
Direct Transistor-Level Layout for Digital Blocks

Prakash Gopalakrishnan, Rob A. Rutenbar
{prakashg,rutenbar}@ece.cmu.edu

Dept. of ECE, Carnegie Mellon University
Pittsburgh, Pennsylvania, 15213

Abstract - We present a complete transistor-level layout
flow, from logic netlist to final shapes, for blocks of combina-
tional logic up to a few thousand transistors in size. The direct
transistor-level attack easily accommodates the demands for
careful custom sizing necessary in high-speed design, and is also
significantly denser than a comparable cell-based layout. The
key algorithmic innovations are (a) early identification of essen-
tial diffusion-merged MOS device groups called clusters, but (b)
deferred binding of clusters to a specific shape-level layout until
the very end of a multi-phase placement strategy. A global
placer arranges uncommitted clusters; a detailed placer opti-
mizes clusters at shape level for density and for overall routabil-
ity. A commercial router completes the flow. Experiments
comparing to a commercial standard cell-level layout flow show
that, when flattened to transistors, our tool consistently achieves
100% routed layouts that average 23% less area.

1. Introduction
Standard-cell based design methodologies have dominated lay-

out generation of digital VLSI circuits. Standard cells have several
notable virtues: they hide the increasingly unpleasant details of
shape-level design rules; they arrange IO pins on individual gates
in geometrically accessible locations; they assemble with relative
ease into row-based blocks; they can be pre-characterized for tim-
ing and power. As a result, research in layout automation has split
into two directions: (a) device-level layout for individual cells; (b)
cell-level placement and routing for large digital blocks.

Unfortunately, the growing demands for transparent process
portability, increased performance, and low-level device sizing to
optimize block timing and power, are not easily handled in a fixed
cell library. Libraries need to be large to achieve good logic synthe-
sis results; today’s best libraries comprise thousands of cell vari-
ants, enough to support multiple drive strengths and power/speed
trade-offs. As a result, cell libraries carry an enormous inertia that
resists porting, custom sizing, etc. This contributes to huge library
maintenance costs.

We suggest direct transistor-level layout for blocks of digital
logic as an alternative that can more easily accommodate the de-
mands for device-level and shape-level flexibility. The recent
emergence of efficient, accurate transistor-level timing estimators
[5][16] mitigates the problem of timing characterization. Unfortu-
nately, the layout quality of transistor-level algorithms proposed to
date leaves much to be desired. We argue that the essential flaw in
these prior attempts is an over-reliance on the methods and assump-
tions of large-scale cell-based layout algorithms. Individual transis-

tors may seem simple, but they do not pack as gates do for purposes
of optimal layout. Careful inspection of the internal layout of any
well-designed library cell will reveal a wealth of shape-level opti-
mizations that each save a bit of area or delay off the overall layout.
These savings may seem negligible, but they are amplified enor-
mously in any layout with thousands of cells. Algorithms that cap-
ture some of these geometric tricks usually rely on optimization
frameworks that cannot scale beyond a few tens of devices. Algo-
rithms that ignore these shape-level issues and pretend devices can
be laid out as if they were gates suffer the consequences when thou-
sands of devices are poorly packed.

In this paper we develop a novel set of algorithms for direct
transistor-level layout that capture the essential shape-level optimi-
zations, yet scale easily to netlists with thousands of devices. The
key idea is early identification of essential diffusion-merged MOS
device groups, and their preservation in an uncommitted geometric
form until the very end of detailed placement. Roughly speaking,
we extract essential groups early from the transistor-level netlist,
place them globally, optimize them locally, and then finally commit
each to a specific shape-level form while concurrently optimizing
for both density and routability. We use a commercial detailed rout-
er to complete our flow. Results to date are encouraging: we can
place/route 2000 devices in about 30 minutes, and we can consis-
tently save 15-30% on area in comparison with a standard commer-
cial cell-based flow.

This paper is organized as follows. Section 2 reviews existing
transistor-level approaches and also builds the geometric founda-
tion for our layout abstraction. Section 3 gives an overview of our
methodology, highlighting its key differences from existing meth-
ods. Sections 4, 5 & 6 describe our algorithms in detail. Though our
algorithms are circuit-style independent, our current focus is to
demonstrate the viability of our approach for series-parallel static-
CMOS circuits. We summarize our routing integration in Section 7,
and present our experimental setup and results in Section 8. Finally,
Section 9 offers concluding remarks.

2. Background and Previous Approaches
Prior work on transistor-level digital layout focuses on two tar-

gets: layout for individual library cells, and layout for larger blocks
of arbitrary logic. We briefly look at each of these.

In the context of cell layout generation, Maziasz [18] provides
a good review of the graph theoretical formulations and algorithms
for one-dimensional cell layout synthesis. Some approaches, like
Malavasi [17], LiB [10] and PicassoII [14], partition the circuit into
locally optimal clusters of transistors and then place these clusters.
However, it has been noted by Sadakane [22] and HCLIP [7] that
techniques which generate intra- and inter-cluster layouts in two
separate stages can yield layouts that are far from optimal. The con-
cept of geometric options for clusters during final placement (Sada-
kane [22]) is one we will revisit—though we present a novel
scalable formulation. Although HCLIP does explore inter-cluster

diffusion merging using a hierarchical ILP formulation, we believe
that this must be exploited dynamically, in the context of overall
physical placement and routability. Further, the maximum number
of transistors that can be handled by any of these methods is about
100 to 200. We aim at circuits that are an order of magnitude larger.

