
Accurate CMOS Bridge Fault Modeling
With Neural Network-Based VHDL Saboteurs

Don Shaw
Gennum Corporation

970 Fraser Drive
Burlington, Ontario, L7L 5P5
email: dshaw@gennum.com

Dhamin Al-Khalili and Côme Rozon
Dept. of Elec. and Comp. Engineering
Royal Military College of Canada

Kingston, Ontario, K7K 7B4
email: alkhalili-d, rozon-c@rmc.ca
ABSTRACT
This paper presents a new bridge fault model that is based on

a multiple layer feedforward neural network and implemented
within the framework of a VHDL saboteur cell. Empirical evi-
dence and experimental results show that it satisfies a prescribed
set of bridge fault model criteria better than existing approaches.
The new model computes exact bridged node voltages and propa-
gation delay times with due attention to surrounding circuit ele-
ments. This is significant since, with the exception of full analog
simulation, no other technique attempts to model the delay effects
of bridge defects. Yet, compared to these analog simulations, the
new approach is orders of magnitude faster and achieves reason-
able accuracy; computing bridged node voltages with an average
error near 0.006 volts and propagation delay times with an aver-
age error near 14 ps.

Keywords
Bridge Defects, Fault Models, Neural Networks, VHDL, CMOS
ICs, Fault Simulation

1. INTRODUCTION

An area of concern related to the rapid advancement of IC
technologies is the development of new fault models to study the
effects of defects on IC designs. This paper concerns the develop-
ment of a new bridge fault model. For this discussion, a defect is
any physical imperfection that may exist within a circuit. Defects
lead to the occurrence of faults, which are defined as any type of
abnormal circuit behavior, such as an incorrect logic level or
increased signal delay. By judicious development and use of
accurate fault models, based on actual defects, circuit simulation
can be used to reveal the relevant effects of the various defects.

It has been shown that bridge defects account for the majority
of all defects in CMOS ICs [4], [3], [12]. A bridge defect is
defined simply as a short between two normally unconnected
nodes in a circuit. Considering that a high percentage of layout
area is used by interconnect routing between cells, it has been
found that the majority of bridge defects occur between the output
signals of logic gates [2], [9], [12]. These are the bridge defects
considered in this paper.

The paper begins with a discussion about the fault effects of
interconnect bridge defects. The scope is limited to CMOS stan-
dard cell-based circuits as these are currently prevalent in the IC
industry. A set of goals is established for developing accurate and

efficient bridge fault models. This is followed by a description of
a completely new bridge fault modeling scheme for CMOS stan-
dard cell designs. The model achieves nearly the accuracy of ana-
log defect simulation using an efficient neural network
implemented in VHDL. It is validated by comparing results with
those obtained using analog simulation. Finally, implementation
issues are addressed and some benchmark circuits are studied
using the new model.

2. BRIDGE DEFECTS

2.1.  Bridge Defect Effects

A bridge defect between two gate outputs appears dormant as
long as the gates are driving the same logic value. However, when
the two gates attempt to adopt different logic values, logic conten-
tion occurs. Depending on factors such as the drive strength of the
two gates, their individual input patterns, and the characteristics
of the bridge defect, the bridged node may adopt either logic
value or settle at some intermediate voltage level. Also, the bridge
defect usually has an impact on the propagation time of the
bridged signals.

Bridge defects also cause less obvious effects that can intro-
duce further modeling complications. If a bridge defect creates a
feedback loop, a formerly stable combinational circuit may take
on oscillatory or sequential properties. Also, when intermediate
voltage levels occur, downstream logic gates with varying input
voltage thresholds can interpret the same voltage level differently.
This is known as the Byzantine General’s Problem and can signif-
icantly complicate bridge defect modeling issues [1].

Bridge defects exist at various levels of severity, depending
on the electrical resistance of the short circuit caused by the
defect. Due to the progressive nature of wearout mechanisms that
can cause bridge defects, they often start at high resistance levels
and continue to become more severe as time passes. For model
tractability, the range of bridge resistances is often divided into
two groups, hard and soft. If the resistance is relatively low, a
hard defect is said to have occurred and a logical fault may be
introduced into the circuit. Conversely, a higher resistance bridge
causes a soft defect with performance degradation effects such as
delay faults. The actual resistance value that distinguishes
between hard and soft defects varies based on the process tech-
nology [8], [10], [13].



