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Abstract 

A new algorithm is developed which transforms the truth 
table or implicant table of a Boolean function into a canonical 
form under any permutation of inputs. The algorithm is used for 
Boolean matching for large libraries that contain cells with large 
numbers of inputs and implicants. The minimum cost canonical 
form is used as a unique identifier for searching for the cell in 
the library. The search time is nearly constant if a hash table is 
used for storing the cells’ canonical representations in the 
library. Experimental results on more than 100,000 gates 
confirm the validity and feasible run-time of the algorithm. 

1. Introduction 

An important part of logic synthesis and verification is 
testing if two Boolean functions are equivalent. During 
technology-mapping, Boolean matching is used to check if part 
of a network implements a gate in the library. A Boolean 
function is usually represented in the form of a binary decision 
diagram (BDD) or a truth table. 

Boolean matching is also significant in the library-free 
technology-mapping problem. The "fluid" library of cells 
typically has a constraint on the number of parallel and serial 
devices. The size of the fluid library is very large. Therefore, a 
cell generator is needed to lay out the cells. Boolean matching is 
used to check if a cluster of a network that satisfies the parallel 
and series constraint (and therefore forms a valid gate in the 
library) has already been laid out by the cell generator. 

In the most general case, Boolean matching implies 
resolving if two Boolean functions are the same under negation 
of inputs, permutation of inputs or negation of outputs.  

 
 
 
 
 
 
 

Boolean functions that are equivalent under negation of 
inputs form an N-equivalent class, under permutation of inputs a 
P-equivalent class, and under any of the three stated conditions 
an NPN-equivalent class. 

Previous work in Boolean matching was done using 
signatures and canonical representations on BDDs or truth 
tables [1, 2, 3, 4, 6, 7]. A signature is a description of an input 
variable that is independent of the permutation of the inputs of a 
Boolean function [1]. A necessary condition for equivalency of 
two Boolean functions is that their signatures are the same. 
However, that is not a sufficient condition, because one 
signature can describe two or more different functions. It was 
observed in [1] that regardless of the quality of the signatures 
used on ROBDDs, they always failed to uniquely identify 
certain variables. These variables have symmetry properties and 
they form an aliasing group.  

If the size of the aliasing group is k, then k! 
correspondences need to be additionally tested. For a set of 
benchmarks, the number of permutations can be more than 
100,000 [1]. Burch and Long developed a canonical form for 
phase matching (equivalency under negation of inputs), but for 
input permutation only a semi-canonical form was proposed [3]. 
The semi-canonical forms can be different for some 
permutation equivalent functions. 

In previous work [4, 6, 7], it was pointed out that the 
algorithms were targeted for logic functions with small numbers 
of inputs (less than 10). Our algorithm handles Boolean 
functions with large numbers of inputs and product terms 
(easily handling 25 inputs and more than 1000 product terms). 

We developed an algorithm that guarantees a unique 
canonical form of the truth table or implicant table, under any 
permutation of inputs and for any type of symmetric inputs. 
Moreover, our algorithm can be used for obtaining a unique 
ordering of variables in ROBDDs. After a unique variable 
ordering is established and ROBDDs are constructed, two 
ROBDDs are compared in nearly constant time if a hash table is 
used for storing the ROBDDs. A previous attempt at finding 
unique variable orderings for ROBDDs was done using 
signatures and it failed for some cells in the library [5]. Finally, 
our algorithm for computing a canonical form under input 
permutation is more efficient than [4] for functions with large 



number of inputs, because the canonical representation in [4] 
has a length of 2n for an n-input function. 

2. Problem Formulation 

In the technology-mapping step, we used the commands in 
SIS [9] for manipulating the network. The Boolean functions 
were represented with the sum-of-products form, as in the blif 
[9] format. We assume that the library consists of positive 
unate, negative unate and binate functions. The binate functions, 
such as XORs and MUXs, are represented with truth tables 
containing only the rows where the function's output is 1. The 
positive and negative unate functions are represented with an 
implicant table. An implicant table consists of rows of 
implicants where the output is 1. For unate functions, the sum-
of-products (SOP) form consisting of all prime implicants is 
minimal and unique [10]. Therefore, the implicant table of a 
unate function will be unique. Because the minimized SOP 
form is more compact than a truth table, we used it as the unate 
function’s representation for Boolean matching. Examples of a 
truth table and implicant tables for positive and negative unate 
functions are shown in Figure 1. 