Basaran [1] begins by transferring a MOS circuit into a diffu-
sion graph. Formally, this graph has a node for each net and an edge
for each MOS device channel. Any trail through the graph identifies
a series of devices, all of whose drain/source diffusions may be
shared if the devices are placed in a row, in the same order the path
visits the edge associated with each device (see Figure 1). It was
shown that iterative improvement methods involving trail reorder-
ing can then be used to search the solution space of min-width lay-
outs for those that minimize routing. Riepe [21] uses Basaran’s
techniques to dynamically alter trails within a 2-D placement using
a sequence pair formulation. More recent work, AKORD [27], uses
pre-calculated optimal chaining orders to accept/reject random
moves within an annealing framework, in the style of KOAN [4].
These chains of transistors, called trails, are a natural abstraction
for layout optimization. However, as before, these algorithms do
not scale well for larger circuits.

It has been noted by Lefebvre and Chan [13] that for 2-D lay-
outs, a solution with minimum wiring complexity is not necessarily
of minimum width. This leads us to believe that constraining tran-
sistors too early into dense, min-width, locally optimal, clusters can
hamper placement flexibility.

In the realm of block-placement at transistor level, Tani, et al.
[25] partition the circuit into sub-circuits using a temporary cell li-
brary which they create. Each sub-circuit is a collection of cells in
a row. They then optimize each row for one-dimensional place-
ment. They have generated layouts with areas smaller than standard
cell-based layouts—but only in an older channel-based routing
style. Their saving came from allowing routing over the cell, which
is the norm today.

Three recent industrial cell and block synthesis tools address re-
lated practical problems. Cellerity [8] employs annealing-based op-
timization for diffusion abutment, wirelength, channel density and
gate alignments during leaf cell synthesis. C5M [2] develops hier-
archical row-based macros for static CMOS logic. Schematic parti-
tioning is combined with device-size-tuning and on-the-fly leaf-cell
synthesis, accommodating multiple objectives and top-down con-
straints. However, our method aims to eliminate explicit cell gener-
ation. Nevertheless, we note that pin positioning and cell image
flexibility are crucial to routability. LAS [3] produces flat symbolic
layouts at block-level, which are then compacted. A major draw-
back is the preliminary partitioning into locally optimal clusters
which are not thereafter dynamically altered in the context of the
overall placement. We have observed empirically in our own tools

that dense diffusion merging without careful routability consider-
ation will require excessive white space to accommodate routing.
This results in sub-optimal overall layouts.

In the next section, we present our new strategy that overcomes
the quality and scalability problems of these previous approaches.

3. Overall Strategy
Let us start with a fundamental question: in a transistor-level

layout tool, what exactly are we placing and routing? Clearly, stan-
dard-cells offer a rather coarse abstraction as fundamental units of
placement. Individual transistors, on the other hand, tend to be too
small, especially if we want both shape-level optimization (which
is very local) and accurate routability prediction (which requires a
more global view). As mentioned in the previous section, trails (see
Figure 1), which are chains of diffusion-merged transistors, are nat-
ural device groupings. In this section we will show that abstracting
the netlist as groups of trails, we can effectively support geometric
optimization from shape-level up to block-level.

For the static CMOS style, we restrict ourselves to a row-based
geometric model that resembles a standard cell-based footprint. As
illustrated in Figure 2, we have two rows of N-type trails alternat-
ing with two rows of P-type trails. There are two reasons for this
choice: (a) transistors from alternating rows of the same diffusion
type can share a common power rail and also the same well region;
(b) transistors from neighboring rows of opposite diffusion type
can have aligned polysilicon gates.

Transistor clustering has been a key step in many prior layout
algorithms. However, the aggressive clustering needed to handle
flat placement of thousands of devices invariably leads to locally-
optimal, but globally sub-optimal groups that limit the shape-level
optimizations we want to explore. We resolve this by initially form-
ing only essential clusters of devices, which are mandatory for the
given circuit style. For example, for static CMOS circuits, these are
transistors that are strongly connected and constrained to be togeth-
er due to polysilicon gate-alignment. A cluster is represented as a
group of connected transistor trails. In our approach, “global” opti-
mization focuses on these clusters as the atomic units; “detailed”
optimization focuses on the trails inside a specific cluster.

Previous approaches to clustering either completely disallowed
inter-cluster merges (like standard-cell methods), considered inter-
and intra- cluster merges in two separate stages, or ignored global
placement/routability issues during cluster layout optimizations.
The key components of our trail-level approach are as follows:

• Minimal Essential Clustering: We initially form essential clus-
ters to meet circuit style-imposed layout restrictions. We keep
this minimal for maximum placement flexibility.

FIGURE 1. Trails in Diffusion Graph and Layout

7

1

2

3

6

5

4

a

b

c

d

f

g

h

e

Diffusion graph

2 174 6

agh f

Layout

1

3

5

a

b

c

d

e

f

g

h

2

4

6

7

Circuit

2 3 4 5 6

b c d e

Trails

7

1

2

3

6

5

4

a

b

c

d

f

g

h

e

7

1

2

3

6

5

4

a

b

c

d

f

g

h

e

Diffusion graph

2 174 6

agh f

2 174 6

agh f

Layout

1

3

5

a

b

c

d

e

f

g

h

2

4

6

7

1

3

5

a

b

c

d

e

f

g

h

2

4

6

7

1

3

5

a

b

c

d

e

f

g

h

2

4

6

7

Circuit

2 3 4 5 6

b c d e

2 3 4 5 6

b c d e

Trails

FIGURE 2. Our Geometric Model

Well

N-type

N-type

P-type

P-type

N-type

P-typePoly Inputs
Vdd

Gnd

Vdd

Gnd

Well

N-type

N-type

P-type

P-type

N-type

P-typePoly Inputs
Vdd

Gnd

Vdd

Gnd

• Circuit Structure Recognition: We recognize structure in
transistor netlists and store distinct circuit structures in a
library for pattern matching. These circuit patterns are our
basis for clustering. This creates a single level of hierarchical
divide-and-conquer that lets us efficiently compute all feasible
trail-level layouts for any cluster (pattern). This is efficient
because we only need to compute essential trail formations for
a few distinct circuit structures.