2.2.  Bridge Fault Model Goals

An accurate bridge fault model must consider the effects of
resistive bridges at various levels of severity. Then it can repre-
sent the exact voltage of the two bridged nodes with due consider-
ation to the resistance and the input-pattern dependent drive
strength of the cells driving those nodes. Furthermore, the model
must have a means to deal with the Byzantine General’s problem
in the logic interpretation of the node voltages. Also important is
the ability to model the delay fault effects of bridge defects with
consideration to the load characteristics and other relevant fac-
tors. Finally, the bridge fault model must be efficient to allow for
analysis of real circuit modules within a reasonable amount of
CPU time.

3. A NEW BRIDGE FAULT MODEL

3.1.  VHDL Fault Models - The Saboteur

Fault modeling with VHDL is a compelling idea that has
been evolving steadily over the past several years. A popular
technique for VHDL fault modeling is based on the saboteur,
which is a controllable component that is physically added to the
VHDL netlist of a design [6]. It is placed on the nets between
existing cells and can be used to model a wide variety of fault
cases. A significant drawback of the saboteur model as originally
proposed in [6] is that it has no direct access to the input ports of
the preceding gates and, therefore, cannot model faults that
depend on the drive strength of the signal. Thus, a modification is
proposed such that additional signal lines are added to the circuit,
enabling the saboteur to determine the fault behavior based on the
inputs of the cells driving the bridged nodes as shown in Figure 1.

3.2.  Multilayer Feedforward Neural Networks

Neural networks are used for classification, time-series pre-
diction, noise reduction, and general function mapping in a wide
variety of different applications. There are many different types of
neural networks. The fault model presented in this paper uses the
popular multilayer feedforward neural network (MLFN). Various
references can be consulted to provide more details about its
architecture and operation [7], [11].

With respect to the capabilities the MLFN, it is often referred
to as a universal function approximator [5]. Specifically, given an
appropriate network architecture and sufficient training, the
MLFN can learn any deterministic function to an arbitrary degree
of accuracy. Clearly then, since the voltage and timing character-

istics of electronic circuits are deterministic functions by nature,
the MLFN can learn them, assuming the other conditions are met.
To conduct training, the input vectors in the training set are pre-
sented to the network individually and the network’s outputs are
compared to the output vector that it is supposed to produce. Dur-
ing this process, a cumulative measure of error is computed for
the training set. Then, the weights are updated, using an optimiza-
tion algorithm, to reduce the measure of error for the network.
Training must be conducted for many passes through the training
set until the network reaches a suitable level of accuracy. Histori-
cally, this has been a time-consuming process and is perhaps the
most significant drawback to practical implementations of neural
networks. However, relatively fast algorithms now exist for
weight optimization. In the application presented in this paper, the
conjugate gradient algorithm is used for training [7].

3.3.  Bridge Fault Model Implementation

The new bridge fault model uses a MLFN implemented
within the framework of the modified saboteur fault model. A sin-
gle saboteur cell is developed to model all bridge faults between
the different components in a cell library. Instance-specific infor-
mation, such as cell drive strength and propagation delay, is pro-
vided to the saboteur through generic parameters in the VHDL
entity. The defect resistance (hard, soft, or no-defect) is controlled
by a defect control signal and the fault model is executed in
response to a transition on the nodes that it is bridging. If there is
no defect, it simply passes the logic signals in zero physical time.
However, when the defect control signal is set to an active defect
state, the bridge model is executed in response to a transition on
one of the input signals to those cells driving the bridged nodes.
The flowchart shown in Figure 2 details the operation of the
defect-injected saboteur cell in response to a logic transition on
inputs A1 and/or A2. It is important to note that the bridge fault

model itself executes in zero physical time and is invoked in
response to a single event on one of its inputs. Thus, if an event
on A1 and/or A2 occurs, the input nodes labeled B1 and B2 are

assumed inactive and will remain that way for at least as long as
the fault model takes to execute. An equivalent flowchart can be
constructed for transitions occurring on B1 and/or B2, with A1

and A2 inactive.

