Compatible Observability Don’t Cares Revisited

R. K. Brayton
EECS Dept.
University of California, Berkeley

brayton@eecs.berkeley.edu

Abstract

CODC s stand for compatible observability don’t cares. We
first examine the definition of compatibility and when a set
of CODCs is compatible. We then discuss Savoj’s CODC
computation for propagating CODCs from a node’s output
to its fanins, and show by example, that the results can
depend on the current implementation of the node. Then
we generalize the computation so that the result is inde-
pendent of the implementation at the node. The CODCs
propagated by this computation are proved to be maximal
in some sense. Local don’t cares (LDCs) are CODCs of
a node, pre-imaged to the primary inputs and then im-
aged and projected to the local fanins of the node. LDCs
combine CODCs with SDCs (satisfiability don’t cares),
but only the CODC part is propagated to the fanin net-
work. Another form of local don’t cares, propagates both
the CODC and SDC parts to the fanin network. Both are
shown to be compatible in some sense, but conservative.
We give a method for updating both kinds of local don’t
cares incrementally when other nodes in the network are
changed.

1 Introduction

Permissible functions were first defined by Muroga [1].
These are incompletely specified functions (ISFs) in terms
of the primary inputs of a NOR network. For a given
node in such a network, its permissible function describes
a set of functions any one of which can be used at the
node without changing the functionality of the network.
Also, compatible sets of permissible functions (CSPFs)
were defined, which can be used independently on a set
of nodes without changing functionality. Later, this work
was generalized from NOR networks to arbitrary Boolean
networks and called compatible observability don’t cares
(CODCs) [2]. CODCs differed also in that they were ex-
pressed in terms of intermediate signals. CODCs are used
in SIS [3], but compatibility is used only to provide an
efficient computation method. It is not used to allow si-

multaneous changes in the circuit; in SIS, once a CODC is
computed at a node, the node is immediately minimized
and the CODC is only used for propagating CODCs to
the fanin edges, after which it is thrown away.

In this paper we first review the notion of compatibility
for ISFs and the results of [4, 5] which give some gener-
alizations on the computation of CODCs. We then out-
line the CODC computation of Savoj [2] which is used to
propagate CODCs from the output of a node to its fanin
edges. We point out that the computation can depend on
the current implementation of the node; different CODCs
are obtained for the fanin edges for different node imple-
mentations. This leads to the question of whether there is
a maximal such computation, i.e. a choice of implemen-
tation at the node which yields maximal CODCs on the
fanin edges. We show, instead, a computation which is in-
dependent of the current implementation of the node and
provides the maximum don’t care set on the fanin with
the highest priority.

Next we look at local don’t cares which are used by
ESPRESSO to minimize a node. Local don’t cares (LDCs)
are derived from CODCs of a node, pre-imaged to the
primary inputs and then imaged and projected to the local
fanins of the node. Thus they combine CODCs with SDCs
(satisfiability don’t cares). There are two forms of these.
LDCs are computed by propagating only the CODC part
to the fanin network. Another form of local don’t cares,
propagates both the CODC and SDC parts to the fanin
network. Both are shown to be compatible in some sense,
but conservative. We give a method for updating both
kinds of local don’t cares incrementally when other nodes
in the network are changed.

2 Compatibility

CSPFs and CODCs are compatible; we re-examine what
this means. Let B be a Boolean network and S(B) be its
external specification. B(F) is the same Boolean network,
except for the representation of node 7, replaced by F.

Definition 1 An ISF F; for a node n; in B is valid if

Figure 1: 3-node view of network.

F;, € F; = B(F;) € S(B). A don’t care set is valid if the
implied ISF is valid.

Definition 2 A set of ISFs{F1,...,Fn} at a set of nodes
in B is compatible if VF; € F;, B(Fy,...,F,) € S(B).

When we compute CODCs, the ISFs at a node 7, Fj, is
specified in terms of variables that form a minimal cut-
set, C, (which must include 1) between the Pls and the
POs. The cutset could be the variables which feed into
the transitive fanout set of 7, or could include 7 plus Pls
which are not dominated by 7 (if 17 is a dominator of a
PI, then that PI would not be part of a minimal cutset).
If C is the latter, then the ISF obtained with this set of
don’t cares is a function of only primary inputs and is the
same as the CSPF for 7 (assuming that the same order-
ing was used in deriving the two). The CODC derived for
a particular node, 7, will depend on the ordering of the
nodes used during the derivation as well as the particular
implementation of the fanout network (topology and node
functions).