• Global Placement: We find optimal locations for our essential
clusters while minimizing overall wirelength and congestion.
The clusters, however, are not committed to any fixed layout
option (any arrangement of transistor trails) during this phase.

• Detailed Placement: We next explore dense inter-cluster dif-
fusion merging considering all feasible intra-cluster layout
options, in the context of global placement and routability.
This is where each cluster is finally bound to a physical shape-
level trail layout. Global routing is updated dynamically during
this optimization.
To complete the flow, we have integrated a commercial de-

tailed router. We now describe each of these steps in detail.

4. Essential Clusters and Circuit Structure
Transistor netlists and their corresponding layouts have a sig-

nificant amount of important local structure. When style-specific
circuit constraints are imposed, there are not too many ways in
which the transistors can be combined to produce routable layouts.
For example, an important requirement for series-parallel static-
CMOS circuit layouts is the alignment of polysilicon gates belong-
ing to complementary transistors. Another performance-induced
constraint is the level of strapping required on the source/drain dif-
fusion nodes. Guan et. al. [6] describe techniques for creating lay-
outs when partial/full diffusion strapping is required. It turns out
that even for the most commonly occurring circuit structures, there
may not be several different ways of combining the transistors to
form trails while paying attention to these details. For the circuit
shown in Figure 4(a), there is only one such way of combining the
transistors so that the resulting placement is routable. For some oth-
er simple circuits like that in Figure 4(b) there are more trail forma-
tion options to choose from.

These complementary pairs of trails together form the essential
trail clusters that need to be together because of circuit style im-
posed restrictions. We refer to the corresponding layout options for
these clusters as cluster layout options. Notice however that these
options are still modest in number (two for the simple NAND ex-
ample in Figure 4(b)). Consequently, we argue that the cluster lay-
out options should not be discovered on-the-fly, but should instead
be dynamically re-arranged during placement.

Further, in large transistor-level netlists, there are often repeti-
tive circuit structures. This is especially true of control logic and
data-path circuits that are commonly synthesized by technology
mapping to a (sized transistor-level) logic library. Our key idea is
to identify these circuit structures bottom-up via pattern matching.
We use graph isomorphism techniques for pattern matching. There
have been similar approaches to pattern matching in netlist parti-
tioning [20]. We use the Graph-Matcher library [19]. We then de-
termine optimal trail formation options for these circuit structures
and store them in a Circuit Structure Library. As shown in Figure 5,
this provides a framework that allows us to use any of the known
diffusion graph algorithms or other cell layout synthesis techniques
to determine optimal trail options. This results in significant com-
putational savings because we only need to determine optimal op-
tions for small, distinct circuit structures in the netlist.

Sadakane [22] uses clusters and template-options for clusters,
but their method is extremely time-consuming and handles only up
to 80 transistors. This could be attributed to their annealing-based
intra-cluster option selection. We describe in the next two sections
how we explore inter-cluster diffusion merges between all feasible
intra-cluster layout options, exhaustively and deterministically, in
the context of global placement and global/detailed routability.

FIGURE 3. Our Complete Flow.

Global
Placement

Detailed
Placement

Detailed
Routing

Quadratic
MinCut

Annealing
Essential Trail

Clusters

Local Density
Routability-driven

Inter-Cluster Merges,
Dynamic Intra-Cluster

Layout Options

Commercial

Bottom-Up
Pattern

Matching

Essential
Trail

Clustering

Circuit
Structure

Library

Global Routing

Global
Placement

Detailed
Placement

Detailed
Routing

Quadratic
MinCut

Annealing
Essential Trail

Clusters

Local Density
Routability-driven

Inter-Cluster Merges,
Dynamic Intra-Cluster

Layout Options

Commercial

Bottom-Up
Pattern

Matching

Essential
Trail

Clustering

Circuit
Structure

Library

Global Routing

FIGURE 4. (a) Circuit with only one
configuration for trails

FIGURE 4. (b) Simple NAND circuit with two possible
configurations for trails.

a
b c

d

a

d
c

b

a d b c

a
b c

d

a

d
c

b

a d b c

a b c

a

b

c

a b c

a

b

c

a b ca b c

a b c

a

b

c

a b c

a

b

c

a b ca b ca b ca b c

5. Global Placement
 The placeable modules here are essential clusters that are not

committed to any fixed trail-level layout option. We employ a re-
cursive re-partitioning-based quadratic placement in the style of
PROUD [26]. As a convenient simplification during quadratic op-
timization, we assume the input/output pins are located along the
boundary of the block. A quadratic solve then gives us initial loca-
tions for the clusters. During the partitioning phase, a horizontal (or
vertical) cut line is located, via sorting on Y (or X), so that about
half the cluster area is on each side of the cut. A physical cutline is
then placed at the actual center of the partition. For each partition
thus formed, quadratic optimization is carried on, for clusters with-
in the partition, after projecting the coordinates of all clusters/pins
outside the partition onto the cutline. Applying this idea recursively
(see Figure 6), we create a sequence of increasingly smaller (but in-
creasing in number), wide and narrow regions in which we confine
and re-place the enclosed modules.

