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1 Abstract correlations can severely overestimate the actual noise realizable
on a victim net and can create a so-calfatbe noise violation
Cross-coupled noise analysis has become a critical concern inThis is especially important when the number of aggressors for a
today’s VLS| designs. Typically, noise analysis makes an assump- Victim is high (e.g. 10 or more), as is often the case. In such a situ-
tion that all aggressing nets can simultaneously switch in the sameation the combined noise from all aggressors will be very severe,
direction. This creates a worst-case noise pulse on the victim netWhile the likelihood of realizing the simultaneous switching sce-
that often leads to false noise violations. In this paper, we present anario for all aggressors is small due to inherent logic and timing
new approach that uses logic implications to identify the maximum correlations. . ) o
set of aggressor nets that can inject noise simultaneously under the Industrial noise analysis approaches have exploited timing cor-
logic constraints of the circuit. We propose an approach to effi- relations in circuits to reduce the pessimism of noise analysis by
ciently generate logic implications from a transistor-level descrip- identifying situations where two aggressor nets cannot switch at
tion and propagate them in the circuit using ROBDD the same time. Acommon example of such a situation is when two
representations and a newly proposed laterial propagation methodaggressor nets switch in different clock cycles, or where one
We then show that the problem of finding the worst case logically Switches very early and the other very late in the same clock cycle.
feasible noise can be represented as a maximum weighted inde-To determine when a net can switch, so-caedtching windows
pendent set problem and show how to efficiently solve it. Initially, areé propagated in the circuit using static timing analysis [1], [2],
we restrict our discussion to zero-delay implications, which are [15]. After switching windows are identified for each aggressor,
valid for glitch-free circuits and then extend our approach to timed the possibility of overlap between timing windows for a set of
implications. The proposed approaches were implemented in anaggressors is determined. It is important to note that this approach
industrial noise analysis tool and results are shown for a number ofis local in nature, meaning that the switching windows are identi-
industrial test cases. We demonstrate that a significant reduction infied separately for each aggressor net, making this analysis very
the number of noise failures can be obtained from considering the efficient. However, this also results in a weakness of this approach,
logic implications as proposed in this paper, underscoring the needin that it does not identify situations where a pair of aggressor nets

for false-noise analysis. can each switch individually at a particular time but canipoth
switch at that time due to logic relationships in the circuit. A sim-
2 Introduction ple example of this situation is shown in Figure 1. Also the timing

window based approach does not identify cases where nets cannot
Advances in process technology have greatly increased the Cou_SWitCh in the same direction, for instance when they are connected
pling capacitance in VLSI interconnects making it common for as Py an inverter. Therefore, this approach may not identify all false
much as 60-80% of interconnect capacitance to be coupling capac-noise failures, although it has been shown in practice to be rela-
itance to other nets. This trend has lead to an increase in the noisdively effective [1].
injected on a net due to the unanticipated switching of neighboring

nets, creating the necessity for noise analysis tools [1], [2], [15], Aggressor 1 N\ Aggressor Aggressor 3
[17]. In noise analysis, the net under consideration is commonly

referred to as theictim net while the neighboring nets that inject J_ J_ J_
noise are referred to aggressor netsA victim net with its associ-

ated aggressor nets is referred to aso@e clusterA functional —|_ —|_ —|_

noise failureis said to occur when a victim net is in a quiescent

state while its aggressor nets switch, creating a noise pulse injected a) timing correlations between aggressors
on the victim that could potentially be latched.d&lay noise fail- A 1
ureis said to occur if the victim net transitions at the same time as — ggressor
the aggressor nets, decreasing or increasing the delay of the victim
net depending on the direction of the aggressor switching, and —l—
potentially creating a timing violation.
Noise analysis tools typically make the assumption that all L
aggressor nets switch at the same time and in the same direction "] Aggressor 2
[1], [25], [17]. Under this assumption, the noise injected from each EE—
aggressor combines, creating the maximum possible composite
noise pulse on the victim net and yielding a conservative analysis. b) logic correlations between aggressors
(In some cases, it may be necessary to shift the alignment times of
the aggressor transitions by a predetermined amount, to account Figure 1. Logic relationships between aggressors

for the difference in aggressor driver and interconnect delays.) In

practice, however, the timing and logic constraints present in the . ) i . .