Usually, a vast majority of the functions in a library are 
unate. Therefore the negation of inputs and output in the 
Boolean matching problem is unnecessary for these functions. 
In this case, our cluster function (a portion of the unmapped 
network that is collapsed into a single node) is made unate prior 
to calculating its canonical form, by adding inverters at its 
inputs, where necessary. If there are binate cells in the library 
and the cluster function does not match any of the unate cells, 
the cluster function is transformed into a truth table and checked 
for equivalency. 

a b c  a b c d  a b c d 
1 0 0  0 - 0 -  1 1 - - 
1 1 0  0 - - 0  - 1 1 - 
0 1 1  - 0 0 -  - - 1 1 
1 1 1  - 0 - 0  1 - - 1 

 (a) bccaf +=        (b) cdabg +=       (c) adcdbcabh +++=  

Figure 1. Examples of (a) a truth table,  
(b) a negative unate function implicant table,  
(c) a positive unate function implicant table 

 
1 . . j . . N  

2M*N-1 . . 2(M-1)*N+N-j . . 2(M-1)*N 1 
. . . . . . . . . . : 

2(M-i)*N+N-1 . . 2(M-i)*N+N-j . . 2(M-i)*N i 
. . . . . . . . . . : 

22N-1 . . 22N-j . . 2N M-1 
2N-1 . . 2j . . 20 M 

Figure 2. Weight assignment for a truth table 

For a given truth or implicant table, we assign a weight for 
each cell in the table. Weight assignment for a table with M 
rows and N columns is presented in Figure 2. 

The columns correspond to the inputs of the function and 
the rows correspond to the minterms, or implicants in the case 
of the SOP form. Each cell in the truth table has a zero or one, 
depending on whether the input is complemented or not 
complemented in the minterm. For the SOP form, don’t cares 
are assigned a value of zero. If a variable appears in the 
implicant, it is assigned a value of one in the table. Negative 
unate functions contain don't cares and zeros in the implicant 
table. In that case, don't cares are set to zero and zeros are 
transformed to ones. We would like to find a unique canonical 
representation of the truth table under arbitrary permutations of 
its rows and columns. The cost function for any permutation of 
rows and columns can be computed using the following formula 
(1): 
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Permutation vectors pr and pc, for rows and columns 
respectively, are defined as pr = (π(1), π(2),.., π(M));  pc = 
(π(1), π(2),.., π(N)); π: {1, 2, .., n}→{1, 2, .., n} is the 
permutation function, and v (i,j) ∈{0, 1}. 

The cost function represents a decimal equivalent of a 
binary number obtained by concatenating the rows of the table 
next to each other, starting from the top of the table to the 
bottom. For example, different costs for the aoi22 function 
under permutation of inputs are depicted in Figure 3. 

a b c d  b d c a 
1 0 1 0  0 0 1 1 
1 0 0 1  0 1 0 1 
0 1 1 0  1 0 1 0 
0 1 0 1  1 1 0 0 

     1010100101100101      0011010110101100  
              = 43365      = 13740 

Figure 3. Different costs according to formula (1) 
 for a function aoi22 under permutation of inputs 

Theorem 1. There exists a canonical form of a truth table, 
which has a minimum cost (according to formula 1), among all 
possible permutations of rows and columns. 

Proof. The cost function in formula 1 represents a decimal 
equivalent of a binary number, obtained by concatenating the 
rows together starting from the top row to the bottom row. 
Permutations of rows and columns create a discreet, finite set of 
integers, which has a minimum. A table with the minimum cost 
is the canonical form. 

3. Computing the Minimum Cost Canonical Form 

The cells in the upper left corner of the table have the 
highest weight and the cells in the lower right corner have the 
lowest weight. The weight decreases going from left to right, 
and top to bottom. To minimize the cost function, one would 
like to swap the rows and columns of the table, such that the 
ones in the table are placed to the right and to the bottom. Also, 



since the succeeding smaller weights for a cell are along the 
same row to the right, we minimize the cost of the table starting 
from the top rows to the bottom. 