Quadratic solves invariably result in many modules placed very
close to the cutline, making it difficult for the partitioning step to
make intelligent decisions. GORDIAN [12] introduced the idea of
using bipartitioning to resolve which side of the cut these objects
should be bound to. Hence, we formulate a similar bipartitioning
problem that is allowed to relocate a specified fraction of the clus-
ters on each side of the physical partition, that are near the cutline.
This is also shown in Figure 6. The remaining clusters are assigned

to partitions based on their quadratic solve-based locations. Vary-
ing this fraction lets us control the emphasis on bipartitioning rela-
tive to that on pure quadratic placement. A fraction of about 0.6 to
0.7 gives us good results on average. For bipartitioning, we used
hMetis [11]. As we show later in our results, this gives us excellent
control over wiring congestion during global placement.

The final step in our global placement is a phase of simulated
annealing [23] for legalization and local minimization of wire-
length, congestion and layout row raggedness. Specifically, we per-
form annealing in the cold regime which favors significant
downhill optimization.

Most prior transistor-level placers and essentially all standard-
cell placers would stop here. These approaches do not permit inter-
cluster merging. This is primarily because denser diffusion merges
usually compromise routability. At block-level, standard cell de-
signs are routable at least in part because at transistor level, all the
internal sub-nets are fully pre-routed and sufficient pin spacings
have been arranged for net accessibility. Because we do not wish to
stop here, however, we must take the responsibility for these careful
shape-level optimizations. This is the purpose of the next phase of
placement.

6. Detailed Placement
At the end of global placement, we have arranged device clus-

ters in rows (see again Figure 2), legalized these clusters, and min-
imized an estimate of wirelength and congestion. However, none of
these clusters have been yet committed to a physical trail-level lay-
out. By deferring this binding to a separate placement step, we are
able to optimize each cluster carefully against a good global model
of both wirelength and congestion. In this section, we discuss how
we optimize individual clusters and the boundaries between clus-
ters for density, and for routability. Attention to shape-level
routability turns out to be extremely crucial here. We use simple
global routing to predict macroscopic routability in this step. We
then present a novel technique to generate dense layouts while han-
dling routability considerations.

6.1 Intra-Cluster Optimizations
Our essential clusters are typically composed of a few transistor

trails. The cluster is “uncommitted”—it has a nominal width in the
row, but no specific layout. To create a palette of layout alternatives
for a cluster, we must focus carefully on routability of individual
trails, and groups of adjacent trails.

To begin, note that a transistor trail is fully routable only if:
• All sub-nets internal to the trail have enough space to be com-

pletely routed within the trail.
• All nets connecting to the outside have enough space to exit

from the trail through pin escapes.

Figure 7 illustrates this for a simple example. It is important to en-
sure that pins connecting to polysilicon gate inputs are spaced ap-
propriately to allow accessibility on metal layers.

The same conditions apply when we need to route a set of trails.
For example, a pair of vertically adjacent trails in a cluster typically
represent NMOS and PMOS devices sharing some poly gates;
choosing the placement so that poly gates can both align and escape
to metal is critical. A pair of horizontally adjacent trails typically
represent same-type MOS devices that may be able to share diffu-
sion and merge. Again, the critical routability issue is ensuring
enough tracks so that internal sub-nets can connect to these devices,
while not compromising any polysilicon gate alignments.

Our first step in generating cluster layout options is to match the

FIGURE 5. Circuit Structure Library

1 (a) 2 (b) 1 (c) 2

2 (a) 1 (b) 2 (c) 1

Trail Options

Circuit Structure Library

Pattern
matching
via graph-
isomorphism

Diffusion Graph
Algorithms

Detailed
Place/Route

Analysis

1 (a) 2 (b) 1 (c) 2

2 (a) 1 (b) 2 (c) 1

Trail Options

Circuit Structure Library

Pattern
matching
via graph-
isomorphism

Diffusion Graph
Algorithms

Detailed
Place/Route

Analysis

1 (a) 2 (b) 1 (c) 2

2 (a) 1 (b) 2 (c) 1

Trail Options

Circuit Structure Library

Pattern
matching
via graph-
isomorphism

Diffusion Graph
Algorithms

Detailed
Place/Route

Analysis

FIGURE 6. Global Placement Strategy

Quadratic Solve
+ Partitioning

hMetis Bipartitioning
Improvement

User controllable

PROUD style
Recursive
Repartitioning

Congestion
Driven

Uncommitted
Essential
Clusters

Quadratic Solve
+ Partitioning

hMetis Bipartitioning
Improvement

User controllable

PROUD style
Recursive
Repartitioning

Congestion
Driven

Uncommitted
Essential
Clusters

cluster circuit structure with patterns in the circuit structure library.
As described earlier, this gives us the various feasible combinations
of transistors to produce easily routable trails. Each of those trail
formations then offers us layout alternatives for the cluster. We note
here that while some small gates (like NAND, NOR) map one-to-
one to essential clusters, other small gates (like AND, OR) and larg-
er gates (like AOI, OAI) map to a handful of essential clusters. Rel-
ative geometric locations are then assigned to these trails while
respecting shape-level routability issues we just discussed. This is
then combined with transistor-size information. For big transistors,
various fingering options can be incorporated. This can result in a
richer set of cluster layout options, thereby supporting dynamic
folding during local placement optimization.