circuit may prevent all aggressors from switching in the same  In order to identify all false noise failures, both the timing and
direction at the worst possible alignment time. Therefore, the noise l0gic correlations of the circuit must be taken into account. In [2],
reported by an analysis that does not account for timing and logic it was shown that in general, this problem can be represented as a



search for a worst-case 2-vector test using a Boolean Constrainttion Jist at noden7is {n3, n4, n8, n9jand the implication listi"",
Optimization problem formulation. In [3], a method based on com- ;¢ {(n11}

patible observability don't care sets was proposed. In [16], a ’
method is proposed using a test pattern generation approach. How-

ever, all these methods have very high complexity and cannot be nl
applied to large problem sizes. Since noise primarily occurs in
chip-level routes, it is critical to perform false noise analysis at this N2 né n8 /0 n10
level in large designs, and hence heuristic methods must be 0 Pz
employed. n3- — -

In this paper, we present a new approach for false noise analysis - -
based on the generation and propagation of logic implications e - 7 - 1
between signal pairs [4], [18]. Logic implications have been n9 nli
widely used in logic synthesis [5-8] as well as in peak current esti- - \FDO_(I)— o—
mation [9], although they have not until now been proposed for _NS — -
false noise analysis. The input to our analysis is a transistor level
description of the circuit. We show how pairwise logic implica- Figure 2. Example of SLIs in simple circuit.

tions can be efficiently generated using ROBDD representations of
the DC-connected components in the circuit. The generated pair-

AR . LY The SLI generation algorithm consists of two steps: First, SLIs
wise implications are then propagated in the circuit through for-

X are generated as explained in Sections 2.1 and 2.2. Second, SLI are
ward and backward topological traversals, and we propose a newpgnagated through the circuit using the basic operations of list

method to generate so-called lateral implications. union, list intersection, and contra-positive law as explained in
Given the logic implications between the aggressor nets of a gaction 2.3

noise cluster, we show that the problem of finding the subset of ) _
aggressor nets which induce the maximum noise on the victim 3.1 Generation of SLIs for Simple Gates

under the constraints of these logic implications can be representequ first consider how to generate the initial SLIs for a gate with

by a constraint graph. We then show that this problem can be inputsa;, and outpui. We start our discussion with some general

solved by solving the maximum weighted independent set problem ! .

for this constraint graph. Although this is an NP-hard problem, the prcsze_rtles about SLlIs from gate input nodes to gate output nodes
and vice versa.

number of aggressors coupling to a victim, and hence the size of ‘ S _ _ . .

the constraint graph, is typically small allowing for an exact solu-  Property 1 The implication(a=Vy)->(x=V,) is equivalent to
tion of the problem. Since the logic implications only capture pair- implication(x=V,)->(a=Vj) due to the contra-positive law, and we
wise relationships, the overall approach remains heuristic and veryconsider both implications as a single implication at the iaput
efficient, capable of analyzing large circuits in few hours. Property 2: The presence of an SI&=V;)->(x=V,) at inputg
_The initial formulation presented in this paper uses zero-delay of 4 gate means that this input is a controlling input with control-
implications which are valid only during the stationary state of the jing vajuev.

c_lrcwt before and after al! tr_ansmons occur. Hence, t_hls formul_a- Property 3: Since a gate input, can take one of two logic val-
tion for false noise analysis is conservative only for glitch-free cir-

cuits, obtained, for instance, through special transistor sizing U€S: there can be no more than two SLis;alhe presence of two

approaches [10]. In the last section of this paper, we show how our SLIs at a gate input implies that the gate is one of the two trivial

analysis can be extended for timed implications which are valid at cases:

all points during the operation of a circuit. 1. If (@a=V,)->(x=V,) and(a=V,)->(x=V,) thenx is Boolean con-
The proposed approaches were implemented and used in an stant

industrial noise analysis tool call€lariNet Results are presented ’ _ _

for a number of industrial test cases. It is shown that the total num- 2. If (a=V,)->(x=V,) and(a=V,)->(x=V,), then eithex=a orx =

ber of noise failures is reduced by up to 47%. The remainder of  aandx has no dependence on other gate inputs.