We use a branch-and-bound algorithm, with a very tight 
bounding function, for obtaining the canonical form. First, we 
find a row with the minimum number of ones and place it on the 
top. The columns are swapped such that all zero elements in 
that row are on the left, and all ones on the right. After 
rearranging the columns, the top row is fixed, and we proceed to 

find the next minimum cost row. However, the previously fixed 
rows determine which columns can be swapped in the later 
steps. The block of columns with the same elements in the fixed 
row can be swapped without changing the cost of the row. But 
swapping a column that contains a zero with a column that 
contains a one in the fixed row will change the cost of the row. 
Therefore, we insert a column boundary at the transition from 
zeros to ones in the minimized row. Only columns inside the 
column boundaries can be swapped. 

1 2 3 45 6 row signature
1 0 0 0 11 1 3
2 0 1 1 00 1 3
3 0 0 1 01 1 3
4 0 1 1 01 1 4
5 1 1 1 11 1 6
6 1 0 0 11 0 3

1 2 3 4 5 6 1 4 5 2 3 6 1 2 4 3 5 6 6 2 3 4 5 1
1 0 0 0 1 1 1 2 0 0 0 1 1 1 3 0 0 0 1 1 1 6 0 0 0 1 1 1
2 0 1 1 0 0 1 21 1 0 1 1 0 0 1 21 2 0 1 0 1 0 1 12 2 1 1 1 0 0 0 30
3 0 0 1 0 1 1 12 3 0 0 1 0 1 1 12 1 0 0 1 0 1 1 12 3 1 0 1 0 1 0 21
4 0 1 1 0 1 1 22 4 0 0 1 1 1 1 13 4 0 1 0 1 1 1 13 4 1 1 1 0 1 0 31
5 1 1 1 1 1 1 33 5 1 1 1 1 1 1 33 5 1 1 1 1 1 1 33 5 1 1 1 1 1 1 33
6 1 0 0 1 1 0 12 6 1 1 1 0 0 0 30 6 1 0 1 0 1 0 21 1 1 0 0 1 1 0 12

12 3 4 56 32 1 6 54 14 5 2 36 14 2 5 36 12 4 3 56 32 6 1 54
1 00 0 1 11 1 00 0 1 11 2 00 0 1 11 3 00 0 1 11 3 00 0 1 11 6 00 0 1 11
3 00 1 0 11 6 00 1 0 11 3 00 1 0 11 2 00 1 0 11 1 00 1 0 11 1 00 1 0 11
2 01 1 0 01 1101 3 10 0 1 10 1011 1 01 1 0 01 1101 1 01 0 1 01 1011 2 01 0 1 01 1011 3 10 1 0 10 1101
4 01 1 0 11 1102 4 11 0 1 10 2011 4 00 1 1 11 0112 4 00 1 1 11 0112 4 01 0 1 11 1012 4 11 1 0 10 2101
5 11 1 1 11 2112 5 11 1 1 11 2112 5 11 1 1 11 2112 5 11 1 1 11 2112 5 11 1 1 11 2112 5 11 1 1 11 2112
6 10 0 1 10 1011 2 11 0 1 00 2010 6 11 1 0 00 2100 6 11 0 1 00 2010 6 10 1 0 10 1101 2 11 1 0 00 2100

14 5 2 36 14 2 5 36
2 00 0 1 11 3 00 0 1 11
3 00 1 0 11 2 00 1 0 11
4 00 1 1 11 4 00 1 1 11
1 01 1 0 01 1101 1 01 0 1 01 1011
5 11 1 1 11 2112 5 11 1 1 11 2112
6 11 1 0 00 2100 6 11 0 1 00 2010

1 4 2 5 3 6
3 0 0 0 1 1 1
2 0 0 1 0 1 1
4 0 0 1 1 1 1
1 0 1 0 1 0 1
5 1 1 1 1 1 1 111111
6 1 1 0 1 0 0 110100

1 4 2 5 3 6
3 0 0 0 1 1 1
2 0 0 1 0 1 1
4 0 0 1 1 1 1
1 0 1 0 1 0 1
6 1 1 0 1 0 0
5 1 1 1 1 1 1

row1 = 1
row1 = 2 row1 = 3 row1 = 6

row2 = 3 row2 = 6 row2 = 3 row2 = 2 row2 = 1 row2 = 1

row3 = 4 row3 = 4

row4 = 1

row5 = 6

column boundary

 
Figure 4. Example of transforming a truth table into its minimum cost canonical form 