6.2 Inter-Cluster Optimizations
Allowing adjacent clusters to merge, i.e., to share diffusion in

the N- or P-type device rows, is a simple but remarkably powerful
optimization. In particular, it is a local optimization that is ampli-
fied when we scale to thousands of devices. We illustrate this with
a simple example. Figure 8 (left) shows the different intra-cluster
layout options for a simple circuit cluster. Given a placed cluster,
we show (on the right) different possibilities of inter-cluster merg-
ing between the layout options for the uncommitted cluster and the
placed cluster. Notice in the figure that if neighboring clusters can-
not merge (i.e., no suitable selection/orientation of the uncommitted
cluster yields a legal geometric merge) then the resulting layout re-
sembles a pair of standard cells: the clusters can only abut at their

boundaries. But if a suitable merge can be found, the clusters can
actually overlap. In this simple example, the best merging option
allows diffusion sharing in the top device row (and slightly extends
the diffusions if necessary for design rules), and replaces one small
power rail connection with a single wider strap that is physically on
the boundary between the clusters.

Notice the saving in area, even for a single inter-cluster merge,
by choosing the best layout option. Also note that all merges we
consider between neighboring clusters satisfy the detailed routabil-
ity conditions: the resulting dense layout must have enough space
within, to accommodate all internal sub-nets and enough space for
external nets to escape out.

At block-level, these layouts are also subject to global routing
congestion. This is irrespective of whether the layout was generated
using standard cells or at transistor-level. We address this next.

6.3 Global Routability
In order to estimate global routing congestion after global

placement, we replace each net with its simple Steiner representa-
tion. We then calculate the wiring demand at various locations in
the layout using a coarse global routing grid. In regions that are
heavily congested, we provide some relief by introducing extra ver-
tical routing tracks while we consider inter-cluster neighbor merges
in that region. This makes sense because ultimately the pin loca-
tions of the trails constrain global nets. The farther they are spaced,
more the availability of routing tracks. Horizontal routing tracks are
also introduced by adjusting row-spacings.

In the next sub-section, we present a linear-time heuristic to
find the best inter-cluster merges considering all possible layout op-
tions for each uncommitted cluster in the context of global and de-
tailed routability.

6.4 Local Placement Optimization
We present here a heuristic row-based optimization that

traverses each row from left to right while finding the best cluster
layout option for an uncommitted cluster, given the best layout op-
tion for the neighboring (left) cluster. Formally, the best layout op-

FIGURE 7. Trail Routability

Power Rail

Track to Accommodate
Internal Sub-Nets

Exit Points
For External Nets

Power Rail

Track to Accommodate
Internal Sub-Nets

Exit Points
For External Nets

FIGURE 8. Best Option Merging

Std-Cell
Type
No Merge

Best Option
Merge for
Cluster on
Right

Area Saved

Placed Cluster

Uncommitted
Cluster

Layout Options

Cluster

Std-Cell
Type
No Merge

Best Option
Merge for
Cluster on
Right

Area Saved

Placed Cluster

Uncommitted
Cluster

Std-Cell
Type
No Merge

Best Option
Merge for
Cluster on
Right

Area Saved

Placed Cluster

Uncommitted
Cluster

Layout Options

Cluster

Layout Options

Cluster

FIGURE 9. Local Placement Optimization

Global Placement

Dense Placed Portion Uncommitted Clusters

Cluster
Layout
Options

BestMerge
over all
cluster
options

Global Placement

Dense Placed Portion Uncommitted Clusters

Cluster
Layout
Options

BestMerge
over all
cluster
options

tion for cluster i+1 is given by:

where Sj is the set of all layout options for cluster j, MinWidthj is the

minimum row layout width up to cluster j. BestMerge(L,R) is the
densest layout generated by merging layout option R to the right of
layout option L. Let P be the set of all trails belonging to layout op-
tion R that interact with L. Let DiffXp be the left-boundary of the dif-

fusion region belonging to trail p (p ε P) and let PinXp be the

location of the left-most pin belonging to p. The goal of BestMerge
is to then:

• Constraint A (Diffusion Merging)

where MaxDiffXL is the right-most diffusion boundary of the

trail belonging to layout option L that interacts with p.
DRCLength is the design-rule imposed restriction. In general,
if the interacting trails can be merged, then (DRCLength < 0),
else (DRCLength > 0)

• Constraint B (Routability)

where MaxPinXL is the right-most location of a pin belonging

to layout Option L. SubNetTracks are the number of extra ver-
tical routing tracks required to completely route internal sub-
nets belonging to the trail. GlobalVertTracks are the number of
extra global vertical routing tracks required in this region.

• Constraint C (Poly Alignment)

In order to align the polysilicon gate inputs of neighboring N
& P trails and also the pins, we formulate a quadratic wire-
length minimization equation between the objects to be aligned
[30]. Assuming that the distances between the gate inputs are
fixed and so also the distances between the pins, we end up
with a linear constraint:

where AlignP is the set of trails that needs to be aligned.

BestMerge thus computes the left-most positions for all trails
belonging to layout Option R while satisfying polysilicon align-
ment and routability constraints. Note that in regions that are glo-
bal-routing congested, Constraint B dominates whereas Constraint
A dominates in other regions resulting in dense inter-cluster merg-
es. This local row-based optimization is illustrated in Fig. 9. The
overall algorithm optimizes each row in the layout by traversing
from bottom to top, left to right. At the end of processing every row,
we update all global nets that were affected. This lets us use the
most recent information while accounting for global congestion.
During this process, inter-row spacing is introduced to satisfy hori-
zontal global routing demand.