this paper is organized as follows: Section 2 discusses the genera-

tion and propagation of logic implications. Section 3 shows how to . . S

use logic implications in false noise avoidance. Section 4 presents!Put has at most one SLI. If a gate has multiple SLIs at its inputs,

extensions of the algorithm for timed implications. Section 5 pre- all these SLis must have the same valu¥/gfas stated in the fol-

sents results, and in Section 6 we draw our conclusions. lowing lemma:

Lemma 1.
Consider a gat& with inputsa;, i=1,...,nand outputx, imple-
menting a Boolean function. If there are Sl(ig=V;)->(x=V,) at

It follows that for any non-trivial multi-input logic gate each

3 Computing logic implications

We use the following notation for simple logic implications

(SLI) between two circuit nodesandb: inputsa; then all these SLIs must have the same valig.of
(a=Va)->(b=Vp), whereV,,, Vi, {0 } Proof.
meaning that if node is at logic valueV, the resulting value on Consider SLIfa=V,)->(x=V,), (b=V,)->(x=V,) at inputsa and

nodeb will be V,,. Figure 2 shows a small example circuit where b and consider the following input combinatioa=V,, b=Vy, In
n3=0 implies that noda7=1. In total, this example circuit has 26  this case, the first SLI implies thatV, while at the same time the
non-trivial SLIs, where a trivial SLI is an implication such as second SLI implies that=V,, which is clearly a conflict.

(a=Va)->(a=Vy). Similar to [9], we store the implications for a Based on properties 1-3 and lemma 1, we can now examine how
node in one of four implication lista43,, H3, L%y, L3, where the Boolean function of a gate is defined by its input SLlIs.
implication (b=1)->(a=0) would belong to implication list?, at Theorem 1.

Let the gateG with inputsa;, i=1,...,nand outpuk, implement a

. a . n7 : . _
nodea, i.e. b Ly~ . In Figure 2, for example, thig™, implica Boolean function. The set of non-trivial SI(&=V,)->(x=V,) for



inputsay,...,a, wherel<ms n , is equivalent to the definition of ~ ous Section. For the root vertex, no intermediate variable is
its Boolean function as: needed, since it corresponds to the output node of the gate.
We visit each non-terminal vertex in the ROBDD in topological

=Part---+Pam+ Par&---&Pan&f(@m+1s--s 1 - _
wh PPart-*Pam ™ Pay Parrff(@rs.--- &) @ order, starting from the bottom and working up toward the root
ere: . - . ;
_ _ vertex. At each vertey; with controlling variablec;, we define the
*  pexif Vil orpe=xif V=0 Boolean function of the intermediate varialf{®) in terms of the
* p,=a; if Vi=1 or py=3; if j=0 intermediate variable of its child vertices and the controlling vari-
. . . ablec; and then create the SLIs associated with this function. As
* fis a Boolean function of variableg,1,.... an. we visit vertices of the ROBDD, we may encounter one of three
Proof. possible situations:
Let p=fo(as,....a). Applying the Shannon expansion with 1. Both sons of vertexare terminal vertices. In these case, we do
respect tq,;, while accounting for the first SLI, gives: not need to intro_duce_an inter_mediate_ variable, _since the Bool-
Py = Pay + Par&f1(8,....3) @) ean function of/ is entirely defined by its controlling variable
where functionf; has the same SLlIs at its inputsfgsexcept the % It the high-son ok is 1, v=c and if the high-son o¥is 0, v=
first SLI. Now suppose that for certdiam ) _ ) _
Py = Pat* - + Pak + Par&--& Paldfi(@stra) (3) 2. \Vertexy, controlled by variable, has one child vertexthat is
Then, substituting Shannon expansion with respepy ig., for a terminal vertex and one child vertethat is a non-terminal

vertex with intermediate variabig Then the Boolean function

fio and accounting for of the intermediate variableof vertexv will be defined by one

