
Efficient Canonical Form for Boolean Matching
of Complex Functions in Large Libraries

Jovanka Ciric
Synplicity Inc.

935 Stewart Drive
Sunnyvale, CA 94085

jovanka@synplicity.com

Carl Sechen
University of Washington

Dept. of Electrical Engineering, Box 352500
Seattle, WA 98195

sechen@ee.washington.edu

Abstract

A new algorithm is developed which transforms the truth
table or implicant table of a Boolean function into a canonical
form under any permutation of inputs. The algorithm is used for
Boolean matching for large libraries that contain cells with large
numbers of inputs and implicants. The minimum cost canonical
form is used as a unique identifier for searching for the cell in
the library. The search time is nearly constant if a hash table is
used for storing the cells’ canonical representations in the
library. Experimental results on more than 100,000 gates
confirm the validity and feasible run-time of the algorithm.

1. Introduction

An important part of logic synthesis and verification is
testing if two Boolean functions are equivalent. During
technology-mapping, Boolean matching is used to check if part
of a network implements a gate in the library. A Boolean
function is usually represented in the form of a binary decision
diagram (BDD) or a truth table.

Boolean matching is also significant in the library-free
technology-mapping problem. The "fluid" library of cells
typically has a constraint on the number of parallel and serial
devices. The size of the fluid library is very large. Therefore, a
cell generator is needed to lay out the cells. Boolean matching is
used to check if a cluster of a network that satisfies the parallel
and series constraint (and therefore forms a valid gate in the
library) has already been laid out by the cell generator.

In the most general case, Boolean matching implies
resolving if two Boolean functions are the same under negation
of inputs, permutation of inputs or negation of outputs.

Boolean functions that are equivalent under negation of
inputs form an N-equivalent class, under permutation of inputs a
P-equivalent class, and under any of the three stated conditions
an NPN-equivalent class.

Previous work in Boolean matching was done using
signatures and canonical representations on BDDs or truth
tables [1, 2, 3, 4, 6, 7]. A signature is a description of an input
variable that is independent of the permutation of the inputs of a
Boolean function [1]. A necessary condition for equivalency of
two Boolean functions is that their signatures are the same.
However, that is not a sufficient condition, because one
signature can describe two or more different functions. It was
observed in [1] that regardless of the quality of the signatures
used on ROBDDs, they always failed to uniquely identify
certain variables. These variables have symmetry properties and
they form an aliasing group.

If the size of the aliasing group is k, then k!
correspondences need to be additionally tested. For a set of
benchmarks, the number of permutations can be more than
100,000 [1]. Burch and Long developed a canonical form for
phase matching (equivalency under negation of inputs), but for
input permutation only a semi-canonical form was proposed [3].
The semi-canonical forms can be different for some
permutation equivalent functions.

In previous work [4, 6, 7], it was pointed out that the
algorithms were targeted for logic functions with small numbers
of inputs (less than 10). Our algorithm handles Boolean
functions with large numbers of inputs and product terms
(easily handling 25 inputs and more than 1000 product terms).

We developed an algorithm that guarantees a unique
canonical form of the truth table or implicant table, under any
permutation of inputs and for any type of symmetric inputs.
Moreover, our algorithm can be used for obtaining a unique
ordering of variables in ROBDDs. After a unique variable
ordering is established and ROBDDs are constructed, two
ROBDDs are compared in nearly constant time if a hash table is
used for storing the ROBDDs. A previous attempt at finding
unique variable orderings for ROBDDs was done using
signatures and it failed for some cells in the library [5]. Finally,
our algorithm for computing a canonical form under input
permutation is more efficient than [4] for functions with large

number of inputs, because the canonical representation in [4]
has a length of 2n for an n-input function.

2. Problem Formulation

In the technology-mapping step, we used the commands in
SIS [9] for manipulating the network. The Boolean functions
were represented with the sum-of-products form, as in the blif
[9] format. We assume that the library consists of positive
unate, negative unate and binate functions. The binate functions,
such as XORs and MUXs, are represented with truth tables
containing only the rows where the function's output is 1. The
positive and negative unate functions are represented with an
implicant table. An implicant table consists of rows of
implicants where the output is 1. For unate functions, the sum-
of-products (SOP) form consisting of all prime implicants is
minimal and unique [10]. Therefore, the implicant table of a
unate function will be unique. Because the minimized SOP
form is more compact than a truth table, we used it as the unate
function’s representation for Boolean matching. Examples of a
truth table and implicant tables for positive and negative unate
functions are shown in Figure 1.