The current implementation is greedy, but is very effective and
very fast. (A more expensive dynamic programming approach, in
the style of [9] is one obvious extension here; another would be to
iterate multiple passes through the complete row-based local opti-

mization and global routing update.) The implementation has a lin-
ear complexity of O(K * n), where K is the maximum number of
layout options for any cluster in the circuit and n is the number of
clusters.

7. Routing
To complete our flow, we have integrated the Cadence IC-

Craftsman router [29] at the back-end. We route the power nets, in-
tra-cluster and inter-cluster nets, in this order. In the next section,
we present our experimental setup and results comparing fully rout-
ed layouts generated using our tool with those generated using a
standard Cadence cell-based flow.

8. Experimental Results
We have implemented these ideas in a tool called TrailBlazer.

Before we present our detailed experimental setup and results, we
take a quick look at a simple example result illustrating various al-
gorithmic aspects of our flow.

8.1 Simple Layout Example
We describe here the results obtained for a simple benchmark,

the circuit c432 from [28]. To create a suitable netlist for us, we re-
synthesize c432 onto a simple target cell library that comprises IN-
VERT, AND, NAND, OR, NOR gates up to 4 inputs. Assuming
standard static CMOS, the circuit structure library has only 7 series-
parallel circuit patterns in it, e.g., the AND gates end up decom-
posed into a combination of more simple NAND and INVERT pat-
terns. Mapped onto this library, c432 has 191 gates; after flattening
it has 836 devices and 456 nets; after essential cluster recognition it
has 206 clusters which are what we place in our global placer. The
technology is 0.35um HP CMOS with one poly and 3 metal layers.
Placement (global and detailed) requires 3 minutes; detail routing
takes another 20 minutes.

Figure 10 shows congestion after both global and detailed
placement, estimated at each point as the number of net bounding
boxes that overlap that point. Detailed placement reduces the width
of the overall layout, without compromising overall congestion.
Figure 11 shows the distribution of trails of various sizes, where the

BestOptioni 1+ k= k Si 1+∈() satis fy ing

MinWidthi 1+ MinWidthi BestMerge BestOptioni k(,)+=

Minimize

p P∈()∀
 DiffXp PinXp{ , } subject to

DiffXp MaxDiffXL DRCLength+≥

PinXp MaxPinXL SubNetTracks GlobalVertTracks+ +≥

a1 PinXp× ap DiffXp×()
p AlignP∈

∑+ cons ttan=

FIGURE 10. Congestion plots for circuit c432

After Detailed PlacementAfter Global PlacementInitial Random

Congestion

X-axis Rows

Rows in Layout

After Detailed PlacementAfter Global PlacementInitial Random

Congestion

X-axis Rows

Rows in Layout

After Detailed PlacementAfter Global PlacementInitial Random

Congestion

X-axis Rows

Rows in Layout

FIGURE 11. Trail histograms for circuit c432

6
26

4 10 3 4 2 2 1 1 2 1

4246

118

206

65
53 44

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

No:
Of
Trails

After Detailed Placement

Before Detailed Placement

Number of Transistors in the Trail

6
26

4 10 3 4 2 2 1 1 2 1

4246

118

206

65
53 44

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

No:
Of
Trails

After Detailed Placement

Before Detailed Placement

Number of Transistors in the Trail

size of a trail is the number of transistors in the trail. Detailed place-
ment increases the number of “big” trails, i.e., it achieves signifi-
cant diffusion merging across clusters. Figure 12 displays a
snapshot of TrailBlazer showing the final placement for c432 and
the various stages of detailed routing.

8.2 Layout Comparison Experiments
To quantify the potential advantages of transistor-based layout

versus standard cells, we ran a series of logic netlists using our flow,
and a standard Cadence Silicon Ensemble (SE) flow [29].We start
with a logic description (in BLIF format) which is compiled into a
functional schematic (in NETBLIF format) using logic synthesis
(SIS [24]). We used several standard LGSynth91 benchmarks from
[28]. The synthesis target library is again the simple INVERT/
AND/NAND/OR/NOR library from the previous section. It is
worth noting that a new and open question is the correct choice for
this intermediate library: in our flow it serves as a means to coerce
synthesis to produce a netlist that uses “good” device-level struc-
tures. Larger groupings for devices are discovered during detailed
placement. On the other hand, for the standard cell design, this is
the set of placeable objects. For the most direct comparison, we use
the same synthesized gate-level netlist for each layout, but flatten it
to transistors for our own layout flow. However, we do ensure that
all device sizes are the same for the both the transistor-level and
standard cell layouts.

 The technology is again HP 0.35um, and we used an existing cell
library. There are four available routing layers. Poly is only used for
gate-input connections. Metal1 is allowed to route in either direction,
but Metal2 is mostly vertical and Metal3 mostly horizontal.

 In our first set of experiments, we try to normalize away the ef-
fects of standard cell placement and routing and focus on the low-
est-level optimizations we do for the transistor layout. We fix the
height of our device rows to be the same as the standard cells, and
fix their pitch at the rule-legal minimum. We then fix the overall
heights of both the transistor and standard cell layouts to be equal.
We describe each benchmark, and compare total area of final routed
layouts, in Table 1. Note that we also compare against an absolute
lower bound--the sum of the areas of the individual standard cells
in the cell layout. Note that our layouts are 10-25% better than this
absolute lower bound: this is because detailed placement allows
clusters to overlap. We are also 19-29% better than the densest lay-
outs generated using Silicon Ensemble (set to 99% row utilization,
i.e., maximum placement density).

