Model Reduction of Variable-Geometry Interconnects Using
Variational Spectrally-Weighted Balanced Truncation

Payam Heydari Massoud Pedram
Department of Electrical and Computer Engineering Department of Electrical Engineering-System
University of California University of Southern California
Irvine, CA 92697 Los Angeles, CA 90089

Abstract - This paper presents a spectrally-weighted balanced truncationvariations are especially large in the inter-layer dielectric (ILD) thickness
technigue for RLC interconnects, a technique needed when the intercoand the metal line width and height. These process-dependent geometrical
nect circuit parameters change as a result of variations in the manufacturvariations have a definite impact on the total line and inter-wire coupling
ing process. The salient features of this algorithm are the inclusion ogarasitics, which in turn results in variations in the signal delay and the
parameter variations in the RLC interconnect, the guaranteed stability oicoupling noise. Litet al. in [13] studied the effect of interconnect param-
the reduced transfer function, and the availability of provable frequency-eter variations on Krﬁlov-subspace model-order reduction techniques. The
weighted error bounds for the reduced-order system. This paper showsaper basically combines the matrix perturbation theory [14] and the Kry-
that the balanced truncation technique is an effective model-order reductov-subspace-based model reduction method [4], [6]. The authors allow
tion technigue when variations in the circuit parameters are taken intotwo-dimensional variations on the projection matrices. To compute the
consideration. Experimental results show that the new variational speceorresponding sensitivities of the susceptance and conductance matrices
trally-weighted balanced truncation attains, on average, 20% more accuio each dimensional variation, some sample points were picked up and the
racy than the variational Krylov-subspace-based model-order reductiordominant eigenvalues/eigenvectors were calculated.

technigues while the run-time is also, on average, 5% faster. The goal of this paper is to consider the effects of process variations
and spectral shaping on model-order reduction using balanced truncation
1. INTRODUCTION techniqgue and to propose an efficient order reduction technique that

includes these effects. The main contribution of this paper is our use of the

The problem of interconnect model reduction has gained considerabi@@thod proposed in [12] combined with a new variational balanced trun-
attention in the EDA community in recent years. Model reduction tech-Cation approach that accounts for process variations in order to obtain a
niques enable us to capture the interconnect effects with a much shortBfW variational spectrally-weighted balanced truncation method.
comﬁutatlonal time than that required for the simulation of the full circuit. , Section 2 gives a brief overview of the balanced realization method. A
On the other hand, as the minimum feature sizes shrink to the sub-quartgiscussion about the effect of process variations on interconnect modeling
microns, geometrical variations in the line width, metal height, and dieleciS also provided in this section. Section 3 reviews the formulation of the
tric thickness due to process variations have more pronounced effects 6;equen(_:y-_we|%hted model reduction proposed in [12]. In section 4, the
the reliability and performance of VLSI circuits [1]. As a consequence, itNew variational balanced truncation with spectral shaping is illustrated,
is crucial to assess the impact of these process variations on model-ord@id a theoretical comparison between this work and the work presented in
reduction techniques. paper [13] is made. In section 5, The new model reduction technique is
Among various classes of model reduction techniques, the explicifompared to the work presented in [13] by running simulations on a hum-
moment matching algorithms (AWE [2], RICE [3]) and Krylov-subspace- P& of global interconnect line and clock tree scenarios. Other experimen-
based methods (Pact [4], PVL [5] PRIMA 6!) ?1ave received the mostt@! results in this section verify the accuracy of our technique. Finally,
attention for gfeneratling_ redgcgé orderdmlod[eds of tge interconr?e_cts. Thection 6 presents the conclusions of our paper.
computational complexity of these model-order reduction techniques i
due to the matrix-vector products. However, these methods do not provid?- BACKGROUND

a provable error bound for the reduced system. _ In this section, first, we briefly explain the conventional balanced trunca-
An alternative to these model reduction techniques that has seefion method. Next, a brief discussion about the effect of process variations

renewed interest and consideration are the balanced realization techniques interconnect modeling will be provided.