Usually, a vast majority of the functions in a library are
unate. Therefore the negation of inputs and output in the
Boolean matching problem is unnecessary for these functions.
In this case, our cluster function (a portion of the unmapped
network that is collapsed into a single node) is made unate prior
to calculating its canonical form, by adding inverters at its
inputs, where necessary. If there are binate cells in the library
and the cluster function does not match any of the unate cells,
the cluster function is transformed into a truth table and checked
for equivalency.

a b c a b c d a b c d
1 0 0 0 - 0 - 1 1 - -
1 1 0 0 - - 0 - 1 1 -
0 1 1 - 0 0 - - - 1 1
1 1 1 - 0 - 0 1 - - 1

 (a) bccaf += (b) cdabg += (c) adcdbcabh +++=

Figure 1. Examples of (a) a truth table,
(b) a negative unate function implicant table,
(c) a positive unate function implicant table

1 . . j . . N

2M*N-1 . . 2(M-1)*N+N-j . . 2(M-1)*N 1
. :

2(M-i)*N+N-1 . . 2(M-i)*N+N-j . . 2(M-i)*N i
. :

22N-1 . . 22N-j . . 2N M-1
2N-1 . . 2j . . 20 M

Figure 2. Weight assignment for a truth table

For a given truth or implicant table, we assign a weight for
each cell in the table. Weight assignment for a table with M
rows and N columns is presented in Figure 2.

The columns correspond to the inputs of the function and
the rows correspond to the minterms, or implicants in the case
of the SOP form. Each cell in the truth table has a zero or one,
depending on whether the input is complemented or not
complemented in the minterm. For the SOP form, don’t cares
are assigned a value of zero. If a variable appears in the
implicant, it is assigned a value of one in the table. Negative
unate functions contain don't cares and zeros in the implicant
table. In that case, don't cares are set to zero and zeros are
transformed to ones. We would like to find a unique canonical
representation of the truth table under arbitrary permutations of
its rows and columns. The cost function for any permutation of
rows and columns can be computed using the following formula
(1):

� �
= =

−+⋅−⋅=
M

i

N

j

jpcNNiprMjpciprv
1 1

][])[(2])[],[(),(cost pcpr

Permutation vectors pr and pc, for rows and columns
respectively, are defined as pr = (π(1), π(2),.., π(M)); pc =
(π(1), π(2),.., π(N)); π: {1, 2, .., n}→{1, 2, .., n} is the
permutation function, and v (i,j) ∈{0, 1}.

The cost function represents a decimal equivalent of a
binary number obtained by concatenating the rows of the table
next to each other, starting from the top of the table to the
bottom. For example, different costs for the aoi22 function
under permutation of inputs are depicted in Figure 3.

a b c d b d c a
1 0 1 0 0 0 1 1
1 0 0 1 0 1 0 1
0 1 1 0 1 0 1 0
0 1 0 1 1 1 0 0

 1010100101100101 0011010110101100
 = 43365 = 13740

Figure 3. Different costs according to formula (1)
 for a function aoi22 under permutation of inputs

Theorem 1. There exists a canonical form of a truth table,
which has a minimum cost (according to formula 1), among all
possible permutations of rows and columns.

Proof. The cost function in formula 1 represents a decimal
equivalent of a binary number, obtained by concatenating the
rows together starting from the top row to the bottom row.
Permutations of rows and columns create a discreet, finite set of
integers, which has a minimum. A table with the minimum cost
is the canonical form.

3. Computing the Minimum Cost Canonical Form

The cells in the upper left corner of the table have the
highest weight and the cells in the lower right corner have the
lowest weight. The weight decreases going from left to right,
and top to bottom. To minimize the cost function, one would
like to swap the rows and columns of the table, such that the
ones in the table are placed to the right and to the bottom. Also,

since the succeeding smaller weights for a cell are along the
same row to the right, we minimize the cost of the table starting
from the top rows to the bottom.

We use a branch-and-bound algorithm, with a very tight
bounding function, for obtaining the canonical form. First, we
find a row with the minimum number of ones and place it on the
top. The columns are swapped such that all zero elements in
that row are on the left, and all ones on the right. After
rearranging the columns, the top row is fixed, and we proceed to

find the next minimum cost row. However, the previously fixed
rows determine which columns can be swapped in the later
steps. The block of columns with the same elements in the fixed
row can be swapped without changing the cost of the row. But
swapping a column that contains a zero with a column that
contains a one in the fixed row will change the cost of the row.
Therefore, we insert a column boundary at the transition from
zeros to ones in the minimized row. Only columns inside the
column boundaries can be swapped.