In this flowchart, the cell outputs, OA and OB, are the normal

driven logic values (i.e. no defect). Since the bridge cell must
determine OA and OB immediately after a change in the driving
cell inputs, it must know specific information with respect to the
logic function of these cells. This is passed to the bridge cell
through generic parameters during the instantiation of the sabo-
teur cell. Also, note that the bridge cell outputs are analog voltage
values, which are seemingly out of place in a digital simulation
environment. However, it will be shown later how this is used to
resolve the Byzantine General’s problem.

3.4.  Fault Model Neural Network Architecture

Figure 3 shows the top-level architecture of the bridge fault
neural network. The output variables define the voltage, V, and a
delay factor, t, of the two bridged nodes with respect to the input

Figure 1.  The modified saboteur fault model.

defect control

saboteur
modified



variables. These values are computed in response to an appropri-
ate change on the inputs to the preceding cells as described in Fig-
ure 2. As a convention, the node driven by the active cell is node
1, or the active node. Conversely, the other node is referred to as
node 2, or the inactive node. 

The input vector for the neural network has 10 elements as
shown in Figure 3. The inputs L1 and L2 are the defect-free logic

values driven by the cells. Elements S1 and S2 are input-pattern

dependent measures of relative drive strength for the two cells.
The electrical resistance of the bridge defect is RB. Both the final
voltage and the propagation delay of the bridged nodes depend on
these values. However, the propagation delay computations
require additional parameters. The values τ1 and τ2 are input-pat-

tern dependent charge times for each cell driving one standard
load. These parameters contribute information about the capaci-
tive characteristics of the pull-up/pull-down network within each

cell. The parameter, S1
δ-1, is the drive strength of the active cell

prior to the transition. This provides an indication of the node
voltages before the transition, allowing a better estimate of the
transition time to the next state. The parameter, T1,DF, is the
defect-free propagation time of the current logic transition on the
active cell. It is determined from the timing information in a Stan-
dard Delay Format (SDF) file. Since this data is backannotated
from various tools in the ASIC design flow, it infers the most
accurate loading factors available. Furthermore, provision of an
SDF timing file allows the entire VHDL circuit simulation to
implement a sophisticated timing algorithm, such as the IEEE
Standard 1076-4 VITAL specification. The last parameter, LR, is
referred to as the load ratio and is simply a ratio of the fanout for
the active cell to the fanout of the inactive cell. This provides the
network with a concise estimate of the actual load on the node
driven by the inactive cell.

3.5.  Bridged Node Voltage Interpretation

As discussed previously, the Byzantine General’s problem
occurs when the bridged lines adopt an intermediate voltage level,
with downstream cells interpreting this voltage at different logic
values. The new bridge fault model handles this problem by using
voltage-level interpreter components, which are specifically
derived for each input of each cell in the library. The voltage-level
interpreters are placed immediately preceding every cell on a
bridged node, along with the bridge saboteur cell, as shown in
Figure 4. When a voltage change is sensed by the voltage-level
interpreter, it compares it to the voltage transfer characteristics for
the downstream cell and determines an appropriate logic value.
Specifically, the lowest input voltage interpreted as logic high,
VIH, the highest input voltage interpreted as logic low, VIL, and

the switching voltage, Vx, are used to determine the logic values
as shown in Figure 4.

4. VALIDATING THE BRIDGE MODEL

4.1.  Deriving the Training and Test Data

Training and validation of the neural network for the bridge
fault model requires data from several sample bridge defects for a
given cell library. An example cell library, based on TSMC’s
0.35µ, 3 metal layer, CMOS technology has been provided by the
Canadian Microelectronics Corporation. It contains several dozen
combinational logic cells and a wide variety of latches and D flip-
flops, including scannable cells. Bridge defect data is derived
using analog simulation and must cover a broad range of possible

defect control

A1

A2

B1

B2

Bridge

OA(δ)

OB(δ)

VA(δ)

VB(δ)
Cell

Start (δ=0)

Wait Until A1/A2
Changes Value

δ=δ+1
Look Up OA(δ)

Inject Defect

Yes

Yes

No

OA(δ)=OA(δ-1) &
OA(δ)≠OB(δ-1)?