In our second set of experiments, we lay out a set of more dif-
ficult benchmarks that require more attention to routing congestion.
To begin, we place our transistor-level netlists using TrailBlazer

FIGURE 12. Different stages of evolution of the layout for
c432 from placement to detailed routing

TABLE 1. Maximum Density Routed Results

Bench.

No.
of

Trans
Rows

Our
Layout
Area
(um2)

Std. Cell
Lower
Bound
(um2)

%Impr
over

Lower
Bound

Silicon
Ensemble

Area
(um2)

%Impr
over
SE

frg1 454 6 6714.9 8934.3 24.8% 9452.7 28.9%

b9 464 5 7033.5 9153 23.12% 9510.8 26%

i2 686 7 8968.1 11321.1 20.7% 12606.3 28.8%

i4 764 7 11084.9 12360.6 10.3% 13768.7 19.5%

C432 836 8 12744.0 16200.0 21.3% 17172.0 25.7%

apex7 938 8 14850.0 18489.6 19.7% 19828.8 25%

example2 1140 9 18893.3 22404.6 15.7% 23874.8 20.9%

i6 2066 12 29224.8 34700.4 15.2% 35964.0 18.8%

Placed c432
TrailBlazer

Metal1 Routing
Notice:
•Dense Merging
•Poly-Alignment
•Flexible Pin Locations
•Efficient M1 usage
•Fully strapped diffusion
H – Same height as Std. Cell
Row Height
N/P – Diffusion Type

Fully Routed c432, ICC

Layout has same height
as Std. Cell Layout but
about 25% smaller area.

H
N

P

P

N

Power

Staggered Poly Pins

Poly & Metal1 Routing

Full Routing

Placed c432
TrailBlazer

Metal1 Routing
Notice:
•Dense Merging
•Poly-Alignment
•Flexible Pin Locations
•Efficient M1 usage
•Fully strapped diffusion
H – Same height as Std. Cell
Row Height
N/P – Diffusion Type

Fully Routed c432, ICC

Layout has same height
as Std. Cell Layout but
about 25% smaller area.

H
N

P

P

N

Power

Staggered Poly Pins

Poly & Metal1 Routing

Full Routing

and then route them in Cadence. We then fix the height of the cell-
based layout to be the same as our successful device-level layout.
We adjusted percent row utilization in Silicon Ensemble until the
cell layouts were just fully routable. Table 2 shows the results of
this experiment. We note again that the transistor-level layouts are
from 16% to 27% smaller than the comparable cell layout. The de-
tailed placement optimization carefully allocates both intra-row
wiring space and inter-row wiring space, and correlates quite well
with the space required to actually complete the routing. We find
empirically that with these routing optimizations disabled, it is im-
possible to create routable transistor-level layouts. The layouts
were also generated in reasonable time. The largest benchmark with
3256 transistors took about 9 minutes to place and another 30 min-
utes to route on a desktop workstation.

9. Conclusions
We presented a novel transistor-level layout flow, for blocks of

combinational logic up to a few thousand transistors in size. The key
algorithmic innovations are early identification of essential diffusion-
merged MOS device clusters, but deferred binding of clusters to a
specific shape-level layout until the very end of placement. A com-
mercial router completes the flow. Experiments comparing to a com-
mercial standard cell-level layout flow show that, when flattened to
transistors, our tool consistently achieves 100% routed layouts that
average 23% less area. Our approach shows that a good divide-and-
conquer attack need not handicap the shape-level optimizations that
have always been the distinguishing features of the best custom de-
vice-level layouts. Our emphasis on recognized circuit clusters
means that natural groups of a few connected devices always have the
optimal geometric arrangement. Global placement using only these
clusters reduces the complexity of the problem. Detailed placement
focusing on intra-cluster alternatives and inter-cluster merges allows
us to do crucial shape-level optimizations, but scale to large netlists.

Our current work is focused on adding a timing-driven compo-
nent to this flow [5][16], and on understanding the role played by log-
ic synthesis and technology mapping when the target cell library is an
artificial and intermediate construct, intended only to guide the cre-
ation of a well-structured transistor-level netlist.

Acknowledgment
We would like to thank Bill Halpin and Artour Levin of Intel

and John Cohn and Jeff Burns of IBM for constructive comments
and criticisms. This work was funded by the Semiconductor Re-
search Corporation.

References
[1] A. Basaran and R. Rutenbar, “An o(n) algorithm for transistor stacking

with performance constraints,” in ACM/SIGDA Physical Design Work-
shop, 1996.

[2] J. Burns and J. Feldman, “C5M-A Control Logic Layout Synthesis
System for High-Performance Microprocessors,” in Proc. 1997 ISPD,
pp. 110-115.

[3] S. Chow, H. Chang, J. Lam, and Y. Liao, “The Layout Synthesizer: An
Automatic Block Generation System,” in Proc. 1992 CICC., pp.
11.1.1-11.1.4.

[4] J. M. Cohn, D. J. Garrod, R. A. Rutenbar and L. R. Carley, “Analog
Device-Level Layout Automation”, Kluwer Academic Publishers,
Boston MA., 1994.

[5] F. Dartu, L. T. Pileggi, “TETA: Transistor-Level Engine for Timing
Analysis,” in Proc. 35th DAC, June 1998, pp. 595-598.