Part -+ Pak* Pai&.--&Pa&Pak+1=Pa1t - + Pakt Pak+1 (4) of the following four cases:

we obtain: - . _
Py = Pa1 * - + Pajr1 * Parde-&Paksr&fisa @z ) (5) * fxisOandislow-son ofthenf=c&w.
Finally, settingf,=f, we obtain (1). ® if xis 1 and is low-son of thenf=c+w.

. Co(nl\gersely, the set of SLIs of Theorem 1 can be easily derived o jf x js 0 and is high-son afthenf=c&w.
rom (1). o o

Since any Boolean function of one variable has two SLIs, we ® if xis 1 and is high-son ofthenf=c+w.
can conclude thatin (1) must have at least two variables, ire. 3

. Both child vertices of vertex controlled by variable are
m>1. Therefore, we have the following: % y

non-terminal vertices. Suppose that the high-son vertex of

Corollary 1. has intermediate variabéeand the low son vertex gfthas

For an n-input gat€& implementing a Boolean function, speci- |.nterm.ed|ate vquablb. I.n the case, we introduce two addi-
fying SLIs between its inputs and output is equivalent to specify- tional intermediate variablesandy, wherex=c&a and
ing the Boolean function, if and only & has exactly one SLI at y=c&b. Then mterme@ate variabfef vertexv will be defined
every input. by the Boolean functiofrx+y.

Itis easy to see from (1) that gates for which all inputs have an  as internal variables are defined during the traversal of the
SLI to the gate output are either an n-input AND or OR gate (with ROBDD, SLI lists are created for each variable. Since each inter-
arbitrary inversions at inputs and output). We can therefore state nediate variable is expressed as either a simple AND or OR func-

the following Corollary: tion of its input variables, the complex gate will be completely
Corollary 2. defined by generated SLlIs per Corollary 2.

If a circuit consists of AND, OR and INVERTER gates, thenthe 3.3 Propagation of SLIs
logic function of the circuit is completely specified by the full set L . L
of SLIs in the circuit. After initial SLIs are generated for each gate in the circuit, we
If the circuit contains complex gates such as AOls, OAls, Propagate SLIs through the circuit using the basic operations of list
XORs, and XNORS, then the generated SLIs in the circuit will union, list intersection, and contra-positive law. For example, let a
contain incomplete information about circuit's logic function. For ~2-input AND gate be considered with inpuasb and outpuix. If
an AO22 gate, for example, the full set of SLIs consists only of We have animplication lidty (L) at nodesa andb then the impli-

trivial implications and, therefore, contains no information about cation listL*, (L*) at output is calculated as the union of lisf,

logic function of the gate. However, if we decompose the AO22 o ) .
gate into two AND gates and one OR gate and construct SLIs with andLbH (L andLb,_). Similarly, listHy (H_") is calculated as the

use of the new internal nodes then, these SLIs will completely intersection oHy@ andH,° (H, 2 andH, ®). Accordingly, rules for
define the logic function of the gate. Therefore, to obtain effective implication propagation can be generated for OR gates and invert-
generation of SLls, the circuit must be decomposed into the gatesers. Once an SLI is obtained at a gate output, the reverse SLI is
listed in Corollary 2. added by applying the contra-positive law:

3.2 Generation of SLIs for Complex Gates if (a=vy)->(b=vp) then (b=w,)->(a=Vy)

Therefore, we visit each gate in topological order and propagate
the SLlI lists at the input of the gates to the output. Since complex
gates are implicitly decomposed into simple AND and OR gates,
SLlIs will propagate across complex gates without loss of informa-
tion. In order to generate all possible implications in a circuit mul-
tiple forward propagation passes through the circuit with contra-
positive law application may be required.