For each node n and cutset C, the maximum ODC can
be computed [4, 5] by viewing the network as consisting
of 3 nodes as shown in Figure 1;

1. the node n itself which has its immediate fanins, Y,
as inputs, and a single output,

2. afanin super-node Z,, with multiple outputs which are
the cutset variables C — {n} plus Y}, i.e. the outputs
of Z,, are C — {n}UY;, and

3. a fanout super-node O,, with C as inputs and the
primary outputs as outputs.

The maximum ISF at 7, F,, is a function of ¥;, UC — {n}.
It is a function of C because it is computed this way, and it
is a function of Y;, because its current cover is expressed in
Y. This ISF does not change if the implementations of Z,,
and O,, change; clearly, the ISF does not even depend on

1Ly; for O, the non-observability from any input pin of O,
through O,, is the same as the non-observability from that
pin through any other decomposition of O,. However,
when we compute compatible ODCs we are computing
subsets, which can depend on the decomposition and the
ordering of the nodes.

Observation 1 Any CODC at n computed using any
valid decomposition of O, remains valid for any other
decomposition of Oy.

Now consider two nodes in B. Since B is acyclic, we
can choose the one nearest the PIs , 71, and the other
1o is either in its fanout network or not. In the first case,
ISF(m) remains valid independent of the implementation
at 12 because it is in O(n), and ISF(n2) remains valid in-
dependent of the implementation at 7, since it is in Z(n).
In the second case, each is in the Z, or O,, of the other so
their ISFs are compatible. This means that we can change
the implementation of one, and the ISF of the other re-
mains valid. Thus we have the following theorem.

Theorem 1 The set of ISFs for all nodes in the network,
where the ISFs are computed by any valid CODC algorithm
(no matter which cutset is chosen), is compatible.

The CODC algorithms in [1, 2] are valid.

We already mentioned that for a given node 7, different
cutsets can be chosen. This just means that the corre-
sponding CODCs are functions of different sets of vari-
ables. Each gives a set of minterms under which the out-
put of 77 is not observable at any of the primary outputs.
Some minterms may not be satisfiable, so they are not rel-
evant. These depend on Z, which gives the satisfiability
conditions. It is interesting to note that as the cutset C
is moved more towards the primary inputs, the number of
minterms in the variables of C that are not satisfiable de-
creases, because Z decreases. In the limit, C becomes only
PIs (and n) which has no unsatisfiable minterms (unless
external don’t cares have been specified).

3 Savoj’s CODC Computation

A method for computing CODCs at the fanins of a node
in a Boolean network is given by Savoj’s formula (1). This
is the method used in SIS. Here 7 is a node in the network
and CODC), is the CODC already computed for 7. Don’t
cares are propagated to the fanins of 0, y1,y2,. .., accord-
ing to some ordering y1 < y2 < ..., where y; gets the most
don’t cares possible, yo next, etc. The don’t cares are as-
signed to the fanins so that they are compatible. F' is the

current implementation at the node and ‘?9—5 =F, & F5.

o

OF
+Vyk— 1) 8

Oy

oF

CODCy,—y = (ur

V)

Yk

For y; we get

OF
CcODC,, ., = g_y]

+CODC,

The operator (3—5 +V,,) operates on the function result-
ing from the computation on its right and ensures that
CODCy,y is compatible with the CODC),, already
assigned, i.e. i < k. The argument for the operator pro-

viding compatibility is that don’t care terms coming from
oF

Oy

sensitive to y; (W) (and thus could not have been assigned
as a don’t care for y;) or independent of y; (V,,,) (and thus
it is independent of how the don’t care might be used in
simplifying y;). This method for making the CODCs of the
fanins compatible breaks a circularity which can happen
if one input relies on another for giving a proper input
value, and vice versa. In the case of such a circularity,
both may become don’t care and a proper input value is
not maintained.