 
MCCF (M, N, A, Acanonic)

Input: Positive integers M, N (M = number of rows, N = number of columns),
truth table A ⊆ {0, 1} M x N

Output: Acanonic canonical form of table A.
cr = 1; /* current_row */
LL ← A1 = A; /* linked list of tables */
K = 1; /* K = number of tables Ai , i = 1,.., K in the linked list */
h = 1; /* h = number of column boundaries */
/* column boundaries c1,.., ch, satisfy h ≤ N and c1 = 1 < c2 <..< ch ≤ N */
1. min_signature = ∝. For each i = 1,.., K do steps 1.1. through 1.3.

1.1. Let ch+1 = N + 1
skj

i = number of 1s in columns cj, cj + 1,.., cj+1 - 1 of Ai, k = cr,.., M, j = 1,.., h
Sk

i = (sk1
i, sk2

i,.., skh
i ), k = cr,.., M, i = 1,.., K

1.2. Find minimum Smin
i from all Sk

i.
Let min_row_set (Ai) = {r ⊆ {cr,.., M} : Sr

i = Smin
i}

1.3. If (Smin
i < min_signature) then min_signature = Smin

i.
2. K' = K; For each i = 1,.., K do steps 2.1. and 2.2.

2.1. If (Smin
i = min_signature) then for each r ⊆ min_row_set (Ai), do steps 2.1.1. through

2.1.3.
2.1.1. Permute the columns cj,.., cj+1 - 1 (j = 1,.., h) of Ai so that 0s are followed by 1s
between the column boundaries of row r. Swap minimum row r with current row cr. Let Air
denote the resulting table.
2.1.2. Insert new column boundaries between the existing boundaries cj, at the columns of
transition between zeros and ones, in row r. Let h denote the new number of column
boundaries.
2.1.3. Add Air to the linked list LL; K' = K' + 1.

2.2. Remove Ai from the linked list LL; K' = K' - 1.
3. K = K'; cr = cr + 1; If (cr ≤ M) go to step 1.

Acanonic = Ai, Ai ∈ LL, ∀i.
 
Definition 1. Column boundaries partition a row into sets 

(blocks) of columns such that column permutations may only 
take place within the sets. 

Definition 2. A row signature is a sequence of numbers 
where each number represents the number of ones in the 
corresponding block of columns, where the blocks are examined 
from left to right for the row. 

The algorithm for transforming a table into its minimum 
cost canonical form (MCCF) will be explained with an 
example. Figure 4 shows the truth table of a Boolean function 
with 6 inputs and 6 minterms 

643152654321321654321 xxxx)xx(xxx)xxxxxx(xxxxxxf ++++= . 
At the beginning, we look at the whole table. The row 

signatures represent the number of ones in each row. The 
minimal row signatures are written in bold font. Since we have 
multiple rows with a minimum row signature, they are all 
candidates for the first row in the canonical form. This is the 
branching point of the algorithm. Four tables are created, each 
with a different minimum row as its first row. The columns of 
the tables are permuted such that all ones in the minimized row 
are grouped at right of the table, and all zeros at the left. A 
column boundary is placed at the transition from zeros to ones 
in the minimized row. The first row is then fixed. The tables are 
stored in a linked list. 

For each table in the list, row signatures are calculated 
based on the number of ones inside the column boundaries. 
Row signatures are written on the right side of the table. The 
minimum row signature is noted for each table. The smallest 
minimum row signature among all tables in the list determines 

the bounding function in the algorithm. The smallest signature 
in the list of tables is shaded in Figure 4. Only the tables with a 
minimum row signature equal to the minimum among all the 
tables in the list are kept. 

At the end of the algorithm, the list contains the canonical 
forms of the initial truth table. In this example, there is a unique 
solution for permuting the rows and columns to obtain the 
canonical form. In the general case, different permutations of 
rows and columns can lead to the same minimum cost canonical 
form for the truth table. MCCF is the formal definition of the 
minimum cost canonical form algorithm. The following lemmas 
and a theorem are proved in the appendix. 

Lemma 1. The column boundaries for all tables Ai in the 
list LL are identical at the end of each iteration of the algorithm 
(step 3). 