[7], [8], [9]. Balarrce% reagzaticén te((:jhntijquesd havci‘j nlot rgceiyed thehsame

attention as Krylov-based and Pade-based model reduction techniqu i i7ati

partly because these methods normally require time-consuming comput?a' An overview of balanced realization

tions [7]. A reduced system using the balanced realization technique i€onsider a network consisting of inductances, capacitances, and resis-

guaranteed to be stable. Moreover, a provable error bound does exist ftances. Modified Nodal Analysis (MNA) can be used to obtain the follow-

this class of model-order reduction techniques. ing system of equations:

In the balanced realization-based model reduction methods, each state Lx = -Gx +Bu (1)
is equally controllable and observable, and the reduced-order model of the _ N
original transfer function is derived by minimizing the Hankel-norm of the y = Cx )

error between the transfer functions of the original and the approximatewhere the state vectorrepresents the vector &f node voltages across

system. Paper [8] uses the truncated balanced realization as well as thigcuit capacitances and voltage sources and the vectdranirrents flow-

Schur decomposition method to develop an efficient numerical method foing through inductors and current sources. In addition:

the order reduction of a large linear time-invariant (LTI) system. The bot-

tleneck in balanced truncation methods is the computational complexity - (G 0] G = G E x =Y E = le]

incorporated in solving the Lyapunov equations. Papers [9] and [10] pro- o LI’ ET 0 ’ il /

pose efficient algorithms to solve the two Lyapunov equations in order to .

obtain the controllability and the observability grammians. The algorithms

are based on the Alternated Direction Implicit (ADI) method that was pro-

posed in [11]. W
A shortcoming of these model reduction techniques is that they do not 0

reshape the frequency spectrum to emphasize error minimization in some ol branchj is incident at nodeand oriented towards it.

frequency range of interest. Furthermore, they also do not address the The MNA equations can be rewritten in the form of the standard state-

numerical difficulties when the system is nearly uncontrollable or unob—Fpace representation by introducing the following matrices:

servable. In paper [12], a new numerically stable, frequency-weighted bal-

[11 If branchj is incident at nodeand oriented away from it.

a
heree; = OO If branchj is not incident at node

anced truncation technique was presented. The proposed method gives a A=-L"G , B = L'By (3-a)

definitea priori error bound and is guaranteed to be stable even when both Hence:

input and output weightings are utilized at the same time. % = AX +BuU 3)
Analyzing the interconnect without taking into account the rather large = Cx 4

variations of the interconnect geometries is not useful in practice. These y = Q)

This research is supported in part by SRC under contract no. 98-DJ-606.



For stable LTI systems, the controllability and observability grammians
are defined as follows: " H\'/gOI(S)T(HE)St)'_HHSr?)W(j) de . first (|13)| e th
© T ) (ATt AT~ A as small as possible. To obtain such a reduced system we first calculate the
P= J'eA‘B B'e" 'dt ; Q= ¢ ‘c'cedt () grammians of the augmented system and go through the same steps that
0 . 0 . ... were taken for a unity-weighted system. First, we write the Laplace trans-
The P and Q matrices (known as controllability and observability formation of the input and output weighting functions:

grammians) satisfy the Lyapunov equations [7]: W(s) = Ci(sl -A,)"B +D (14)
AP+PA"+BBT =0 ; ATQ+QA+C™C =0 (6) ' ' '_1' '
The controllability and observability grammians give some interesting Wo(s) = Co(sl =A)™B, + D, (15)

insights about the system characteristics. A particularly interesting prop- According to definition [18], the controllable subspace of the aug-
erty is that the Hankel singular values of the system transfer functioninented systentl(s)W;(s), is the solution set to the first question. A con-

H(s), are the square-roots of the eigenvalud¥f troller-form realization of the augmented systis)W;(s) is as follows:
oi(H(s)) = {A(PQ)} @) _ _ _
Each Hankel singular value represents the energy exerted by the corre- A = {A BC} v By = {B D} » G = [C 0} (16)
sponding state variable in the controllability and observability map of the 0 A B

balanced system. It can be proved that there exists a similarity transforma- gimilarly, according to definition [18], the observable subspace of the
tion matrixT such that the controllability and observability grammians of gygmented systerWO?s)H(s) , is the solution set to the second question.