1 2 3 45 6 row signature
1 0 0 0 11 1 3
2 0 1 1 00 1 3
3 0 0 1 01 1 3
4 0 1 1 01 1 4
5 1 1 1 11 1 6
6 1 0 0 11 0 3

1 2 3 4 5 6 1 4 5 2 3 6 1 2 4 3 5 6 6 2 3 4 5 1
1 0 0 0 1 1 1 2 0 0 0 1 1 1 3 0 0 0 1 1 1 6 0 0 0 1 1 1
2 0 1 1 0 0 1 21 1 0 1 1 0 0 1 21 2 0 1 0 1 0 1 12 2 1 1 1 0 0 0 30
3 0 0 1 0 1 1 12 3 0 0 1 0 1 1 12 1 0 0 1 0 1 1 12 3 1 0 1 0 1 0 21
4 0 1 1 0 1 1 22 4 0 0 1 1 1 1 13 4 0 1 0 1 1 1 13 4 1 1 1 0 1 0 31
5 1 1 1 1 1 1 33 5 1 1 1 1 1 1 33 5 1 1 1 1 1 1 33 5 1 1 1 1 1 1 33
6 1 0 0 1 1 0 12 6 1 1 1 0 0 0 30 6 1 0 1 0 1 0 21 1 1 0 0 1 1 0 12

12 3 4 56 32 1 6 54 14 5 2 36 14 2 5 36 12 4 3 56 32 6 1 54
1 00 0 1 11 1 00 0 1 11 2 00 0 1 11 3 00 0 1 11 3 00 0 1 11 6 00 0 1 11
3 00 1 0 11 6 00 1 0 11 3 00 1 0 11 2 00 1 0 11 1 00 1 0 11 1 00 1 0 11
2 01 1 0 01 1101 3 10 0 1 10 1011 1 01 1 0 01 1101 1 01 0 1 01 1011 2 01 0 1 01 1011 3 10 1 0 10 1101
4 01 1 0 11 1102 4 11 0 1 10 2011 4 00 1 1 11 0112 4 00 1 1 11 0112 4 01 0 1 11 1012 4 11 1 0 10 2101
5 11 1 1 11 2112 5 11 1 1 11 2112 5 11 1 1 11 2112 5 11 1 1 11 2112 5 11 1 1 11 2112 5 11 1 1 11 2112
6 10 0 1 10 1011 2 11 0 1 00 2010 6 11 1 0 00 2100 6 11 0 1 00 2010 6 10 1 0 10 1101 2 11 1 0 00 2100

14 5 2 36 14 2 5 36
2 00 0 1 11 3 00 0 1 11
3 00 1 0 11 2 00 1 0 11
4 00 1 1 11 4 00 1 1 11
1 01 1 0 01 1101 1 01 0 1 01 1011
5 11 1 1 11 2112 5 11 1 1 11 2112
6 11 1 0 00 2100 6 11 0 1 00 2010

1 4 2 5 3 6
3 0 0 0 1 1 1
2 0 0 1 0 1 1
4 0 0 1 1 1 1
1 0 1 0 1 0 1
5 1 1 1 1 1 1 111111
6 1 1 0 1 0 0 110100

1 4 2 5 3 6
3 0 0 0 1 1 1
2 0 0 1 0 1 1
4 0 0 1 1 1 1
1 0 1 0 1 0 1
6 1 1 0 1 0 0
5 1 1 1 1 1 1

row1 = 1
row1 = 2 row1 = 3 row1 = 6

row2 = 3 row2 = 6 row2 = 3 row2 = 2 row2 = 1 row2 = 1

row3 = 4 row3 = 4

row4 = 1

row5 = 6

column boundary

Figure 4. Example of transforming a truth table into its minimum cost canonical form

MCCF (M, N, A, Acanonic)

Input: Positive integers M, N (M = number of rows, N = number of columns),
truth table A ⊆ {0, 1} M x N

Output: Acanonic canonical form of table A.
cr = 1; /* current_row */
LL ← A1 = A; /* linked list of tables */
K = 1; /* K = number of tables Ai , i = 1,.., K in the linked list */
h = 1; /* h = number of column boundaries */
/* column boundaries c1,.., ch, satisfy h ≤ N and c1 = 1 < c2 <..< ch ≤ N */
1. min_signature = ∝. For each i = 1,.., K do steps 1.1. through 1.3.