Lemma 2. Subtables made of the top minimum signature 
rows of tables Ai in the list LL are identical. 

Theorem 2. The algorithm MCCF produces a canonical 
form of a truth table A with a minimum cost according to 
formula 1. 

The run time of the algorithm depends largely on the 
number of rows with a minimum signature, and consequently 
on the number of tables in the list LL. Figure 5 shows a possible 
execution of the algorithm. The algorithm branches whenever 
there are multiple rows with the same minimum row signature. 
Some branches may finish if the minimum row signature for the 
table on that branch is greater than the minimum row signature 
of all the tables in the list. However, because of symmetric 
inputs, there could be branches that are never trimmed by the 



bounding function. Equivalent branches worsen the run time of 
the algorithm, so they should be detected and eliminated. 

row2

row3

rowM

row1

 
Figure 5. Execution of MCCF algorithm 

The use of symmetries to avoid equivalent branches is 
described in the next section. 

4. Use of Symmetries 

Let's look at an example of a Boolean function that exhibits 
input variable symmetry. Figure 6 shows the execution of the 
algorithm MCCF for the given truth table. Numbers at the nodes 
of the execution tree represent the rows with minimum 
signature from top to bottom. 

)dc()ba(y +⋅+=  
 a b c d 

1 1 0 1 0 
2 0 1 1 0 
3 1 0 0 1 
4 0 1 0 1 

 

1 2 3 4

2 3 1 4 1 4 2 3
3 2 4 1 4 1 3 2

4 4 3 3 2 2 1 1  
Figure 6. An example of the execution tree for a function 

with variable symmetry 

Figure 7 presents one stage in the algorithm for the 
example in Figure 6 (the node contained in the rectangle). After 
fixing the first row, there are two rows (2 and 3) with the same 
minimum row signature. Row 3 can be obtained from row 2 by 
swapping the columns d and b, and c and a. This swapping is 
inside the existing column boundaries. Furthermore, the rest of 
the table is the same regardless of which row (2 or 3) is selected 
first. Therefore, branching of the algorithm on both of the rows 
2 and 3 is unnecessary, because the tables on these branches are 
identical and it will lead to the same minimal canonical forms. 
We will call rows 2 and 3 symmetric rows. 

Definition 3. Two rows in a truth table are symmetric if a) 
they have the same row signature and b) one can be obtained 
from the other by swapping columns inside the column 
boundaries, and the rest of the table remains the same regardless 
of which row is selected first. 

  d b c a  
 1 0 0 1 1  
 2 0 1 1 0 11 
 3 1 0 0 1 11 
 4 1 1 0 0 20 
 
 d b a c   b d c a 
1 0 0 1 1  1 0 0 1 1 
2 0 1 0 1  3 0 1 0 1 
3 1 0 1 0  2 1 0 1 0 
4 1 1 0 0  4 1 1 0 0 

  
Figure 7. Example of row symmetry 

The symmetry relation between rows is transitive, and rows 
can be divided into disjunctive symmetry sets. 

In order to check if two rows are symmetric, the columns 
are swapped within the column boundaries to attempt to 
transform the first row into the second row. There could be 
different column orderings that convert one row into the other. 
All of them are valid, but some will make the rest of the table 
the same as the starting table and some will not. Two rows are 
not symmetric if there is no ordering of the columns that will 
transform the table into an identical one. This can be 
computationally intensive, so we propose a fast method to 
accomplish that. 

Definition 4. Two columns are symmetric if the table 
remains invariant after they are swapped, with possible row 
reordering. 

The column symmetry relation is an equivalence relation, 
and the columns can be divided into disjunctive symmetry sets. 
Symmetry between the columns reflects the symmetry of the 
Boolean function’s inputs. In the example in Fig. 8, there are 
two symmetry sets: C1 = {a, b}, and C2 = {c, d, e}. The 
variables from the symmetry set can be interchanged, without 
changing the Boolean function. Column symmetry is preserved 
through all the iterations of the Boolean matching algorithm.  

Group symmetry of variables is also utilized to detect 
equivalent branches in the algorithm. Group symmetry can exist 
between the members of symmetry sets with the same 
cardinality. In the example in Figure 6, variables a and c, and b 
and d are not symmetric, i.e. exchanging only one pair of these 
variables modifies the truth table. But swapping both of these 
pairs (a, c) and (b, d) simultaneously keeps the table invariant. 
This type of special symmetry is also referred to in [1] as 
hierarchical symmetry. 