the new systenfA,, B, C;)  are equal and diagonal: An observer-form realization of the augmented systah(s)H(s) is as
P, = Q, = X =diag(ay, G, ..., G,) (8) follows:

whereo; = 0,= ... 20,>0 . The balanced transformation of an LTl sys-  _ A O — c _

tem allows one to choose the state variable set that would provide a signif- = B, = v G = [DOC Co} 17)

icant amount of information in the external representation of the system. BL A 0

In fact, on the basis of the computed energy for each state vargplee For a complete explanation of controller and observer form realizations,
settle on a criterion for evaluating the possibility of eliminatiggn the ~ Se€ chapter 3 of reference [18]. Since all controllable and observable

reduced model scheme Jfis partitioned into to two submatrices: modes of these two augmented systems are determinet>bp ~  upper
left corner submatrices ofA; andé, , the desired controllability and
s = 2,0 ) observability grammians are given by the correspondirgn upper left
02, corner submatrices & ar@
where =, 00%* | £ 00%Y*™Y  The new coordinate trans- = P — Q
formed systemA; , B, , C,) is also partitioned in conformity with as: P = @ . ) Q= @2 n (18)
F%I.Z P22 Q12 Q22
A =TAT '= { 1 A”} ,B=TB = {Bl} C,=CT*'= [Cl Cz} whereP andQ must satisfy the following Lyapunov equations:
21 Az B, R P+ F’AT + B.E.T =0 (19)
The reduced order model based @n {, B, C,) is stable, and thé” - TR LA 4L RTR
error is bounded by [7]: AsQ +QA+CJGC, =0 (20)
od 0 Expanding then x n  upper left corner block of the Lyapunov equa-
IH(s)-HKs)l, <20 Z o0 (10)  tions yields:
o + + P +PLCIB +BDD; = 21
g1 0 AP +PA™ + BC;Py, + PL,CTB™ +BD,DJB™ = 0
. . L ATQ +QA +Q,,B,C +C™B]QL, +C'D{D,C = 0
2.b. Modeling of interconnect variations Q+QA+Qy QL +C'D (@
From equations (21) and (22) the new variables are defined as follows:

Due to process variations, interconnect technology parameters are varying _ b T
substantially. These parameters can have as much3@s a % variation off X =BCP,+P;C/B +BD,D/B (23)
their nominal values [1]. Therefore, the effect of the process variations on Y = Q.B,C+C'BlQ,+C'D;D,C (24)
the interconnect delay and crosstalk should be taken into consideration. A |1 5 readily seen tha andY are symmetric matrices. As a conse-

common approach to anticipate these variations in the design is the cogyence, there exist orthogonal matritésndV and diagonal matriceS
ventional skew-corner, worst-case modeling. This method, however, is tognq7 siich that:

conservative because the probability of allb3process corner values X = USUT 25
occurring simultaneously is very small. As a consequence, statistically- - (25)
based worst-case interconnect modelings using Monte-carlo simulation Y =VZVT (26)
Ihave been prohposed [16], [lT]. Thestlal approaﬁhes, Ei)wevc;}-rhfail to Ihand%ereS:diag(sl, S,...,9), andZ=diag(zy, %, . .., @), and

arge circuits that exist in reality. To alleviate the problem of having large

computational complexity (as also mentioned inc[13]) the effect of process |1 2 ‘S?‘ 2. 28 2_0 . |zl 2 ‘_ZZ‘ 2...2(z|20 N Suppose that
variations must be taken into account in model-order reduction algofankX)=i and rank{)=j, wherel<1i,j <n . We can write:

rithms. Furthermore, the resulting variational reduced-order model needs B = Udiag(|s|¥? ..., |s|¥20, ..., 0) (27)

to converge to the reduced-order model of the nominal network when all _ T Y

the parameter variations are zero. C = diag(/2|V% ..., |z|¥2% 0, ...,0)V" (28)

3. BALANCED TRUNCATION WITH SPECTRAL SHAPING tior:_se't P and Q denote the solutions of the following Lyapunov equa-
We have seen that balanced realization is an attractive model reduction AP +PAT+BB" = 0 (29)
technique due to the fact that it gives a provahle  -error bound for the A+ O CTC =

reduced-order system. Even more attractive is a balanced truncation tech- AQ+QA+CIC 9 (30)
nique extended to include weighting on the input and/or output. We find that the transformation matrix  that simultaneously diago-