①
OA(δ)=OA(δ-1) &
OA(δ)=OB(δ-1)?

MLFN Computes
VA(δ), VB(δ) 

No

<= VA(δ) after 0 s
<= VB(δ) after 0 s MLFN Computes

VA(δ), VB(δ), tA, tB 

<= transport VA(δ) after tA
<= transport VB(δ) after tB

Figure 2.  Operation of saboteur bridge cell.

②

Figure 3.  Neural network input and output vectors.

T1,DF RBL1 S2S1 L2

V1 t1 V2 t2

Neural Network Mapping Function

LRτ1 τ2S1
δ-1

Figure 4.  Voltage-Level Interpreter Components.

Bridge
Cell

and2

 inv

 or2

VDD

VSS

VIH

Vx

VIL

1

L

0

H



bridge defect scenarios. For instance, bridge defects between cells
of varying drive strength combinations must be included in the
training set to ensure that the network can “learn” the effects of
cell drive strength on the circuit behavior. Furthermore, it is
imperative that a wide range of loading conditions and both soft
and hard bridge defects are considered. Finally, for each of these
combinations, various logic and drive strength transitions must
also be included.

A general purpose defect to fault (D2F) translation tool has
been developed to fully automate the process of deriving this
data. The D2F tool is implemented using the Tcl scripting lan-
guage and uses Cadence Spectre version 4.4.3 for all analog sim-
ulations. It is capable of performing bridge defect analysis using
any device models supported by the simulator. All simulations
conducted for the sample cell library were performed using
BSIM3v3.1 device models at 3.3 Volts supply and typical pro-
cess/temperature parameters. The procedure would be identical
for data collected at worst/best case voltage/process/temperature
parameters. Hard and soft defects were studied at bridge resis-
tances of 750Ω and 3000Ω respectively. These values are within
the ranges suggested by previous studies, [8], [10], [13], and were
precisely selected for this technology based on results of exten-
sive simulation. Using a greater number of different resistances
would result in a more flexible neural network, at the cost of more
time to derive the training set and conduct the training.

4.2.  Training the Neural Network

Training of the neural network is conducted using a random
subset of the bridge defect data samples derived using the D2F
tool. The remaining samples are used for testing and validating
the neural network. The rationale behind this approach is that the
neural network should certainly be capable of learning its training
set, assuming that the architecture is appropriate and the learned
function is deterministic. However, the true measure of perfor-
mance can only be assessed when it is tested using a set of data
that it has not yet been exposed to. Furthermore, as the perfor-
mance of particular network is continually evaluated using the
separate test data set, architecture and training decisions eventu-
ally become influenced by the particular characteristics of this set
as well. Thus, it is prudent to have yet another set of data to per-
form a final validation of the neural network. To summarize, the
set of derived bridge defect data is separated into three sets. These
sets are referred to as the training set, the test set, and the valida-
tion set. For the sample cell library, data was collected for 130 of
the several thousand possible bridge defects; with 70 arbitrarily
allocated to the training set and the remaining 60 divided between
the test and validation sets.

Before training commences, the input and output data for the
neural network must be scaled to ensure that it is within accept-
able ranges. Then, using a custom C program, training of the
bridge fault model for the sample cell library was conducted for
10000 iterations, with the voltage and delay error evaluated after
every 100 iterations. Figure 5 shows the performance of the neu-
ral network, evaluated using the test set, at 100 iteration intervals
throughout the training. The node voltage line shows the average
voltage deviation, from the analog simulation results, of both

bridged nodes across all input pattern combinations for the 30
defects in the test set. Similarly, the delay time line shows the
average delay error for the 30 defects in the test set. The rate of
training for this network, with the 70 defect training set, is

approximately 1800 iterations/hour on a Sun UltraTM worksta-
tion. It should be noted that training is a one time process and,
therefore, is not a significant issue for deriving the model.