In addition to these so-calledirect implication propagations,
we propose to use so calléateral SLI propagations. This allows
us to find indirect implications, that are known to be particularly
useful in logic optimization [7],[8].

To generate initial SLIs for a circuit containing complex multi-
input gates, we first represent the circuit as a network of ROBDDs
[11], where each ROBDD represents a single DC-connected com-
ponent (DCCC) in the circuit. We then propose the following algo-
rithm to generate SLI for each DCCC directly from its ROBDD
without explicitly decomposing it into AND, OR and INVERTER
gates. We define intermediate variablefor each vertew; in the
ROBDD representing its Boolean function. Each intermediate
variable will have 4 associated SLI lists as discussed in the previ-



Again, let us consider the 2-input AND gate with inpatb and
outputx. When we perform the list intersection betwedf, and

Hb,_, we exploit the gate implicationaél & b=1)->(x=1) to

obtain the implication list at the outptt. = H n H°L . How-

ever, we can also use the equivalent implicatiar( & x=0)-
>(b=0) which will result in the following implication list at node

b: Lb|_ = H% n L and LbH = H% n L"u . We call this oper-
ation a lateral propagation of SLIs. Note that both the lateral and
direct propagation of SLIs can be trivially extended to n-input
AND and OR gates.

To illustrate the fact that lateral propagation cannot be obtained
through direct propagation, we consider the following simple ex-
ample in Figure 3.

a N\ o
b—0/ A
A 3 ~

e

Figure 3. Circuit with possible lateral SLI propagation

In this example we obtain, through application of the contra-

positive law and direct propagation across the inverter and OR gate

two implication lists:H? = {y} andL*_ ={y}. Due to lateral prop-
agation, we therefore obtain the following implication at ndde
LbL = {y}, i.e. (y=0)->(b=0). It is clear that this SLI cannot be

obtained by means of repeated direct propagation only.
Therefore, the overall proposed SLI propagation algorithm con-

sists of the following stages. First, we perform multiple direct

propagations with application of the contra-positive law until con-

vergence. Then, we perform multiple passes of lateral propagation

with application of the contra-positive law, until convergence.

Each pass of lateral propagation is followed by one or more passes

of direct propagation including application of the contra-positive
law. The algorithm is shown in Figure 4. The transitive propaga-
tion can be applied either in forward or reverse topological order
with reverse order yielding faster convergence in practice.

1.Initialize trivial SLIs;
2. Repeat the following steps until convergence
{
2.1Repeat the following steps until convergence
{
For every gate in topological order
perform forward SLI propagation
with application of contra-positive law.
}
2.2 For every gate in reverse topological order
perform lateral SLI propagation with
application of transitive and contra-positive laws.

Figure 4. SLI propagation algorithm

4 False Noise Analysis Using SLIs

After SLIs are generated in the circuit, we apply them in our
false noise analysis. For each victim net, a set of aggressor nets i
identified that inject coupled noise on the victim net, where each

aggressor can potentially contribute a different amount of injected
noise. A victim net and its associated aggressor nets is referred to
as anoise clusterAmong the set of aggressors in a noise cluster,
we intend to find the subset of aggressors with a maximal sum of
injected noise, such that the logic constraints represented by SLIs
between the aggressor nets are satisfied. We refer to this problem
as themaximum realizable noigeroblem and the set of aggressors
responsible for the maximal realizable noise asttaimal realiz-
able aggressor sefNote that each noise cluster can be analyzed
individually since the global logic relationships present in the cir-
cuit are already represented by pairwise SLIs between the nets in
the noise cluster. The maximum realizable noise problem is there-
fore defined with the following information:

1. a single victim nod¥

2. a set of aggressor nodAsthat inject noisew; (i=1,...,n) on

the victim netv
3. a noise typé

tO0{LowR LowF HighR HighF
RiseR RiseF FallR FallF

The first four noise types correspond to functional noise where
the victim net is either at a stable low stat®{WRandLowF) or a
stable high stateHighR andHighF), while the aggressor nets are
rising (LowRandHighR) or falling (LowF andHighF). The second
four noise types correspond to delay noise where the victim net is
either rising RiseRandRiseR or falling (FallR andFallF) while
the aggressor nets are again risilRjseRand FallR) or falling
(RiseFandFallF).