To determine the state-space characteristics of the new augmented sysyjizesP and) is as follows:
tem, we are faced with two basic questions that must be answered: " N A
~ 1. What set of points in the x-state space could be a part of the zero ini- TPTT = (TH™QT™ = diag(oy, ..., 0y, Oy 11, ..., On) (31)
tial condition response for the weighted input denoteq(Dy Similar to the unit-weighted balanced truncation method, this transfor-

2. What set of points in the x-state space as initial conditions could pro;, ..o matrixT | is used to map the original system to a new coordinate

duce a weighted output denoteddgs)? ' : \
Consider the state-space representation of a set of tightly coupled RLEansformed system. The reduced-order system is then obtained from the

interconnects given by equations (3) and (4). The goal of the frequencyfansformed system. Note thal  contains the characteristics of the

weighted balanced realization technique is to calculdi€s) of dégree Weighting functions. _ )

(k <n), making The input and output weightings are determined based on the range of
’ frequencies where we would like to have the maximum accuracy. The



weighting functions should emphasize the frequency ranges where more
accuracy is required. Similarly, they must de-emphasize the range of fre-
guencies where the noise resulting from the order reduction has very min-
imal energy or is out of the desired frequency bound.

P,.. < AYPAY'
Quar S AY'Q AY

where AY =1+ (n-1)AA A*

4. \/ARIATIONAL SPECTRALLY-WEIGHTED BALANCED According to Theorem 1, any perturbation in the system matrix mani-
fests itself as a congruence transformatigiy; , that maps the observabil-

TRUNCATION ity and controllability grammians of the system to the ones for the new

Characterization of the interconnect geometry variation is an importanperturbed system demonstrated by equations (37) and (38).

issue in deep-submicron VLSI technology. In"order to accurately assess To account for the effect of process variations in our proposed model-
the performance of an interconnect system, it is essential to characterigder reduction technique, we directly utilize Theorem 1 in our algorithm.
the interconnect geometry, which in turn specifies the interconnect parasiMoreover, our proposed technique also reshapes the estimated error in the
ics T[13]. From a designer ﬂoint of view, one important source of the ICfrequency domain using the technique described in section 3 and thus
performance variability is the physical source of variability [19]. For the gives rise to a reduced order system with more accurate time and fre-
purpose of design performance” evaluation, we are concerned with twguency domain responses. ComFanng our proposed algorithm with the
possible cases here. The first one includes the case where the interconng@rk in [13] on the variational Krylov-subspace-model-reduction, we can
(or device) parameters are constant within a die but vary within a wafer ofheoretically prove the superiority of the truncated balanced realization
a lot. In the second case, the device and interconnect parameters vailgﬁhmque in terms of its comcf)utatlonal_ complexity. More specifically, the
within a die. The inter-die variability can be minimized by using several PRIMA-based variational order-reduction proposed in [13] involves the
techniques and corrections during the fabrication process. Due to its relgalculation of an expanded Krylov-subspace whose projection matrix is as
tively low spatial frequency and smoothness, simple models can be usdéllows:

to describe the wafer level variations. As a result, the wafer level variation X (wy, W,) = Xo + AX 1 3W, + AX W, + AX W2 +AX W5

can be modeled locally (within the die) as a linear function of the pOSitionwherew andw, are dimensional variationsAX; s are computed by
1 2 ij

within the die:
— choosing a set of sample points. A variational reduced-order model can
(X, y) = o+ ADX+AD,Y (32) then be constructed by inserting the resulting variational Krylov-subspace
where the model paramete®, A®D. , addy are random variable#to the PRIMA equations. The geometrical variations of interconnects are
and have joint probability density functions. For instance, for a givenrandom processes. So are the corresponding variations on the interconnect
metal wire, if we know that there is a width variation o ~ and a height electrical parameters. Therefore, we have to consider an interval for the
variation of w, , then the resistance and capacitance of that particulaimensional variations. Hence the whole model-reduction technigue
metal wire are: would be very time-consuming and even impossible to use when handling
F(Wp, W,) = Io+ AW, +Ar,W, = ro+Ar very large circuits.