The results presented in Figure 5 show that training signifi-
cantly reduces the test set prediction error until around 6000 itera-
tions (200 minutes). Subsequent training, which continues to
reduce the error for the training set, shows mixed performance
benefits for the test set. During the training beyond 6000 itera-
tions, the network learns irrelevant details about the training set
with respect to the general bridge defect population. Increasing
the size and diversity of the training set would provide further
accuracy for test set predictions. Nonetheless, it is clear that the
existing network is excellent at predicting the node voltages. Fur-
thermore, achieving an average delay prediction error below 14
ps, the neural network produces respectable results in a domain
where no other model, short of full analog simulation, has even
made an attempt in the past. Considering that the gate loads are
typically only an estimate at this point, and the significant timing
variations due to process/environmental conditions, further
attempts to reduce the delay computation error would be point-
less.

To confirm the accuracy of the neural network, the validation
set is used. Inspection of Figure 5 suggests that the network is
optimally trained somewhere between 6000 and 7000 training
iterations. The trained weight states were arbitrarily extracted at
6600 iterations for subsequent experiments. Testing the 30 bridge
defects in the validation set at this point, the average voltage error
was found to be 0.0059 V and the average delay error was 14.15
ps. These figures are in the same range as those found using the
test set. As yet another confirmation of accuracy, 20 more bridge
defects were selected randomly by an independent 3rd party and
the actual behavior was derived using the D2F Tool for compari-
son with the neural network predictions. The average voltage
error for this set was 0.0071 V and the average delay error was
12.14 ps, both of which are within the same range as the previous
error computations. Since the neural network had no prior expo-
sure to the randomly selected bridge defects in either of these val-

Figure 5.  Neural network test set error during training.

Voltage Error
Delay Error

A
ve

ra
ge

 V
ol

ta
ge

 E
rr

or
 (

V
) A

verage D
elay E

rror (ps)

Number of Training Iterations

14

16

18

20

22

24

0 2000 4000 6000 8000 10000

.005

.01

.015

.02

.025

.03

.035 26



idation sets, it can be concluded that the network is adequately
trained for this cell library.

5. IMPLEMENTATION AND RESULTS

5.1.  Conducting a Bridge Fault Analysis

After the neural network has been trained and validated, the
D2F tool automatically generates the defect-injectable VHDL
saboteur cell. Also, the voltage interpreter components used for
resolving the Byzantine General’s Problem are generated based
on information collected during defect-free cell characterization.
The remaining steps in employing the new bridge fault model for
analysis of digital circuit designs are automated by another spe-
cialized software tool.

The bridge simulation process starts by reading a structural
VHDL circuit description and its most recent SDF timing file. It
also reads a library technology file, written by the D2F tool,
which contains the necessary information regarding cell I/O pins,
logic functions, drive strengths, charge times, and voltage transfer
characteristics. Then, after itemizing the ports and cells listed in
the VHDL circuit description, a test pattern file is generated
(pseudorandomly) or read from a file if available. Testbench pro-
cesses are then added to the structural VHDL circuit description.
These processes apply the test patterns to the circuit inputs and
record the outputs in ASCII result files. A defect-free simulation
is conducted at this point to enable comparison with defect-
injected results.

Before the bridge defect injection process can begin, a list of
defects is required. An option is provided to build an exhaustive
set of bridge defects, a pseudorandom set of bridge defects, or to
read a list of bridge defects from a file. Once the bridge defect list
is selected, the defect-injectable saboteurs are inserted into the
VHDL netlist along with the voltage interpreter components for
each connection downstream of the defect site. When the fault
model instances are inserted into the netlist, logic behavior,
charge time, and drive strength tables for the driving cells are
loaded into the entity through generic parameters. The gate
fanouts of the two bridged cells are also passed to enable compu-
tation of the load ratio parameter. Finally, the defect-free propaga-
tion times, T1,DF, for the driving cells are provided from the
timing information in the SDF file.