[6] B. Guan, C. Sechen, “Efficient standard cell generation when diffusion
strapping is required,” in Proc. 1996 CICC., pp. 501 -504.

[7] A. Gupta and J. Hayes, “Near-Optimum Hierarchical Layout Synthesis
of Two-Dimensional CMOS Cells,” Proc. 12th International Confer-
ence on VLSI Design, Jan 1999, pp. 453-459.

[8] M. Guruswamy, R. Maziasz, D. Dulitz, S. Raman, V. Chiluvuri, A.
Fernandez and L. Jones, “CELLERITY: A Fully Automatic Layout
Synthesis System for Standard Cell Libraries,” in Proc. 1997 DAC, pp.
327-332.

[9] Her, T. W. and D. F. Wong, “Optimal Module Implementation and its
Application to Transistor Placement,” IEEE International Conference
on Computer-Aided Design, 1991, 98-101.

[10] Y. Hsieh, C. Hwang, Y. Lin, Y. Hsu, “LiB: A CMOS Cell Compiler,”
IEEE Trans. on CAD, 10(8), August 1991, pp. 994-1005.

[11] G. Karypis, R. Aggarwal, V. Kumar and S. Shekhar, “hMetis, A Hyper-
graph Partitioning Package, Version 1.0,” Manuscript, December 1997.

[12] J. Kleinhans, G. Siegl, F. Johannes, K. Antreich, “GORDIAN: VLSI
Placement by Quadratic Programming and Slicing Optimization,”
IEEE Trans. CAD, vol 10 no 3, March 1991.

[13] M. Lefebvre and C. Chan, “Optimal Ordering of Gate Signals in
CMOS Complex Gates,” in Proc. 1989 CICC, pp. 17.5.1-17.5.4.

[14] M. Lefebvre and D. Skoll, “PicassoII: A CMOS Leaf Cell Synthesis
System,” in Proc. 1992 MCNC Intl. Workshop on Layout Synth., vol. 2,
pp. 207-219.

[15] M. Lefebvre, D. Marple and C. Sechen, “The Future of Custom Cell
Generation in Physical Synthesis,” in Proc. 1997 DAC, pp. 446-451.

[16] C. B. McDonald and R. E. Bryant, “Symbolic Functional and Timing
Verification of Transistor-Level Circuits,” IEEE Transactions on Com-
puter-Aided Design, March 2001.

[17] E.Malavasi, D. Pandini, “Optimum CMOS Stack Generation with Ana-
log Constraints,” IEEE Transactions on Computer-Aided Design, Vol.
14, No. 1, January 1995, pp. 107-122.

[18] R.L. Maziasz, J.P. Hayes, Layout Minimization of CMOS Cells, Klu-
wer Academic Publishers, Boston/Dordrecht/London, 1992.

[19] B.T. Messmer and H. Bunke, “Subgraph isomorphism in polynomial
time,” Technischer Bericht IAM 95-003, Institut fur Informatik, Uni-
versitat Bern, Schweiz, 1995.

[20] M. Ohlrich, C. Ebeling, E. Ginting, L. Sather, “SubGemini: Identifying
SubCircuits using a Fast Subgraph Isomorphism Algorithm,” Proc.
1993 DAC, pp. 31-37.

[21] M. A. Riepe, “Transistor Level Micro Placement and Routing for Two-
Dimensional Digital VLSI Cell Synthesis,” Ph.D. dissertation, Univer-
sity of Michigan, 1999.

[22] T. Sadakane, H. Nakao, and M. Terai, “A new hierarchical algorithm
for transistor placement in CMOS macro cell design,” Proceedings of
CICC-95, pp. 461-464.

[23] C. Sechen and A. Sangiovanni-Vincentelli, “The TimberWolf Place-
ment and Routing Package,” IEEE Journal of Solid-State Circuits,
Vol. SC-20, No. 2, April 1985, pp. 510-522.

[24] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A.
Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, A. Sangiovanni-Vin-
centelli; SIS: A System for Sequential Circuit Synthesis; Dept. of
EECS, University of California, Berkeley, 1992

[25] K. Tani, K. Izumi, M. Kashimura, T. Matsuda and T. Fujii, “Two-
Dimensional Layout Synthesis for Large-Scale CMOS Circuits”, in
proc. 1991 ICCAD, pp. 490-493.

[26] R. S. Tsay, E. Kuh, C. P. Hsu, “PROUD: A Sea-Of-gates Placement
Algorithm,” IEEE Design & Test of Computers, Dec 1988.

[27] T. Serdar, C. Sechen, “AKORD: Transistor-Level and Mixed Transis-
tor/Gate Level Placement Tool for Digital Data Paths,” in Proc. 1999
ICCAD.

[28] http://www.cbl.ncsu.edu/benchmarks
[29] http://www.cadence.com
[30] Prakash Gopalakrishnan, “Direct Transistor-Level Layout for Digital

Blocks,” Ph.D. Thesis, Carnegie Mellon University, 2001.

TABLE 2. Routing Congestion-Aware Routed Results

Bench.
No.
of

Trans

Layout
Height
(um)

Our
Layout

Area (um2)

Silicon
Ensemble

Area (um2)

%Impr
over
SE

C880 1410 150 29595 38550 23.2%

term1 1682 162 34279 47142 27.3%

x4 1826 180 37620 46800 19.6

C1355 2164 196 47844 61603 22.3%

C1908 2552 203 51887 61692 15.9%

i9 3256 244 67344 83204 19.1%

	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index