Once all fanins of a node are assigned CODC’s, they
can be propagated to the sources of the fanin signals. At
such a source node, the CODCs of all its fanout wires are
intersected to obtain the CODC of the node:

should be such that the current implementation F' is
dF

CoDC, = () CODC,y,,

nEFO(k)

The legality of this intersection is based on the fanout
CODCs being compatible [2].

Another important point in this computation is that the
node CODCs are computed from POs in reverse topologi-
cal order. For each node 7, its CODC is expressed in terms
of the signals in its transitive fanout plus immediate side
inputs to the transitive fanout set. Signals internal to O,
can be eliminated by substitution in terms of inputs to
O,. As discussed in Section 2, the CODC is independent
on the network Z, driving O,. The CODC simply states
the unobservability of 7’s output in terms of the inputs of
O,,, which are treated as independent signals.

Note that in (1), CODC}, ., may depend on the vari-
able y, both through g—i as well as CODC), since y;, may
be a side input to the transitive fanout of 1. However,
there is no dependency of the fanin part of the network.
As discussed in Section 1, if the fanins functions change,
the CODCs computed for the nodes are still valid and
compatible; i.e. if O, or Z, is changed, CODC),, remains
valid.

+CODC

4 Dependency on Implementation
F at the Node

" The results computed by (1) depend on the particular im-
plementation of 7, i.e. the particular cover F' at 7. This
is shown by the following example in which we implement
a node 7 in different ways using a given CODC), as don’t
care and get different CODC,, _,s.

Example 1 Let f = ab+ ac + o'V'¢’ with CODCy =
a't'e + a'bc’. Using a as y1, i.e. a is the fanin with the
highest priority, if f were implemented with different cov-
ers, we get the following different CODCs on the signal
a — 1, using (1):

Fy=ab+ac+dbd =

CODCy,;, =CODCy =a't'c+ a'bc';
Fi=ac+ab+dV —=

CODCy_yy = Ve +CODCy = Ve + a'bes
F=ac+ab+dd =

CODC,_,, = bé' + CODCy = be' + d'lc;
Fy,=ab+bc+dcd =

CODC,y_yy = Ve +be + CODCy = He + be.

Here we have assumed that a is the first fanin in the or-
dering so that it gets the most don’t cares. Note that a is
also an input to CODCY.

5 An Implementation Indepen-
dent Computation

An interesting problem is how to choose the implementa-
tion at i which yields the most don’t cares to its fanins.
As the next theorem shows, we can generalize Savoj’s for-
mula to get fanin don’t cares which are independent of the
implementation F' and which yield maximal don’t cares,
at least for the first fanin.

Theorem 2 Consider the following generalization of the
Savoj formula.

CODC,, _yy =
(CODC,, oy +Vy,)...(CODCy,_, sn +Vy_))
((Fy,®F;,) +3,,C0DC,) + CODC,

where F' is any implementation at the node. CODCy, _;,
is valid and is independent of F for all k. Further,
CODCYy, sy, is mazimal.

Proof. The interpretation is that each operator of the
type
(CODC?M—H? + vyl)

says that of the terms that come from the calculation to
the right of the operator, we only keep those which are
cares for y; or the terms which do not depend on y;. The
terms given by

(Fy,©Fy,)+3,,CODCY)

are a generalization of %.

Let F' be any implementation of the node n with the
don’t care for n given by CODC,,. For simplicity of no-
tation let d = CODC,, g = Fd, and h = F d. Thus
F = (g,d, h) is independent of F' and is simply the ISF at
7, according to the don’t care set CODC),,. We first com-
pute where F is sensitive to the value of y;. These are
terms where g = 1 for one value of y; and h = 1 for the
other. The terms are obtained by considering a minterm
in the space of inputs to 1, Y;;, and toggling the value for
yk. Thus, we get the terms,

Iy g, + 95, by, -

Substituting g = Fd, and h = F d, we get

Gy h?;e + 93, hyk = (Fykfﬂk + Fﬂkfyk)dykaﬂk

Hence

+ Jy,d (2)

Clearly, (2) is independent of the representation F' used
at the node, since g and h are independent of F. We
can add to the expression, CODC),, since these are terms
where the output of 7 is don’t care. This is also indepen-
dent of F'. Finally, for the general term CODC), _,,, each
CODCy,y is independent of F', by induction, and hence
the result.