Definition 5. Two column symmetry sets belong to a 
column symmetry group if a) they have the same cardinality 
and b) after swapping the columns from the first set with the 
columns from the second set, the table stays invariant. 

The column symmetry group relation is also transitive. 
Using the column symmetries, we can easily determine if two 
rows are symmetric. Since symmetry of columns is preserved 
throughout the algorithm, symmetry sets and groups are 
calculated only once. 

The ones and the zeros in the minimum signature rows are 
labeled with their corresponding column symmetry sets. If the 
labels for the ones in both rows are the same, as well as the 
labels for the zeros, looking between the column boundaries, 



then the rows are symmetric. The order of the labels within the 
column boundaries does not matter, because the columns can be 
swapped. In the example in Fig. 8, rows 2, 3, and 4 have the 
same minimum signature 11. Rows 2 and 3 belong to the same 
row symmetry set, and another symmetry set is row 4. The 
algorithm would branch using minimum rows 2 and 4. 
Eventually, the branch from row 4 will be stopped, because its 
minimum row signature is greater than the minimum row 
signature in the branch from row 2. Figure 9 presents the 
pseudo-code for symmetry check for the rows with the same 
minimum row signature. 

 
 

 e b d c a  symmetry set labels 
1 0 0 0 1 1   
2 0 0 1 0 1 11 C2 C1 C2 | C2 C1 
3 1 0 0 0 1 11 C2 C1 C2 | C2 C1 
4 0 1 0 1 0 11 C2 C1 C2 | C2 C1 
5 0 1 1 0 0 20  
6 1 1 0 0 0 20  

 
 e b d c a   e d b a c  
1 0 0 0 1 1  1 0 0 0 1 1  
2 0 0 1 0 1  4 0 0 1 0 1  
3 1 0 0 0 1 1001 3 1 0 0 1 0 1010
4 0 1 0 1 0 1010 2 0 1 0 1 0 1010
5 0 1 1 0 0 1100 5 0 1 1 0 0 1100
6 1 1 0 0 0 2000 6 1 0 1 0 0 1100

 

y=(a+b)(c+d+e) 

 
Figure 8. Using column symmetry to determine the 

symmetry of rows 

obtain_column_symmetry_sets_and_groups();
for ∀i ∈ min_row_set {

(set_label_0[i],set_label_1[i]) =
calculate_symmetry_set_labels();

(group_label_0[i],group_label_1[i]) =
calculate_symmetry_group_labels();}

new_min_row_set ← r ∈ min_row_set;
for ∀i ∈ (min_row_set \ new_min_row_set){
for ∀j ∈ new_min_row_set {
if(set_label_0[i] != set_label_0[j] &&

set_label_1[i] != set_label_1[j]) {
if (group_label_0[i]!=group_label_0[j]
&& group_label_1[i]!=group_label_1[j]){
new_min_row_set ← min_row_set[i];

} } } }
min_row_set = new_min_row_set;

Figure 9. Pseudo-code for symmetry check 

The symmetry check is performed after Step 2.1 in the 
MCCF algorithm if there are multiple rows with the same 
minimum signature and only non-symmetric rows are passed on 
to the next step.  

5. Experimental Results 

The MCCF algorithm was tested on a large set of CMOS 
gates with a constraint on the number of series (s) and parallel 
(p) transistors. The gates were constructed as AND-OR trees 
[8]. An AND-OR tree is a tree whose internal nodes have two or 

more children, and a node can be an AND node or an OR node. 
The AND and OR nodes alternate along each path from the root 
to a leaf. The leaves are labeled with an input variable. The root 
is labeled with a (s, p) constraint, where s is the maximum 
number of transistors in series and p is the maximum number of 
transistors in parallel. All the gates with a (s, p) constraint can 
be divided in two groups: and-or gates with an AND node as a 
root, and or-and gates with an OR node as a root. The Boolean 
function of an AND-OR tree is obtained by the in-order 
traversal of the tree. Due to space limitations we omit the 
algorithm for generating the AND-OR trees with a (s, p) 
constraint. 

