.9 40.2 51.0 57.0 57.8 0.79 0.60 0.68 0.65 0.53 0.63 10 32 149
32 39.0 48.2 57.7 65.7 65.8 71.2 0.70 0.59 0.56 0.72 0.78 0.61 10 64 64
64 50.3 54.0 66.3 62.0 70.7 79.8 0.73 0.61 0.58 0.86 0.83 0.53 4 22 9

128 56.8 65.9 68.6 72.5 70.5 68.6 1.04 0.64 0.72 1.32 0.72 0.72 3 4 2

Table 3: Toggle Reduction and Energy savings

The entire dynamic sequence is broken into several equal sized seg-
ments. Each segment is then profiled individually to get instruction
usage information. Based on this, the most commonly used instruc-
tions in each segment are configured to have smaller encodings. For
each table size, the partition that results in the least number of toggles
is chosen. This partition determines the number of times the �
	�� is
re-configured. All the careabouts listed in Section 2.2.1 are taken
care of while dynamically re-mapping the instructions to smaller en-
codings.

6. Experimental Results: Power Reduction
The reduction in number of toggles for three proprietary benchmarks
bm-A, bm-B and bm-C are summarized in columns 2 – 7 in Table 3.
For dynamic re-configuration, the minimum number of toggles is
achieved for table sizes less than 128 and then the improvement de-
clines. We observe that the reduction in number of toggles is over
70% for all three benchmarks.

To compute the actual savings in energy, we need to include the en-
ergy overhead due to Instruction Re-map Table (IRT). The energy
spent by IRT is due to writing into the table during configuration
and reading of compressed instructions from the table. The table is
optimized for low power by gating the clock for the Re-map Table
(clock is shut off all the time except when the table is reconfigured),
and by indexing the table (changing the address lines) only when the
compressed instructions are fetched.

Energy measurements are made as follows. We obtain the switch-
ing activity information for the cpu-memory interface and for the
�
	 � using simulations (by fetching the compressed code from the
memory that includes re-configuration instructions). This switch-
ing activity is then back-annotated on the cells and nets that are
part of cpu-memory interface and the �
	�� We use Synopsys Power
Compiler

���

[3] to obtain power numbers. The power numbers are
then multiplied with the simulation time to get the energy numbers.

Energy reduction for static and dynamic configurations for different
table sizes are summarized in columns 8 – 13 in Table 3. Table size

�

corresponds to no configuration (original encoding for instructions).
We observe that smaller table sizes provide better energy reduction
though the total number of toggles are more compared to bigger table
sizes. This is because larger tables consume more energy during read
and write operations. The energy consumed is also a function of the
number of times the table is re-configured.

We observe that for static configuration, a table size of 32 locations
is good enough to yield energy savings of over 40% for bm-B and
bm-C and 30% for bm-A . With larger table size, there is a decline
in energy reduction. This is due to larger energy overhead for larger
re-map table. With dynamic configuration, we are able to achieve en-
ergy reduction of 47% for bm-B and bm-C and 35% for bm-A . Even a
table size of 16 locations gives very good reduction in energy for dy-
namic configuration. For bm-C , we observe that table size of 16 lo-
cations resulted in too many re-configurations (149 times) to achieve
good reduction in number of toggles. Due to this high number of re-
configurations, the energy overhead due to re-configuration is high.

For bm-C, table size of 64 gives the best energy savings though the
number of toggles is not the lowest, due to lower re-configuration
overhead.

7. Conclusions and Future Work
We proposed a mechanism Instruction Re-Map Table which acts as a
decompression unit with minimal hardware overhead. We explained
an incremental re-design of the TMS320c27x CPU to include the in-
struction re-map table. We showed that multiple (dynamic) encoding
helps in achieving higher benefits for both code size and power with
smaller tables. In our approach, with small table implemented as a
register file inside the CPU, the decompression delay is hidden. We
also showed that the same hardware mechanism can be used to tar-
get power reduction. We achieved code size improvement of over
10% on an optimized code and about 40% reduction in energy spent
in fetching instructions. We used real life application programs as
benchmarks in our analysis.

In our future work, we plan to evaluate the impact of compressing
subroutines also. We plan to do optimal partitioning for power by
taking into account the number of re-configurations.
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