(37
(38)

There are, h r, some problems that n ken in nt:
C(W, W) = Cot AW +ACW, = Co+AC ere are, however, some problems that need to be taken into account

or in general, for the susceptance and conductance matrices of the intgr-
connect system that are exposed to the process variations, we have:

Guar(Wi, Wy) = Go+AGw, +AG,w, = G+AG (33)

Loar(w, Wy) = Lo+ALwi+AL,w, = L+AL (34)
To obtain a balanced truncation technique that takes the process variations
into account, we first find the new system mat#x,, (the so-called per-
turbed system matrix) of the interconnect that is affected by process varia-
tion in terms of the ideal system matrik, and the perturbed susceptance
and conductance matricesL andG . Lemma 1 helps us determine
this new system matrix.

Lemma 1. Given an LTI system whose state-space representation is pro-
vided by equations (3) and (4), let the susceptance and conductance matri-
ces, L and G , vary according to equations (33) and (34). If
AL, <<[L[, , then:
A=A +AA
AA = AA+AA,
AA, = —L7'AG+LALL™G
AA, = L'AL L7'AG
This lemma enables us to obtain the relationship between the new per-
turbed system matrix and the original one as well as the incremental varia-
tions of the susceptance and conductance matrices. .
The balanced realization approach directly utilizes the balancing trans-
formation to project the existing system to a new system whose controlla-
bility and observability grammians are identical and diagonalized. The
diagonal elements represent all the singular values of the system corre-
sponding to the state variables of the system. Rtleorder truncated bal-
anced realization is then obtained by considering the krstngular-
values. This approach gives more intuitive information aboutetergy ]
exerted by each state variable and thus the contribution of each state vari-
able on the external behavior of the system, as opposed to the Krylov-sub-
space methods that involve more abstract computations. From a
mathematical viewpoint, the Hankel sm%ular values of the system transfer
function are indeed the eigenvalues of the symmetric ma@x, To real-

ize the effect of interconnect ﬁarameter variations on the observability and
controllability grammians of the system, we prove the following Theorem.

(35)

where (36)

Theorem 1.Consider a stable LTI system with the state-space representa-

We still need to solve the Lyapunov equations to obtain the grammi-
ans of the system. To efficiently solve the Lyapunov equations we
make use of the ADI procedure Elll], which is an iterative method for
solving a Lyapunov equation,

AP+PA +X =0
The system is first reduced to tridiagonal form with Gaussian similar-
ity transformationT iq , as follows:

S = Ttr\dAT_l]r.id
Z = Ttrid PTde
Xs = TyiaXThig

Reducing a matrix to tridiagonal form has &)(n) order of com-
plexity. The resulting system is solved with the ADI iteration [11]:
Z, =0
(S+ RhZ2 = X—[(S- pNZ]",

(S+ gz, = X—[(S- p)z21"
forj=1,2,...,3
An iterative solution of the reduced Lyapunov equation is accom-
plished in O(12Jn2) flops [11]. In the above iteratior, P}
are the ADI parameters. We use the same optimal ADI parameters
that were presented in [11].

The calculations required to construct the balancing transformation
T are complicated and sensitive to numerical errors. In particular,
the balancing transformatiom  may be poorly conditioned when

matrix PQ has a high condition numberPaper [15] proposes an
algorithm where the balancing is avoided altogether, and as a result
the numerical difficulties are never encountered. However, this algo-
rithm involves solving an eigenvalue problem whose dimension is as
large as the order of the original transfer function.

We can avoid the problem of solving a large eigenvalue problem
by using the Krylov subspace-based methods. In fact revisiting the
balanced realization method reveals that it is only necessary to find
the firstk largest eigenvalues of the matrix prod&e® and their cor-
responding left and right eigenvectors. Based on this observation, a
modified version of Safanov’s algorithm is utilized here. Recall that
PQ s a large symmetric matrix, which will also be a positive definite

tion given by equations (3) and (4). Suppose that the system matrix

A OO is perturbed byAA O O"*" . The resulting perturbed system 1
has the following controllability and observability grammians: '

Recall that the condition numbeond M) = omax M)/ Gmin(M)

provides

a measure of the distanceMfto the set of singular matrices.