1.1. Let ch+1 = N + 1
skj

i = number of 1s in columns cj, cj + 1,.., cj+1 - 1 of Ai, k = cr,.., M, j = 1,.., h
Sk

i = (sk1
i, sk2

i,.., skh
i), k = cr,.., M, i = 1,.., K

1.2. Find minimum Smin
i from all Sk

i.
Let min_row_set (Ai) = {r ⊆ {cr,.., M} : Sr

i = Smin
i}

1.3. If (Smin
i < min_signature) then min_signature = Smin

i.
2. K' = K; For each i = 1,.., K do steps 2.1. and 2.2.

2.1. If (Smin
i = min_signature) then for each r ⊆ min_row_set (Ai), do steps 2.1.1. through

2.1.3.
2.1.1. Permute the columns cj,.., cj+1 - 1 (j = 1,.., h) of Ai so that 0s are followed by 1s
between the column boundaries of row r. Swap minimum row r with current row cr. Let Air
denote the resulting table.
2.1.2. Insert new column boundaries between the existing boundaries cj, at the columns of
transition between zeros and ones, in row r. Let h denote the new number of column
boundaries.
2.1.3. Add Air to the linked list LL; K' = K' + 1.

2.2. Remove Ai from the linked list LL; K' = K' - 1.
3. K = K'; cr = cr + 1; If (cr ≤ M) go to step 1.

Acanonic = Ai, Ai ∈ LL, ∀i.

Definition 1. Column boundaries partition a row into sets

(blocks) of columns such that column permutations may only
take place within the sets.

Definition 2. A row signature is a sequence of numbers
where each number represents the number of ones in the
corresponding block of columns, where the blocks are examined
from left to right for the row.

The algorithm for transforming a table into its minimum
cost canonical form (MCCF) will be explained with an
example. Figure 4 shows the truth table of a Boolean function
with 6 inputs and 6 minterms

643152654321321654321 xxxx)xx(xxx)xxxxxx(xxxxxxf ++++= .
At the beginning, we look at the whole table. The row

signatures represent the number of ones in each row. The
minimal row signatures are written in bold font. Since we have
multiple rows with a minimum row signature, they are all
candidates for the first row in the canonical form. This is the
branching point of the algorithm. Four tables are created, each
with a different minimum row as its first row. The columns of
the tables are permuted such that all ones in the minimized row
are grouped at right of the table, and all zeros at the left. A
column boundary is placed at the transition from zeros to ones
in the minimized row. The first row is then fixed. The tables are
stored in a linked list.

For each table in the list, row signatures are calculated
based on the number of ones inside the column boundaries.
Row signatures are written on the right side of the table. The
minimum row signature is noted for each table. The smallest
minimum row signature among all tables in the list determines

the bounding function in the algorithm. The smallest signature
in the list of tables is shaded in Figure 4. Only the tables with a
minimum row signature equal to the minimum among all the
tables in the list are kept.

At the end of the algorithm, the list contains the canonical
forms of the initial truth table. In this example, there is a unique
solution for permuting the rows and columns to obtain the
canonical form. In the general case, different permutations of
rows and columns can lead to the same minimum cost canonical
form for the truth table. MCCF is the formal definition of the
minimum cost canonical form algorithm. The following lemmas
and a theorem are proved in the appendix.

Lemma 1. The column boundaries for all tables Ai in the
list LL are identical at the end of each iteration of the algorithm
(step 3).

Lemma 2. Subtables made of the top minimum signature
rows of tables Ai in the list LL are identical.

Theorem 2. The algorithm MCCF produces a canonical
form of a truth table A with a minimum cost according to
formula 1.

The run time of the algorithm depends largely on the
number of rows with a minimum signature, and consequently
on the number of tables in the list LL. Figure 5 shows a possible
execution of the algorithm. The algorithm branches whenever
there are multiple rows with the same minimum row signature.
Some branches may finish if the minimum row signature for the
table on that branch is greater than the minimum row signature
of all the tables in the list. However, because of symmetric
inputs, there could be branches that are never trimmed by the

bounding function. Equivalent branches worsen the run time of
the algorithm, so they should be detected and eliminated.

row2

row3

rowM

row1

Figure 5. Execution of MCCF algorithm

The use of symmetries to avoid equivalent branches is
described in the next section.