The Boolean equations of the AND-OR trees are converted 
into the implicant tables using SIS [9]. The Boolean functions 
representing the AND-OR trees are all positive unate. The 
implicant table is transformed into a table of ones and zeros, 
where the don’t cares are assigned a value of zero. Table 1 
presents the results of running the MCCF algorithm with 
symmetry check as described in section 4 on all of the gates 
with (s, p) limits up to (5, 5). The second column presents the 
total number of gates with the (s, p) constraint. The next 
columns are subdivided into the worst-case number for a 
function with the corresponding (s, p) limit, the average, and the 
median among all functions with that limit. The third column 
corresponds to the total number of nodes in the execution tree. 
The fourth column is the maximum number of tables in the 
linked list LL among all iterations of the MCCF algorithm. It 
represents the maximum width of the execution tree. The fifth 
columns is the CPU time in milliseconds on a Sun UltraSparc 
60 workstation spent for the execution of the whole MCCF 
algorithm. The last column is a comparison with the Boolean 
matching method described in [6]. Essentially, it presents the 
number of permutations needed to determine input 
correspondence due to aliasing errors. The number of 
permutations is equal to )!(1∏ =

q
i iS , where Si is the cardinality of 

a symmetry class whose elements are symmetry sets with i 
elements [6]. 

It can be observed from Table 1 that the cut point where 
aliasing errors cause a larger number of permutations than the 
number of nodes in the execution tree of the MCCF algorithm 
occurs for (s, p) ≥ (3, 3). For libraries with small number of 
inputs and up to three transistors in series and/or parallel, 
Boolean matching methods based on signatures and BDDs have 
comparable complexity with the MCCF algorithm. But for large 
functions with lots of inputs, on average and in the worst case, 
the proposed MCCF algorithm outperforms previous Boolean 
matching methods. 

In all tested (s, p) functions in Table 1, the MCCF 
algorithm with use of symmetries produced a single canonical 
form at the end. All equivalent branches were eliminated using 
the proposed method in section 4, which contributed to the fast 
and feasible run-time and computational complexity for large 
functions. 

 
 



Table 1. Experimental results for the MCCF algorithm on a set of gates with a (s, p) limit 

MCCF 
total # of nodes  

in the execution tree 

MCCF 
max width of  

the execution tree 

MCCF  
CPU time [ms]

# of permutations in [6] (s, p) # of  
function

s 
worst average median worst average median worst average worst average median

(2, 3) 18 10 4.37 4 2 1.16 1 < 1 < 1 6 1.95 2 
(3, 2) 18 9 3.52 3 1 1.00 1 < 1 < 1 6 1.95 2 
(3, 3) 87 28 6.43 5 3 1.25 1 10 0.263 24 4.32 2 
(3, 4) 396 65 10.50 8 4 1.55 1 20 1.439 120 10.73 6 
(4, 3) 396 92 8.79 6 6 1.27 1 40 1.228 120 10.73 6 
(4, 4) 3503 257 15.88 10 6 1.62 1 280 3.994 720 35.34 12 
(4, 5) 28435 626 25.41 15 7 1.90 2 1520 10.252 5040 117.96 24 
(5, 4) 28435 1025 23.75 12 12 1.63 1 3910 11.208 5040 117.96 24 
(5, 5) 425803 3126 41.27 20 12 1.94 2 37280 35.722 40320 466.34 48 

 
 
The MCCF algorithm can be used for examples where the 

number of permutations due to aliasing errors is large, and 
where the Boolean function can be represented with an 
implicant table with a feasible number of rows. For example, 
the function f = x0x1+x2(x3+x4) +x5x6(x7+x8)+(x9+x10)(x11+x12)+ 
+x13(x14+x15)(x16+x17) requires 8!2! = 80640 permutations to find 
the input correspondence using signatures in [6]. This function 
has 18 columns and 20 rows in the implicant table and it took 
0.02s to find the canonical form. The total number of nodes in 
the execution tree was 20 and the maximum width of the 
execution tree was 3. 

6. Conclusion 

This paper presented a new algorithm for obtaining a 
canonical form of a Boolean function under any permutation of 
its inputs, where the function is represented in the form of a 
truth table or a minimized sum-of-products form. The minimum 
cost of the canonical form of the table is used as a signature for 
uniquely identifying the function in the library.  