matrix. Thus the problem is to efficiently obtain the largest eigenval-conductances and resistances redufei , whereas any incremental

ues of a symmetric matrix. This problem is solved by usin - increase in the values of parasitic inductances and capacitances increases
zosmethod. A comilete explanation of the Lanczos method can bep a

found in [5] and [14]. In our algorithm, we utilize a modified version - : : : : :
, : ; y ; _As an interesting special case, consider the tightly coupled RLC inter-
gﬁlgﬁfaﬂg\r’éfgﬁ?&{gonm using the Lanczos method to obtain the bal connects. It is e_asi?y proved that, for this case, the system matisa
9 ’ symmetrrllc positive-definite rlnatrlx.dUndﬁr these cwglljmsta?ces, the fol-
i . owing theorem proves useful in finding the upper and lower limits of vari-
To account for the effect of process variations on the |nterconnechonS in the poles of the system transfer function of tightly coupled RLC
delay and performance, Theorem 1 is directly utilized. However,yierconnects that are subject to the process variations:

there is a matrix inverse involved in equations (37) and (38). To COMThegrem 3 [14] Given an LTI system whose state-space representation is

ute the inverse of a matrix more efficiently, we elaborate the prob- . . . nxn .
em in the form of solving a set of linear aéebraic equations rhtherdiven by equations (3) and (4), if the system matéx [ [J is per-
than explicit inverse formation. turbed by AAO O""  due to the process variation, then the following
inequalities hold:
Now we proceed with describing our new algorithm for variational bal- (A +AA) = A (A) < |AA], (41)

anced truncation.
GivenH(s), Wj(s), W(s):

whereAA is given by lemma 1.
According to Theorem 3, the magnitude of difference between poles of

1. Using lemma 1, Determine matrixA . the perturbed system and those of the original system is limited by the 2-
Using Theorem 1, compute perturbing congruence transformatiorfiorm of the perturbed matrixj A
AY.
3. Using the ADI iteration, compute the controllability and observ- 5. EXPERIMENTAL RESULTS
ability grammians ofP andd of the original spectrally-weighted  In this section the variational spectrally-weighted balanced truncation
system by solving the Lyapunov equations (19) and (20). model-order reduction technique (referred to as VSWBT) is evaluated by
. . performing experiments on some global interconnect lines such as clock
4. Apply perturbing congruence transformatiaky’ onth&n  trees, and coupled lines. First, the spectrally-weighted balanced truncation
upper left corner blocks oP  an@  specified by matrifendQ ~ (SWBT) technique is demonstrated and the result of applying this algo-
in Eq. (18), and construct new perturbed controllability and observ4ithm is compared with those obtained by utilizing our implementations of
ability grammians,P_ and) PRIMA [6] and the truncated balanced realization using Vector ADI
Tvar var (VADI) [9]. We then apply the VSWBT method to study the impact of the
5. Use equations (23) and (24) to compXtg, andY, ,, from P_ and interconnect process variations on the timing performance of the clock
v var trees and coupled busses. Finally the accuracy of VSWBT is validated by
Quar - using it to reduce the order of an arbitrary stable LTI system that is subject
6. Decompos,, andY,, using the eigenvalue decomposition tech- 0 the perturbation.
i i T T . .
nigue into Uhar Sl e andViarZ aMir - ~ 5.a. Two capacitively coupled interconnects
7. Use equations (27) and (28) to compBig,  &nd ~ We compare the performances of the model reduction of two capaci-
8. Using the ADI iteration, solve the mapped Lyapunov equationstlvgl_lf\;-coupled_trz’énsmlszlqn :I:nesiT-Ihl‘el Olradeé Otjt_he reducfe%order_syTtem is
2 . The circuit is depicted in Fig. 1. The Bode diagram of the original sys-
(29) and (30) for the new perturbed system to compiig aN%em along with the reduced systems obtained by using three approaches
Quar - jPRIMA,_VADI, SWBT) are also shown in Fig. 2. The output weighting
9. Using the Lanczos algorithm, obtain the reduced order left an unction Is:
right eigen-matrices V. var anlf#Rvar , associated with khergest
singular values of the matrix produBf,, Qyar L
10. LetE,.=VilaVkya and compute the singular-value decomposition 1 R,%
Of Evar 3 i-e-: Evar:UE,varzEvar\/ETvar-
11. I—etéL.var:\A/L,var UE var i;f/ez\r D an X and
é?, var = \7R, var \7E,var i;cir D D nk
12. Compute the reduced order space realization using the matrices —
Sivar @and Sgvar as follows: CC;F
Avar évar SL,varAvarSR. var SI varB
- — | = A (39)
Cva\r Dvar CSR var | D
Now we prove that this new variational, spectrally-weighted balanced J
truncation has a provable® -error bound. Cik R3 c
Theorem 2.The L~ -error of the variational model reduction with spectral 1021 Zi
shaping is: 1 — —
. oo O = -
[Wo(8) (Hyar(s) —HE_())Wi(s)].. < koo O (40) 20 lumped RLC sections
1