4. Use of Symmetries

Let's look at an example of a Boolean function that exhibits
input variable symmetry. Figure 6 shows the execution of the
algorithm MCCF for the given truth table. Numbers at the nodes
of the execution tree represent the rows with minimum
signature from top to bottom.

)dc()ba(y +⋅+=
 a b c d

1 1 0 1 0
2 0 1 1 0
3 1 0 0 1
4 0 1 0 1

1 2 3 4

2 3 1 4 1 4 2 3
3 2 4 1 4 1 3 2

4 4 3 3 2 2 1 1
Figure 6. An example of the execution tree for a function

with variable symmetry

Figure 7 presents one stage in the algorithm for the
example in Figure 6 (the node contained in the rectangle). After
fixing the first row, there are two rows (2 and 3) with the same
minimum row signature. Row 3 can be obtained from row 2 by
swapping the columns d and b, and c and a. This swapping is
inside the existing column boundaries. Furthermore, the rest of
the table is the same regardless of which row (2 or 3) is selected
first. Therefore, branching of the algorithm on both of the rows
2 and 3 is unnecessary, because the tables on these branches are
identical and it will lead to the same minimal canonical forms.
We will call rows 2 and 3 symmetric rows.

Definition 3. Two rows in a truth table are symmetric if a)
they have the same row signature and b) one can be obtained
from the other by swapping columns inside the column
boundaries, and the rest of the table remains the same regardless
of which row is selected first.

 d b c a
 1 0 0 1 1
 2 0 1 1 0 11
 3 1 0 0 1 11
 4 1 1 0 0 20

 d b a c b d c a
1 0 0 1 1 1 0 0 1 1
2 0 1 0 1 3 0 1 0 1
3 1 0 1 0 2 1 0 1 0
4 1 1 0 0 4 1 1 0 0

Figure 7. Example of row symmetry

The symmetry relation between rows is transitive, and rows
can be divided into disjunctive symmetry sets.

In order to check if two rows are symmetric, the columns
are swapped within the column boundaries to attempt to
transform the first row into the second row. There could be
different column orderings that convert one row into the other.
All of them are valid, but some will make the rest of the table
the same as the starting table and some will not. Two rows are
not symmetric if there is no ordering of the columns that will
transform the table into an identical one. This can be
computationally intensive, so we propose a fast method to
accomplish that.

Definition 4. Two columns are symmetric if the table
remains invariant after they are swapped, with possible row
reordering.

The column symmetry relation is an equivalence relation,
and the columns can be divided into disjunctive symmetry sets.
Symmetry between the columns reflects the symmetry of the
Boolean function’s inputs. In the example in Fig. 8, there are
two symmetry sets: C1 = {a, b}, and C2 = {c, d, e}. The
variables from the symmetry set can be interchanged, without
changing the Boolean function. Column symmetry is preserved
through all the iterations of the Boolean matching algorithm.

Group symmetry of variables is also utilized to detect
equivalent branches in the algorithm. Group symmetry can exist
between the members of symmetry sets with the same
cardinality. In the example in Figure 6, variables a and c, and b
and d are not symmetric, i.e. exchanging only one pair of these
variables modifies the truth table. But swapping both of these
pairs (a, c) and (b, d) simultaneously keeps the table invariant.
This type of special symmetry is also referred to in [1] as
hierarchical symmetry.

Definition 5. Two column symmetry sets belong to a
column symmetry group if a) they have the same cardinality
and b) after swapping the columns from the first set with the
columns from the second set, the table stays invariant.

The column symmetry group relation is also transitive.
Using the column symmetries, we can easily determine if two
rows are symmetric. Since symmetry of columns is preserved
throughout the algorithm, symmetry sets and groups are
calculated only once.

The ones and the zeros in the minimum signature rows are
labeled with their corresponding column symmetry sets. If the
labels for the ones in both rows are the same, as well as the
labels for the zeros, looking between the column boundaries,

then the rows are symmetric. The order of the labels within the
column boundaries does not matter, because the columns can be
swapped. In the example in Fig. 8, rows 2, 3, and 4 have the
same minimum signature 11. Rows 2 and 3 belong to the same
row symmetry set, and another symmetry set is row 4. The
algorithm would branch using minimum rows 2 and 4.
Eventually, the branch from row 4 will be stopped, because its
minimum row signature is greater than the minimum row
signature in the branch from row 2. Figure 9 presents the
pseudo-code for symmetry check for the rows with the same
minimum row signature.