After the bridge fault model instances are inserted into the
circuit, a VHDL process is added to enable injection of defects
into the fault models. This process controls whether each bridge
fault model is dormant, or is modeling a soft or hard defect. Then,
the netlist is compiled, the simulator is invoked, and the first
bridge defect from the list is injected into its corresponding bridge
fault model. The entire set of test patterns is applied sequentially
to the circuit and the observable circuit outputs are written to a
file for analysis. The circuit is then reset and each subsequent
defect in the list is individually injected and simulated. Following
each simulator run, the output file is compared to the defect free
simulation results and a concise summary file is created. After all
of the bridge defects are simulated, the summary files are parsed
and relevant statistics are tabulated.

5.2.  Benchmark Circuits and Results

To test the new bridge fault model and defect injection mech-
anism, a few sample circuits were selected from the ITC’99
benchmark suite available from Politecnico di Torino. Specifi-
cally, RTL VHDL descriptions of circuits b11, b14, and b21 were
synthesized using the 0.35µ cell library described previously.
Some characteristics of these benchmark circuits are presented in
Table 1.

For each benchmark circuit, a test pattern file with 200 test
vectors was generated pseudorandomly using the bridge fault
analysis tool. Then, after the defect-free simulation, bridge defect
lists were randomly generated and simulations were conducted
for the three circuits as detailed in Table 2. All simulations were
run on a Sun UltraTM Enterprise 4500 server, utilizing
10x400MHz UltraSPARC II processors.

The number of bridge defects reported in the table includes
an equal number soft and hard defects. Note that each circuit was
simulated at two different clock speeds, one with plenty of slack
time and the other with virtually no slack time in the critical path.
The results reported in the Soft/Hard defect coverage column are
the percentage of soft and hard defects that caused logical errors
at the circuit outputs. It should be noted that no effort was made to
derive optimal test patterns for these circuits, hence the low defect
coverages. The results show that, for all of the benchmark cir-
cuits, a faster clock causes a notably higher incidence of observ-
able faults. This would not occur using other bridge fault models.
Instead, only the faults occurring at the slower clock speeds
would be observed. This provides a strong argument for the use of
a “timing aware” bridge fault simulator. As a specific example, if

Table 1: Characteristics of benchmark circuits.

Circuit Input Pins Output Pins # Cells

b11 7 6 439

b14 32 54 4651

b21 32 22 11224

Table 2: Benchmark circuit test results.

Circuit & 
Clock Period

#Bridge 
Defects

Sim Time
Soft/Hard

Def Cov (%)

b11-12 ns 10000 43 min 37.4 / 60.3

b11- 7.5 ns 10000 39 min 40.8 / 63.7

b14- 25 ns 10000 293 min 20.1 / 51.4

b14- 20 ns 10000 256 min 21.3 / 54.1

b21- 30 ns 40000 30 hr 9.7 / 31.5

b21- 22 ns 40000 28 hr 9.9 / 32.1



the defect coverage data was intended for use as the cost function
in a test pattern generation scheme, those defects causing delay
faults only are ignored and may remain undetected.

To provide an indication of the effects of increasing the num-
ber of test patterns and to show that these bridge defects are
indeed testable, the hard defect tests were repeated for circuit b11
at a 7.5 ns clock period using test pattern files of 100, 500, and
5000 test vectors. These results are presented in Table 3 along
with the results reported previously for the 200 vector test pattern
set. Note that increasing the number of test patterns improves the
defect coverage considerably. However, as with any pseudoran-
dom test pattern generation scheme, increasing the number of test
patterns inevitably reaches a point where benefits are offset by the
increased simulation time requirements. Also, we see that the
simulation time scales almost proportionately with the number of
test vectors.

The issue of simulation time remains a concern with the pro-
posed bridge fault modeling scheme. However, considering that it
implements the sign-off quality VITAL specification, observed
simulation times are within reason. To qualify this, simulation
time comparisons were conducted between the defect-free circuits
and the netlists with 100 bridge fault model instances, including
all associated signal and interpreter cell overhead. The circuits
with the fault models were simulated using the 200 vector test
pattern set, individually injecting both soft and hard defects into
each fault model. The defect free circuits were simulated for an
equivalent number of clock cycles. Simulation time results from
these tests are reported in Table 4. For these circuits, the added
overhead required to implement the fault model induce a reason-
ably small simulation time penalty beyond the industry standard
VITAL specification.