Note that CODC,, ,, always contains that given by
(1) and can be strictly larger only if CODC, depends
explicitly on y;. To prove that

- _ J9F
Iy g, + 95, Iy, = 3—yk

OF

—+3,,d
3yk+y’“

is maximal, suppose there is another term (in the space
C UY, —n that can be added to it. Then it would be a
term (independent of y;) where n = 1 for one value of
yr and n = 0 for the other value (no matter what the
implementation F' is). If CODC, is maximal, then this
would mean that as 7 toggles, it would cause toggling at
one of the primary outputs, which would mean that output
network is sensitive to 1 under the conditions of inputting
the new term to O0,. QED

Although CODCYy, _;, in Theorem 2 is larger than that of
(1), this cannot always be claimed for the next fanin ys;
even though (Fy,®F3,) + 3,,CODC, starts out larger (if

CODC,, depends on y»), the operator (CODC'y,_,, +Yy1)
may trim it down more than in (1) because CODCYy, _,
might be smaller than before.

Also note that we can increase the possibility that
CODC,, will depend explicitly on y, € FI(n) by moving
the cut to include those y € FI(n) that have reconver-
gent fanout. The largest set is obtained if the cutset is in
terms of only PI’s (and the node 7)), and we express 7 in
terms of the PIs in its transitive fanin, since then the pos-
sibility of reconvergent fanout is maximized. Since a PI in
TFI(n), not dominated by 7, is an input to CODC),(PI),
the new computation should give better results. This is
the situation in Example 1.

In general, we can collapse 1 a number of levels into
its fanins and make the cut include the new inputs to 7.
Then the new computation would give larger don’t cares
on the fanin edges to the new inputs of the collapsed node
1. Note that the new computation is independent of what
particular internal representation one has in 7. This con-
trasts with CSPF computations, which require that a node
is first decomposed into a subnetwork of NOR gates. Then
the computation is dependent on how the decomposition
was done and does not represent all decompositions.

Example 2 In Example 1, f = ab+ ac + a’'b'c’ and d =
a'bc+a'bc. Since fd=10, g = f. Since (9.Bgz) = 0 we
get

CODCysyy = do + dg = b'c + bc’

which is the largest set obtained of the 4 implementations
discussed in Example 1.

6 Local Don’t Cares

In SIS, after a CODC is computed at a node, it is projected
onto the primary inputs and then its complement is pro-
jected back to the space of the immediate fanin signals of
7, after which the result is complemented. The resulting
don’t care set is a local don’t care set and is called (LDC,)).
The associated ISF is now only dependent on the fanins of
1 and is suitable for input to ESPRESSO (which is given
the current cover of 7 and the don’t care set LDC}). Then
the node is minimized using LDC), and if the cover is im-
proved, the representation for node n is changed. Thus
each node 7 in the network has an LDC), which now re-
flects both the observability don’t cares (ODCs) and sat-
isfiability don’t cares (SDCs). SDCs reflect the interde-
pendence of the variables in C — {n} UY,,. It is important
to recognize that the LDCs are not necessarily compatible
because of the SDCs.

In the following, we will consider a more local computa-
tion of local don’t cares. We use the notation N(X,Y) for
the relation between the primary inputs X and a subset
of variables Y in the current network.

Algorithm 1
1. Order the nodes in reverse topological order.

2. For each primary output j, define

Ljout;(Yj) = 3IxN(X,Y;)EXDC;(X)

3. In general, at node j, map each fanout don’t care set
into the local input space,

Ljr(Y)) = Ix N(X, Y)) Iy, N(X, Yi) Lj (Vi)
4. At each node j, define

Li(Y;) =

() Ljiox(¥))

kEFO())

For the first node,
is only one fanout.