 e b d c a symmetry set labels
1 0 0 0 1 1
2 0 0 1 0 1 11 C2 C1 C2 | C2 C1
3 1 0 0 0 1 11 C2 C1 C2 | C2 C1
4 0 1 0 1 0 11 C2 C1 C2 | C2 C1
5 0 1 1 0 0 20
6 1 1 0 0 0 20

 e b d c a e d b a c
1 0 0 0 1 1 1 0 0 0 1 1
2 0 0 1 0 1 4 0 0 1 0 1
3 1 0 0 0 1 1001 3 1 0 0 1 0 1010
4 0 1 0 1 0 1010 2 0 1 0 1 0 1010
5 0 1 1 0 0 1100 5 0 1 1 0 0 1100
6 1 1 0 0 0 2000 6 1 0 1 0 0 1100

y=(a+b)(c+d+e)

Figure 8. Using column symmetry to determine the

symmetry of rows

obtain_column_symmetry_sets_and_groups();
for ∀i ∈ min_row_set {

(set_label_0[i],set_label_1[i]) =
calculate_symmetry_set_labels();

(group_label_0[i],group_label_1[i]) =
calculate_symmetry_group_labels();}

new_min_row_set ← r ∈ min_row_set;
for ∀i ∈ (min_row_set \ new_min_row_set){
for ∀j ∈ new_min_row_set {
if(set_label_0[i] != set_label_0[j] &&

set_label_1[i] != set_label_1[j]) {
if (group_label_0[i]!=group_label_0[j]
&& group_label_1[i]!=group_label_1[j]){
new_min_row_set ← min_row_set[i];

} } } }
min_row_set = new_min_row_set;

Figure 9. Pseudo-code for symmetry check

The symmetry check is performed after Step 2.1 in the
MCCF algorithm if there are multiple rows with the same
minimum signature and only non-symmetric rows are passed on
to the next step.

5. Experimental Results

The MCCF algorithm was tested on a large set of CMOS
gates with a constraint on the number of series (s) and parallel
(p) transistors. The gates were constructed as AND-OR trees
[8]. An AND-OR tree is a tree whose internal nodes have two or

more children, and a node can be an AND node or an OR node.
The AND and OR nodes alternate along each path from the root
to a leaf. The leaves are labeled with an input variable. The root
is labeled with a (s, p) constraint, where s is the maximum
number of transistors in series and p is the maximum number of
transistors in parallel. All the gates with a (s, p) constraint can
be divided in two groups: and-or gates with an AND node as a
root, and or-and gates with an OR node as a root. The Boolean
function of an AND-OR tree is obtained by the in-order
traversal of the tree. Due to space limitations we omit the
algorithm for generating the AND-OR trees with a (s, p)
constraint.

The Boolean equations of the AND-OR trees are converted
into the implicant tables using SIS [9]. The Boolean functions
representing the AND-OR trees are all positive unate. The
implicant table is transformed into a table of ones and zeros,
where the don’t cares are assigned a value of zero. Table 1
presents the results of running the MCCF algorithm with
symmetry check as described in section 4 on all of the gates
with (s, p) limits up to (5, 5). The second column presents the
total number of gates with the (s, p) constraint. The next
columns are subdivided into the worst-case number for a
function with the corresponding (s, p) limit, the average, and the
median among all functions with that limit. The third column
corresponds to the total number of nodes in the execution tree.
The fourth column is the maximum number of tables in the
linked list LL among all iterations of the MCCF algorithm. It
represents the maximum width of the execution tree. The fifth
columns is the CPU time in milliseconds on a Sun UltraSparc
60 workstation spent for the execution of the whole MCCF
algorithm. The last column is a comparison with the Boolean
matching method described in [6]. Essentially, it presents the
number of permutations needed to determine input
correspondence due to aliasing errors. The number of
permutations is equal to)!(1∏ =

q
i iS , where Si is the cardinality of

a symmetry class whose elements are symmetry sets with i
elements [6].

It can be observed from Table 1 that the cut point where
aliasing errors cause a larger number of permutations than the
number of nodes in the execution tree of the MCCF algorithm
occurs for (s, p) ≥ (3, 3). For libraries with small number of
inputs and up to three transistors in series and/or parallel,
Boolean matching methods based on signatures and BDDs have
comparable complexity with the MCCF algorithm. But for large
functions with lots of inputs, on average and in the worst case,
the proposed MCCF algorithm outperforms previous Boolean
matching methods.