The false noise analysis algorithm now consists of three basic
steps. First we compute the SLlIs in the circuit, as was explained in
Section 2. Second, we represent the logic constraints between the
aggressors for a particular noise type using a constraint graph, as
presented in Section 3.1. Finally, we find the maximum realizable
noise by solving theMaximum Weight Independent Sebblem
for the constraint graph as presented in Section 3.2.

4.1 Forming the Constraint Graph

A constraint graph is an undirected gra@k(V,E,w) of vertex
setV = {vy,...\}}, edge seE={(u,v):u,v OV, u# v}and a vertex
weighting functionw such thatw(u) =0, O(u O V) . The vertices
represent the aggressor nets of a noise cluster while the weight of a
vertex is the amount of injected noise by the associated aggressor
net on the victim net. We form a separate constraint graph for each
noise type. An edge exists between two vertices in the constraint
graph if the two associated aggressa@annot simultaneously
switch and inject noise on the victim net.

For each particular noise type, we first determine the initial and

final state of the victim net¥,' and V\,f and the initial and final
state of the aggressor n‘egi andvaf. For instance, for noise type
LowR V\,i=0, va=0, Vai:O, Vale and for noise typeRiseEVVi:O,
V=1, /=1, V,/=0. We then determine which aggressor nets can
have a transition that is logically compatible with the initial and

final victim state for this particular noise type. If for a victim /
aggressor paifv, g), either of the following two SLlIs exist:
(v=V,)->(a;=V,) or (v=V,)->(a;=V,") then, the aggressor net is
not compatible with the victim net for this noise type and is not
included in the constraint graph. For instance, if the noise type is
RiseF, the victim is switching from low to high, while the aggres-
sor must switch from high to low. Therefore, the presence of impli-
cation (v=0)->(a;=0) would prohibit aggressog; from switching
and injecting noise on net since it would already be in its final
state at the start of the victim transition. Similarly, the implication
(v=1)->(a;=1) would prohibit the aggressag; from switching

Ssince it would be already in its initial state at the end of the victim



transition. In this caseg; would not be included in the constraint  lowing implication will be computed under the zero delay model:
graph for victim nev under noise typRiseF (z2=0)->(z1=1) which will disallow both aggressors from switch-

After the vertices of the constraint graph have been identified, ing in the same direction, which is correct when we consider the
we determine which edges exist in the graph. We examine eachfinal transition of these nets. However, if we switch sigadbw,

pair of vertices\i, 1), i #j , vi, v; 0V . Again, we can determine  While setting inputd andc high, signalz1 glitches, as shown in
. e e . . . ) Figure 6b, and can inject noise simultaneously with aggrezaor
if vi andy; can both switch in the required direction by searching

for an SLI that renders their transitions logically incompatible. In =t e

this case, if we find either of the following two SLls: 1
(&=Va)->(aj=V,) or (ai:Vaf)->(aj:Vaf), v; andy; cannot both par- 71

ticipate in the maximal realizable aggressor set and an @clge)

is created in the constraint graph. a d f J_

4.2 Solving MWIS problem b=1 )O—DO— T v

Given the constraint graph constructed according to section 3.1,
we can find the maximal realizable aggressor set and the associ- z2
ated maximal realizable noise by solving thiaximum Weighted
Independent SEMMWIS) problem for the constraint graph. Con-