L;j(Y}) = Ljou; (Y;) since there

5. Use Theorem 2 with L;(
formula to compute Ly, ;(

Y;) replacing CODC; in the
Y;) for each fanin edge:

(Zy1—>j + v?}1) R (Zyi_1—>j + vyi—1)
((Fyi@F@) + ElyiLj) + Lj

Ly—; =

This computation differs from the computation of
LDC(Y;) in the use of L;(Y;) instead of CODC;(C;) in
the propagation of don’t cares through a node to its fanin

edges. For LDC(Y;) we have,

Algorithm 2

1. For each primary output define

LDCj_sout, (Y;) = 3x N(X,Y;)EXDC;(X)

2. Map each fanout don’t care set into the local input
space,

LDCj,(Y;) = IxN(X,Y;)3e, N(X, Cr)CODC; 1 (Cr)

3. At each node j, define
CODC;(Cj)= (] CODC;Lk(C)

kEFO())

4. Use Theorem 2 with CODC} in the formula to com-
pute CODCy,,;(C;) for each fanin edge.

We remark that it is unlikely that either set, {LDC;} or
{L;}, is compatible, since they both depend on an image
computation, which depends on the current implementa-
tion of the fanin network. However, we will show that
they are compatible in some sense and give a method for

incrementally updating the L; after nodes in the network
have been changed.

Suppose the representation of node k has changed. If k
is in O; then nothing needs to be done. However if % is in
Z; we need to change L;. Consider the following method
for updating L;.

Algorithm 3

1. Compute C(Y;) = L;(Y;), the care set for j. Let N
represent the changed network and

E(Y},Y)) = 3x N(X,Y))N(X,Yj).

2. Compute

Ci(Y;) = 3y,C(Y))E(Y;,Y))

3. Li(V;) = C;(¥5).

A similar algorithm can be applied to LDC}; and is valid
for the same reasons as proved in Theorem 3 below.

Theorem 3 Algorithm 8 is correct, i.e.

L,(¥;) = €(¥)) € 3xN(X,7)CODT, (X)

but conservative, i.e.

C(Y;) # 3xN(X,Y)CODC;(X)
in general.
Proof. Denote CS(X) = CODC,;(X),Y =Y;, L(Y) =
Lj(Y;), C(Y) = C;(¥)) and C(Y) = L;(¥;). We will

prove that

IxN(X,Y)CS(X) =3Iy E(Y,Y)C(Y)

Denote the left hand side as C(Y). This is the correct care
set in the Y space, since C'S(X) is the correct care set in
the X space. Now, the right-hand side is

= EY,V)O)

= EIYEIX/N(X YIN(X',Y)C(Y)
= 3yIxNX >N(X',ff) IxN(X,Y)CS(X)
= 3X5|X'E|YN(X' Y)N(X',Y)N(X,Y)CS(X)

Y)
= IxIx[FyNX,Y)N(X,)]N(X',Y/)CS(X)

This expression is C'(Y). Clearly C'(Y) 2 C(Y) since we
can get the latter by restricting X = X'.

To demonstrate that the algorithm is conservative, as-
sume that there is a minterm, (z’,y,z,j) € X'xY x X xY
such that
L9)CS(x) =

N(a',y)N(z,y)N(z 3)

but ¢ is such that

Vxn [N(X",5)C(X") = 0]. (4)
(3) implies that C'S(z) = 1 which implies by (4) that
N(z,4) = 0. Also, (3) implies that N(z',7) = 1, which
implies by (4) that CS(z') = 0. Thus we may get an
extra don’t care minterm only by the mechanism that
a don’t care term, z', (CS(z') = 0) maps (under N)
into the same y as a care minterm z (CS(z) = 1), ie.
(N(z',y)N(z,y) = 1) and then z maps (under N) to a
different § than 2’ (N(2',§) = 1, N(z,§) = 0). However,
we still must treat = like a don’t care point since it is not
differentiated by N. Since the only information we keep is
C(Y), (we do not keep C'S(X)) in the algorithm, we can-
not expect to recover C'S(X), i.e. that z is a care point. If
there is no other don’t care point that maps into ¢’ where
N(z,7') = 1, then §' is a point in C(Y) that is not in
C(Y). QED

L; is a combination of a compatible observability don’t
care part and a satisfiability don’t care part. Theorem 3
is interesting because it says that the observability part
remains valid and compatible even if other nodes in the
network have been changed. Only the satisfiability part
needs to be updated and this can be done by mapping
minterms in the Y space into different minterms in the Y;
space.