In all tested (s, p) functions in Table 1, the MCCF
algorithm with use of symmetries produced a single canonical
form at the end. All equivalent branches were eliminated using
the proposed method in section 4, which contributed to the fast
and feasible run-time and computational complexity for large
functions.

Table 1. Experimental results for the MCCF algorithm on a set of gates with a (s, p) limit

MCCF
total # of nodes

in the execution tree

MCCF
max width of

the execution tree

MCCF
CPU time [ms]

of permutations in [6] (s, p) # of
function

s
worst average median worst average median worst average worst average median

(2, 3) 18 10 4.37 4 2 1.16 1 < 1 < 1 6 1.95 2
(3, 2) 18 9 3.52 3 1 1.00 1 < 1 < 1 6 1.95 2
(3, 3) 87 28 6.43 5 3 1.25 1 10 0.263 24 4.32 2
(3, 4) 396 65 10.50 8 4 1.55 1 20 1.439 120 10.73 6
(4, 3) 396 92 8.79 6 6 1.27 1 40 1.228 120 10.73 6
(4, 4) 3503 257 15.88 10 6 1.62 1 280 3.994 720 35.34 12
(4, 5) 28435 626 25.41 15 7 1.90 2 1520 10.252 5040 117.96 24
(5, 4) 28435 1025 23.75 12 12 1.63 1 3910 11.208 5040 117.96 24
(5, 5) 425803 3126 41.27 20 12 1.94 2 37280 35.722 40320 466.34 48

The MCCF algorithm can be used for examples where the

number of permutations due to aliasing errors is large, and
where the Boolean function can be represented with an
implicant table with a feasible number of rows. For example,
the function f = x0x1+x2(x3+x4) +x5x6(x7+x8)+(x9+x10)(x11+x12)+
+x13(x14+x15)(x16+x17) requires 8!2! = 80640 permutations to find
the input correspondence using signatures in [6]. This function
has 18 columns and 20 rows in the implicant table and it took
0.02s to find the canonical form. The total number of nodes in
the execution tree was 20 and the maximum width of the
execution tree was 3.

6. Conclusion

This paper presented a new algorithm for obtaining a
canonical form of a Boolean function under any permutation of
its inputs, where the function is represented in the form of a
truth table or a minimized sum-of-products form. The minimum
cost of the canonical form of the table is used as a signature for
uniquely identifying the function in the library.

A branch-and-bound algorithm, with a very tight bounding
function, is used to find the canonical form. Using symmetries
of the input variables, the algorithm avoids equivalent branches
and is able to handle very large functions. The algorithm can be
used for obtaining a unique variable ordering in ROBDDs, so it
can be incorporated with BDD representations of Boolean
networks.

Experimental results on more than 100,000 gates (with up
to 25 inputs and 3125 implicants) confirm the validity and
feasible run-time of the algorithm. The best performance is
achieved with large libraries and very complex Boolean
functions, where other methods based on signatures and BDDs
require large number of permutations for finding the right input
correspondences.

7. Acknowledgments

This research was supported by grants from Semiconductor
Research Corporation, National Science Foundation (NSF), the
NSF Center for the Design of Analog and Digital ICs
(CDADIC), Sun Microsystems and Intel Corporation. The
authors acknowledge the help of Paul Tseng, Ted Stanion and
Tyler Thorp.

8. References

[1] J. Mohnke, P. Molitor, and S. Malik, "Limits of using
signatures for permutation independent boolean
comparison," Proc. of ASP Design Automation Conference,
1995, pp. 459-464.

[2] Q. Wu, C. Chen, and J. Acken, "Efficient boolean matching
algorithm for cell libraries," Proc. of Int. Conference on
Computer Design, October 1994, pp. 36-39.

[3] J. Burch and D. Long, "Efficient boolean function
matching," Proc. of Int. Conference on Computer-Aided
Design, 1992, pp. 408-411.

[4] U. Hinsberger and R. Kolla, "Boolean matching for large
libraries," Proc. of Design Automation Conference, June
1998, pp. 206-211.

[5] U. Schlichtmann and F. Brglez, “Efficient Boolean
Matching in Technology Mapping with Very Large Cell
Libraries,” Proc. of IEEE Custom Integrated Circuits
Conference, 1993, pp. 3.6.1-3.6.6.

[6] F. Mailhot and G. De Micheli, "Algorithms for Technology
Mapping Based on Binary Decision Diagrams and on
Boolean Operations," IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, Vol. 12,
No. 5, May 1993, pp. 599-620.