sider the constraint grap®=(V,E,w) and theglobal weighting 3)
functionW(K) = g w(u), for KOV . An independent sed a \
ulTK e /
is a subsetSO V , such that for any, vO S;(yu WOE . The @« ——— __ _ _ _ _ _ _ _
Maximum Independent Sistthe independent s& such thatV(S) f
is maximum. L N=m—— _
For a general constraint graph, the MWIS problem is known to 21 \ /
be NP-complete [12]. However, in our problem formulation, we =&~  \ ____/
have the advantage that the number of significant aggressors in a
noise cluster is typically small (< 15). Therefore the MWIS prob- z2 \
lem for the associate constraint graph can in most cases be solved - - - — — _b) —————

exactly by exhaustive enumeration of all independent sets. For
larger graphs, we use the heuristic algorithm of [13]. Figure 6. Noise injection by glitches

As simple example of our approach, let again the circuit in Fig-
ure 2 be considered. Lef7 be victim node withLowRnoise, and L S .
let all 10 other nodes be potential aggressors, each aggressor nef "erefore, zero-delay implication will yield a conservative false
contributing the same injected noise. As shown in Figure 5, the N0iSe analysis only if the circuit in question is glitch free.

resulting constraint graph consists of tfrel, n2, n5, n6, n10} _Inthis Section, we therefore show how our zero delay implica-
aggressors vertices and two ed@es$,n6)and(n6,n10) The final tion can be extended with delay information, to obtain so-called
set of maximal realizable aggressor nef®isn2,n5,n10} timed implicationghat can be used for false noise analysis in cir-

cuits that have glitching signals. In [9] simple timed SLIs are pro-
posed using the following formulation:

(n1) (n6) A10 (a()=V,) -> (b(t+T)=V) (6)
1=0.1 Here, a transition of net to valueV, implies that neb will be

w(n1)=0. w(n6)=0.1 w(n10)=0.1 at valueV,, after some fixed time intervdl This model is applica-

ble if all gates have a constant delay and we refer to these SLIs as
@ @ fixed delaySLlIs. In practice, however, the delay of a gate varies
5)-01 due to process variation and state dependence. Therefore, fixed
w(n2)=0.1 w(n5)=0. delay SLls cannot be used in such cases and we propose the fol-
Maximum Weighted Independent Set:{n1,n2,n5,n10} lowing two types of timed logic implications:.
with total weight 0.4 _ Definition 1. An exclusive timed SLI (or E-SLI) is the follow-
_ _ ing relations between signaish
Figure 5. Example of the constraint graph (D(t Oty tz]) a(t)=V,) >
(Ot Ot + Ty, t,+ T,]) b()=Vy) 7

5 Extension to timed SLIs An E-SLI reflects the situation where the presence of a stable

value of signak during the entire time intervdt , t;] guarantees
Up to this point, we have only considered false noise analysis the stable value of signdl during the entire time intervdt+T,

based on zero delay implications. These implications are only t,+T,]. The SLI is said to be exclusive, since other values for sig-
valid when the circuit has reached a stable state, i.e. at the begin-g) 3 andb are not permitted during the respective time intervals.
ning and end of a clock cycle. However, when the circuit is in tran- We use the following short notation to denote an E-SLI:

sition, it is possible that two aggressor nets can switch (a=1) -> (b=0) (T, T») 8)
simultaneously, even though their zero delay SLIs would indicate
that such switching is impossible. This occurs when there are
glitches in the circuit, as shown in the simple example in Figure 6a.
In this example, nodesl andz2 are aggressor nodes of victimn Ot Oty t]) a(t)=V,) -> 9)
Using the contra-positive law and direct SLI propagation, the fol-

Definition 2. An inclusive timed SLI (or I-SLlI) is the following
relations between signads by



(Ot Oty + Ty, t,+ T5]) b(D)=Vy)
An I-SLI implies that if signala is at valueV, at least once in
the time interval[t 4, t;], signalb will be at valueV,, at least once in
the time intervallt,+T4, t,+T5]. Since the I-SLI allows for other

signal values to exist during the respective time intervals, it is said
to be inclusive. We use the following short notation to denote an I-
SLI:

(a=1) =>> (b=0) (T1,Ty) (10)

We can see that (7) and (9) are only meaningful if
t,—t;2max0, T, —T,). Also, note that zero delay SLIs and
fixed delay SLlIs (6) are special cases of E-SLIs and I-SLlIs.