6. CONCLUSIONS AND FUTURE WORK

This paper has presented a totally new approach to bridge
fault modeling. The new model uses a neural network imple-
mented within the framework of a VHDL saboteur cell. It has
been shown that this bridge fault model is able to compute the
voltage and propagation delay times for the bridged node signals
with negligible error. Furthermore, computations are achieved in
a fraction of the time required by comparably accurate
approaches. Finally, several benchmark circuits were tested at dif-
ferent clock speeds to demonstrate the strengths and limitations of
the new bridge fault model.

To fully realize the capabilities of the new bridge fault model,
an automated test pattern generator must be developed. This
would produce test patterns that specifically target the realistic
logical faults and relevant delay faults that are neglected by other
bridge fault models.

7. REFERENCES

[1] J.M. Acken and S.D. Millman, “Fault model evolution for diagno-
sis: accuracy vs. precision,” Proc. IEEE Custom Integrated Circuits 
Conference, 1992, pp. 13.4.1-13.4.4.

[2] M. Calha, M. Santos, F. Goncalves, and J.P. Teixeira, “Back annota-
tion of physical defects into gate-level, realistic faults in digital ICs,” 
Proc. Int’l Test Conf., 1994, pp. 720-728.

[3] F.J. Ferguson and T. Larrabee, “Test pattern generation for realistic 
bridge fault models in CMOS ICs,” Proc. Int’l Test Conference, 
IEEE, 1991, pp. 492-499.

[4] F.J. Ferguson and J.P Shen, “A CMOS fault extractor for inductive 
fault analysis,” IEEE Trans. Computer-Aided Design, Vol. 7, No. 11, 
Nov. 1988, pp. 1181-1194.

[5] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward 
networks are universal approximators,” Neural Networks, 2:5, 1989, 
pp. 359-356.

[6] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson, “Fault 
Injection into VHDL Models: The MEFISTO Tool,” Proc. 24th Int’l 
Symposium Fault-Tolerant Computing, IEEE, 1994, pp.66-75.

[7] T. Masters, Practical Neural Network Recipes in C++, Academic 
Press, Inc., San Diego, CA, 1993, 493 pp. ISBN 0-12-479040-2.

[8] S.D. Millman and J.M. Acken, “Special applications of the voting 
model for bridging faults,” IEEE Journal of Solid-State Circuits, 
Vol. 29, No. 3, Mar. 1994, pp. 263-270.

[9] M. Renovell, P. Huc, and Y. Bertrand, “CMOS bridging fault model-
ing,” Proc. 12th IEEE VLSI Test Symposium , Cherry Hill, New Jer-
sey, Apr. 1994, pp. 393-397.

[10] R. Rodriguez-Montanes, J.A. Segura, V.H. Champac, J. Figueras, 
J.A. Rubio, “Current vs. Logic Testing of Gate Oxide Short, Float-
ing Gate and Bridging Failures in CMOS,” Proc. Int’l Test Confer-
ence, IEEE, 1991, pp. 510-519.

[11] D. Rumelhart and J. McClelland, Parallel Distributed Processing, 
MIT Press, Cambridge, Massachusetts, 1986.

[12] J.J.T. Sousa, F.M. Gonçalves, and J.P. Teixeira, “IC defects-based 
testability analysis,” Proc. Int’l Test Conference, IEEE, 1991, pp. 
500-509.

[13] H. Vierhaus, W. Meyer, and U. Glaser, “CMOS bridges and resistive 
transistor faults: IDDQ versus delay effects,” Proc. Int’l Test Confer-

ence, IEEE, 1993, pp. 83-91.

Table 3: Effects of varying the number of test vectors.

Circuit & Test 
Set Size

#Bridge 
Defects

Sim Time
Hard

Def Cov (%)

b11- 100 vec 5000 11 min 57.5

b11- 200 vec 5000 20 min 63.7

b11- 500 vec 5000 46 min 67.1

b11- 5000 vec 5000 427 min 83.5

Table 4: Sim. time for defect-injected and defect-free circuits.

Circuit Defect-Free Defect-Injected % increase

b11 03:01 03:42 22.65%

b14 28:53 33:59 17.66%

b22 54:45 57:30 5.02%


	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index