[7] L. Benini and G. De Micheli, "A Survey of Boolean
Matching Techniques for Library Binding," ACM

Transactions on Design Automation of Electronic Systems,
Vol. 2, No. 3, July 1997, pp. 193-226.

[8] E. Detjens, G. Gannot, R. Rudell, A. Sangiovanni-
Vincentelli, A. Wang, "Technology Mapping in MIS,"
Proc. of the Intl. Conf. of Computer Aided Design,
November 1987, pp. 116-119.

[9] E. Sentovich, et al., "SIS: A System for Sequential Circuit
Synthesis," Technical Report UCB/ERL M92/41,
University of California at Berkeley, May 1992.

[10] S. Devadas, A. Ghosh, and K. Keutzer, Logic Synthesis,
McGraw-Hill Series on Computer Engineering, 1994.

[11] J. Mohnke and S. Malik, “Permutation and Phase
Independent Boolean Comparison,” Integration, the VLSI
Journal, 16, December 1993, pp. 109-129.

9. Appendix

Proof of Lemma1: The proof is by induction. For cr = 1, we
have only one table in the list, equal to the whole truth table.
From step 1, all minimum rows r ∈ min_row_set(A1), have the
same minimum cost Smin

1, equal to the number of ones in these
rows. After permutation of columns in step 2, all ones are on the
right in the row. The new column boundary is inserted at the
column where the block of ones starts. Since all minimum rows
r have the same number of ones, all new tables Ar

1 will have the
same column boundary c2.

Let's assume that after n iterations we have h column
boundaries c1

i, c2
i,..,ch

i. By iteration we mean the loop which
begins at step 1 and ends at step 3. We assume that they are the
same for all Ai ∈ LL. We want to prove that in the (n+1)-st
iteration, the new inserted boundaries will be the same for all
tables Ai in the list. Let's suppose that is not true, that for two
tables Ar

i and Ap
j (with minimum rows r and p, respectively) the

new column boundaries are different. From step 2.1, the row
signatures for r and p are the same, Sr

i = Sp
j = min_signature. It

means that srl = spl, ∀l = 1,..,h (step 1.1). The number of ones
between the column boundaries (set in iteration n) is the same
for rows r and p. In step 2.1.1, the columns in rows r and p are
rearranged, such that ones are placed at the right side of the
column boundaries. The new column boundaries are inserted

before the columns where the blocks of ones start. If the new
column boundaries are different for rows r and p, it means that
the row signatures for r and p are different. That contradicts
step 2.1.

Proof of Lemma2: All tables in the list have the same
column boundaries (Lemma 1). For each minimum row, the row
signatures are the same among all tables (step 2.1). The
columns in the tables are rearranged in step 2.1.1 such that ones
in the minimum rows are placed at the right side in each column
boundary. Therefore, for each iteration of the algorithm, the
minimized rows in all tables are identical.

Proof of Theorem 2: Let's assume that there is a table Aj
∉LL that has smaller cost than all tables Ai ∈LL. If Aj has the
smallest cost, that can mean only one of the following: (i) the
first row of table Aj has smaller cost than the first row of Ai; or
(ii) the first n rows of Aj have the same cost as the first n rows
of Ai, and the (n+1)-st row of Aj has smaller cost than the (n+1)-
st row of Ai.

(i) For the first iteration (cr = 1), the column boundaries
are set at the first row and at the end of the table. The row
signature represents the number of ones in each row of the
table. If the first row of table Aj has smaller cost than the first
row of Ai, then the number of ones in the first row of table Aj is
smaller than the number of ones in the first row of Ai. This is in
contradiction with step 1.2 of the algorithm.

Using the claim from Lemma 2, after n iterations of the
algorithm (cr = n) the cost of the top n rows of the tables Ai in
the list LL are the same. Also, the column boundaries for all
tables Ai are the same (Lemma 1). We assumed that the costs of
the first n rows of tables Ai and Aj are the same. Because the
cost represents a binary number, it follows that the top n rows
are identical for tables Ai and Aj. Let's put column boundaries at
each row of table Aj for the top n rows. The column boundaries
are of the table Aj for the top n rows. If the top n rows are
identical, then the column boundaries of Ai and Aj are the same
too. If the cost of the (n+1)-st row of table Aj is smaller than the
cost of the (n+1)-st row of table Ai, then its row signature is
smaller too. That contradicts steps 1.2 and 2.1.

	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index