where k = |W,(s)L |.|KW;(s)|l.. and

As mentioned earlier, process variations will have a definite impact o
the on-chip interconnect parasitics. These variations have two adver
effects on the system matrix as also demonstrated by Eq. (36). Ignorin
second-order variations, any incremental increase in the values of parasi

Fig. 1. Two capacitively coupled RLC interconnects consisting of 20
K = diag(]s|™3 ....,|s/™v30,...,00U™B RLC lumped sections.

= i -1/2 -1/2
L = CVdiag(jz|*? ..., [2[*%0, ..., 0) From Fig. 2, we observe that the frequency response of the reduced
der system obtained by SWBT closel?/ follows the frequency response
the original system, especially in the low frequency range. Comparing
e bode diagrams clearly indicates that SWBT is much more accurate
an PRIMA and also VADI in generating the reduced-order model.



: Original

Bode Diagrams ", 5iviA Table 1: COMPARISON BETWEEN SIMULATION RESULTS ON AN H-
* 1 VADI TREE CLOCK NET WITH PROCESS VARIATIONS (Star-HSPICE LEVEL
e Fr‘om“‘ugl‘)w ‘+M:WS“WI‘3"I'WH - 49, 0.2%1 CMOS PROCESS). DELAYS ARE GIVEN IN psec
-10] 3-0 variations 50% delay
l g e e o8 * (%) of the fan-out node
-t ILD Metal | poper[13] | vsweT Star-
Tl idth La_lyer (psec) (psec) HSPICE
S -0 w width (psec)
3 -sop 123 103 195.7 196.0 1963
5 ol K 5.8 198 2155 216.4 216.2
2 1 : : 1 : : b 214 23 199.3 200.1 200.1
™ 10.2 8.2 205.0 208.2 206.6
) 2.45 221 201.2 204.1 2032
9 19.2 10.6 193.1 195.0 1942
£ 243 -17.8 1982 200.3 200.0
281 11.4 2203 2225 221.7
R 124 5.9 2195 221.9 220.9
$ -14.9 25 1941 196.2 195.6
g 13 126 211.6 2132 2125
25.7 72 2032 207.3 206.4
7.6 16 210.7 217.7 2153
23 291 2232 2334 2318
20.1 -185 206.4 211.8 2105
-18.8 137 196.2 201.0 200.3
22.4 45 200.0 204.7 2033
Frequency (rad/sec) 2756 136 191.7 193.1 192.8
Fig. 2. The Bode diagram of the system in Fig. 1. 5.3 143 216.5 218.2 217.8
-13.4 -10.6 1955 1981 1975

5.b. H-tree clock distribution Crom Table 1. itis clear that o et the 50% del
. . . rom Table 1, it is clear that our approach can predict the 50% delays

The clock tree is routed using the TSMC Q.digital CMOS technol- ' more accurately for all possiblecSvariat?ons of the metal and ILD layers
gg%lf library. The clock tree is an H-tree clock distribution with tapered that are indicated in Table 1. By comparing the number of flops from

ers at the root of the tree as shown in Fig. 3. The design target of thggATLAB simulation, the CPU-time for our method is, on average, 5%
on-chip clock frequency is 1.0 GHz. The clock tree is modeled by a largeaster than the work reported in [13]
2 .