A branch-and-bound algorithm, with a very tight bounding 
function, is used to find the canonical form. Using symmetries 
of the input variables, the algorithm avoids equivalent branches 
and is able to handle very large functions. The algorithm can be 
used for obtaining a unique variable ordering in ROBDDs, so it 
can be incorporated with BDD representations of Boolean 
networks. 

Experimental results on more than 100,000 gates (with up 
to 25 inputs and 3125 implicants) confirm the validity and 
feasible run-time of the algorithm. The best performance is 
achieved with large libraries and very complex Boolean 
functions, where other methods based on signatures and BDDs 
require large number of permutations for finding the right input 
correspondences. 
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9. Appendix 

Proof of Lemma1: The proof is by induction. For cr = 1, we 
have only one table in the list, equal to the whole truth table. 
From step 1, all minimum rows r ∈ min_row_set(A1), have the 
same minimum cost Smin

1, equal to the number of ones in these 
rows. After permutation of columns in step 2, all ones are on the 
right in the row. The new column boundary is inserted at the 
column where the block of ones starts. Since all minimum rows 
r have the same number of ones, all new tables Ar

1 will have the 
same column boundary c2. 

Let's assume that after n iterations we have h column 
boundaries c1

i, c2
i,..,ch

i. By iteration we mean the loop which 
begins at step 1 and ends at step 3. We assume that they are the 
same for all Ai ∈ LL. We want to prove that in the (n+1)-st 
iteration, the new inserted boundaries will be the same for all 
tables Ai in the list. Let's suppose that is not true, that for two 
tables Ar

i and Ap
j (with minimum rows r and p, respectively) the 

new column boundaries are different. From step 2.1, the row 
signatures for r and p are the same, Sr

i = Sp
j = min_signature. It 

means that srl = spl, ∀l = 1,..,h (step 1.1). The number of ones 
between the column boundaries (set in iteration n) is the same 
for rows r and p. In step 2.1.1, the columns in rows r and p are 
rearranged, such that ones are placed at the right side of the 
column boundaries. The new column boundaries are inserted 

before the columns where the blocks of ones start. If the new 
column boundaries are different for rows r and p, it means that 
the row signatures for r and p are different. That contradicts 
step 2.1. 

Proof of Lemma2: All tables in the list have the same 
column boundaries (Lemma 1). For each minimum row, the row 
signatures are the same among all tables (step 2.1). The 
columns in the tables are rearranged in step 2.1.1 such that ones 
in the minimum rows are placed at the right side in each column 
boundary. Therefore, for each iteration of the algorithm, the 
minimized rows in all tables are identical.  

Proof of Theorem 2: Let's assume that there is a table Aj 
∉LL that has smaller cost than all tables Ai ∈LL. If Aj has the 
smallest cost, that can mean only one of the following: (i) the 
first row of table Aj has smaller cost than the first row of Ai; or 
(ii) the first n rows of Aj have the same cost as the first n rows 
of Ai, and the (n+1)-st row of Aj has smaller cost than the (n+1)-
st row of Ai. 

(i) For the first iteration (cr = 1), the column boundaries 
are set at the first row and at the end of the table. The row 
signature represents the number of ones in each row of the 
table. If the first row of table Aj has smaller cost than the first 
row of Ai, then the number of ones in the first row of table Aj is 
smaller than the number of ones in the first row of Ai. This is in 
contradiction with step 1.2 of the algorithm. 

Using the claim from Lemma 2, after n iterations of the 
algorithm (cr = n) the cost of the top n rows of the tables Ai in 
the list LL are the same. Also, the column boundaries for all 
tables Ai are the same (Lemma 1). We assumed that the costs of 
the first n rows of tables Ai and Aj are the same. Because the 
cost represents a binary number, it follows that the top n rows 
are identical for tables Ai and Aj. Let's put column boundaries at 
each row of table Aj for the top n rows. The column boundaries 
are of the table Aj for the top n rows. If the top n rows are 
identical, then the column boundaries of Ai and Aj are the same 
too. If the cost of the (n+1)-st row of table Aj is smaller than the 
cost of the (n+1)-st row of table Ai, then its row signature is 
smaller too. That contradicts steps 1.2 and 2.1. 
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