Algorithms 1 and 2 propagate don’t cares differently.
L; loses information, because whenever a local image is
produced, some of the primary input minterms cannot be
distinguished, e.g. when N(z,y) = N(z',y). Since CODC
computation does not do an imaging operation, no infor-
mation is lost in Algorithm 2.

7 Conclusions

We discussed the details of CODC and local don’t care
computations. A formula was given which allows CODC
propagation from a node’s output to its fanin edges to
be independent of the node’s representation and is maxi-
mal for the first fanin. We investigated the compatibility
of a set of nodes. The set of all CODCs and the set of
all CSPFs in the entire network are both compatible sets.
However, when an image computation is used to project
don’t cares onto a local space, generally compatibility is
not maintained. Therefore, we gave a procedure for up-
dating local don’t cares when a set of changes has been
made to nodes in the network. The procedure was shown
to be correct but conservative. This shows that the in-
formation contained in a local don’t care is still valid (in
some sense) and just has to be re-mapped according to the
changes made in its transitive fanin network.

CODCs can be useful for SPFD computations [6, 7, 8.
One of the problems with SPFDs is that if a node is
changed according to the flexibility allowed by an SPFD,
it may be necessary to change all nodes in the transitive
fanout of that node. However, if the SPFD computation is
started with CODCs at nodes that are, say 2 fanouts away
from the node, then the CODCs block node change prop-
agation beyond this point. In [8, 9, 10], we experimented
with this use of CODCs with SPFDs to block long-range
propagation of node changes.

The computation of SPFDs at a node is similar to
that given in Algorithm 1. Also, SPFDs are propagated
through a node to its fanin edges, independent of the cur-
rent implementation of the node. Thus Theorems 2 and 3
have an analogy in SPFD computations.

Acknowledgements: We thank the SRC for supporting
this work under contract 683-002 and the California Mi-
cro program and our sponsors under this program, Fujitsu,
Cadence, and Synopsys.

References

[1] S. Muroga, Y. Kambayashi, H. C. Lai, and J. N. Culliney, “The
Transduction Method - Design of Logic Networks Based on Permis-
sible Functions,” in IEEE Trans. Computers, Oct. 1989.

[2] H. Savoj and R. K. Brayton, “The Use of Observability and Exter-
nal Don’t Cares for the Simplification of Multi-Level Networks,” in
Proc. of the Design Automation Conf., pp. 297-301, June 1990.

[3] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Brayton,
and A. L. Sangiovanni-Vincentelli, “Sequential Circuit Design Us-
ing Synthesis and Optimization,” in Proc. of the Intl. Conf. on
Computer Design, pp. 328-333, Oct. 1992.

[4] Y. Watanabe and R. K. Brayton, “The Maximum Set of Permissi-
ble Behaviors for FSM Networks,” in Proc. of the Intl. Conf. on
Computer-Aided Design, 1993.

[5] Y. Watanabe, L. Guerra, and R. K. Brayton, “Logic optimization
with multi-output gates,” in Proceedings of the International Con-
ference Computers and Devices, Sept. 1993.

[6] S. Yamashita, H. Sawada, and A. Nagoya, “A new method to
express functional permissibilities for LUT based FPGAs and its
applications,” in Proceedings of the International Conference on
Computer-Aided Design, pp. 254—61, Nov 1996.

[7] R. Brayton, “Understanding SPFDs: A new method for specifying
flexibility,” in Workshop Notes, International Workshop on Logic
Synthesis, (Tahoe City, CA), May 1997.

[8] S. Sinha and R. Brayton, “Implementation and use of SPFDs in
optimizing boolean networks,” in Proceedings of the International
Conference on Computer-Aided Design, pp. 103—10, Nov 1998.

[9] S. Khatri, S. Sinha, A. Kuehlmann, R. Brayton, and
A. Sangiovanni-Vincentelli, “SPFD based wire removal in a net-
work of PLAs,” in Workshop Notes, International Workshop on
Logic Synthesis, (Tahoe City, CA), May 1999.

[10] S. Sinha and R. K. Brayton, “Robust and efficient spfd computa-
tions,” in IWLS, June 2001.

	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index