RLC cilicuiﬁ. Each wire s(cjegcmenlt in Fig. 3his moge(ljed by a large _I?jth
network whose R, L, an values are changed due to metal width an i ; : ;
ILD thickness variations. Based on the data reported in paper [17] on ths-c- Two capacmvely COUpled interconnects with vari-

inter(‘ionnect-dominated tesl} circuits, trrllelzypical variational di?t(rjl utlt())n forational parameters

metal interconnects as well as ILD thicknesses is a normal distribution. : - -

The widths of metal and ILD layers are changing up to 30% of their nom-,. !N this example we apply the VSWBT model reduction technigue on

inal values (which is the magnitude of the percentagemt/ariations) two capacitively-coupled microstrip lines whose electrical parameters are
’ subject to process variations. The schematic of these two coupled lines

along with their nominal geometrical parameters are depicted in Fig. 4.

Ly
= i L =15
I —Jl: I I E—ILB I_S—ILB 3%551 éeichnology with copper \é\/l:l?_:;?rg'l
H4 TH= 1 =0.4
}{ LT LT Cycle-time = 4nsec
|| 11

Ly P L

L2 Line 1 f\’ J/ Line 2

T T T I_

I it % Inml gl W' i

MMEH 3 FHEH "
A 100

Fig. 3. The H-tree clock distribution driven by a tapered buffer. Fig. 4. Two parallel microstrip lines in 0.RSCMOS technology.

We performed 20 experiments where, in each experiment, a set of noiFhe height and width of the metal layer are subject:® % variations.
mally-distributed numbers for the metal and ILD width variations were Again we performed 20 experiments with normally distributed random
generated. The 50% delay at an arbitrarily chosen fan-out (leaf) node weberiations. The result of these 20 experiments is shown in Table 2. The
com‘)uted by VSWBT and compared with the result obtained byd[13]. TheMATLAB-reported flop usage of our method is 10% less than that of [13].
results of this comparison for different experiments are provided in Tabld=rom Table 2, it can be seen that, for all variations demonstrated in Table
1. Here, we assume that the geometrical variations are mutually indepei, the 50% delays predicted by VSWBT are more accurate than those pre-
dent. dicted by paper[13].




variational Krylov-subspace-based model-order reduction techniques
while the accuracy is also 20% higher, on average.

Table 2: COMPARISON BETWEEN SIMULATION RESULTS ON TWO

CAPACITIVELY COUPLED MICROSTRIP LINES (Star-HSPICE LEVEL Bode Diagrams

49, 0.2%1 CMOS PROCESS). DELAYS ARE GIVEN IN psec

o

- ~ T T T T Onginal perturbed systen
3-0 variations 50% delay 2 10t _ = v 1
(%) of the far-end node of Line 2 (psec) o
B 0 Direct order-reduction

Metal Metal Paper [13] VSWBT Star-HSPICE s and VSWBT

W H (psec) (psec) (psec) %_300 O A R A 1 R S S
-0.4 20.1 1592 1597 1596 § 0 - — Direat ofdarreduchion”
15.8 19 || 1636 1640 1639 3 and \/SWBT

-9.3 13.2 1519 1525 1524 g
-1.75 10.8 1607 1612 1610 o r . \ 1
15.8 144 1690 1700 1697 9 Original perturbed system’\w‘m\\‘/‘v‘;iz‘t‘*_u:‘_hH
_13.2 _0'9 1726 1734 1731 i-looo 1 Lol 1 il 1 il 1 T T T
19.1 -29.1 1711 1725 1722 1 10 10°

29.3 25 1531 1538 1536 Frequency (rad/sec)

-1.8 7.9 1603 1610 1607 1 Impulse Response

115 42 1673 1683 1680 : , ,
-15.3 19.4 1650 1665 1662 o Direct order-reduction| |
14.7 25.3 1557 1567 1563 5 and VSWBT

1 7104 || 1662 1667 1665 3 e AT ——
-15.6 22.1 1704 1717 1711 E <2t |Original perturbed system 1
18.2 -23.5 1622 1631 1629 L L L
132 05 1699 1705 1703 ’ ! Time(sec) 3
94 217 1640 1644 1643 Fig. 6. The bode diagram and impulse response of the original perturbed
0.7 -111 1708 1713 1712 system, the system obtained by direct spectrally-weighted balanced trun-
10.8 -0.7 1621 1630 1627 cation, and the VSWBT algorithm.
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