We now introduce the following two useful definitions:

Definition 3. An E-SLI or I-SLI is said to be expanding if
T,>T1. An E-SLI or I-SLI is said to be contractingTi{>T».
An E-SLI or I-SLI is neutralif it is both non-expanding and non-
contracting (i.eT;=T,). Clearly, zero delay SLIs and the fixed de-
lay SLls (6) are neutral.

Let us now examine a logic gate with inpaitand outputb and
zero delay SLI(a=1)->(b=1). Also, assume that the rise and fall
minimum and maximum delays of the gate &8y Thmax

T  mine T max A Tising transition of signah may be accompanied
by a rising transition ofb with a time shift lying between
TR hin TRmax@s shown in Figure 7. Similarly, falling transition af
may be accompanied by a falling transitiontofvith a time shift
lying betweenT" i T max We can see from Figure 7 that when

signalais at a stable high value during the entire intelvd/t2], b
will be guaranteed to be at a stable high value for the entire time

interval[t 1+TR,mi)qt2+T':min], excluding the shaded areas in Figure
7. Therefore, we can formulate the following exclusive-SLI:

Figure 7. Timed SLI a->b (TR 00 T min)-

(@=1)->(b=1) (TR pae T min)-

6 Implementation and experimental results

The presented algorithms were implemented in an industrial
noise analysis tool calle@lariNet[1]. The system was architected
using a separate logic analysis engine call DiNo, which currently
generates the zero delay SLls for the circuit. First, the noise analy-
sis tool performs the analysis without logic information. If a victim
fails, the noise tool will request the SLIs for the nets belonging to
the noise cluster of the failing victim net and form the constraint
graph to determine the maximum feasible noise.

The analysis can be performed both at the block and chip level.
At the block-level, the tool directly operates on the transistor level
description of the circuit. At the chip-level, DiNo first pre-charac-
terizes each gate in the library with a so-calledic implication
black box These black boxes are then used in the chip-level gener-
ation of SLIs to allow for increased efficiency. Figure 8 illustrates
both the block and chip level analysis methodology.

Block / Cell Level 1 Chip Level
|
[ Chip_—Ieve required
blocks/cells in spicd | | netlist correlations
|
|

I
| chip level
- logic constraints
logic |
implications
black box I
I

Figure 8. Block diagram of SLI based noise analysis
algorithms.

In Table 1, we show the number of generated SLI for a number
of circuits using the proposed SLI generation and propagation
approach. The first two circuits are ISCAS benchmark circuits
[14], while the remaining circuits are industrial circuits synthe-
sized using a commercial synthesis tool. The third and fourth col-
umn show the number of generated SLls using only direct
propagation and using both direct and lateral propagation respec-
tively. In the fifth column the percentage increase in the number of
generated SLI due to the use of lateral propagation is recorded.

Similarly, we can see that the presence of a high value for signal The final column shows the number of SLI as a percentage of the

a during at least one point in time intenil,t2] implies that for

signalb a high value will exists for at least one time point in the

interval[t;+TR i+ TF 2, including the shaded areas in Figure

7. We can therefore formulate the following inclusive-SLI:
(@=1)=>>(0=1) (T Xin T ma)-

For typical gates, the time intervals of I-SLIs will shrink as we
propagate them through the circuit, while the time intervals of E-
SLIs will expand. It is clear that forward and lateral propagation
rules and contra-positive laws can be formulated for timed E-SLIs

total number of node pairs.

The results in Table 1 demonstrate the effectiveness of the lat-
eral SLI propagation proposed in this paper, which increased the
number generated SLI on average by 38%. The total number of
SLls, as a percentage of the number of nodes pairs ranges from 5 -
38%, revealing significant dependence on the structure of the cir-
cuit. On average, the algorithm generated SLlIs for 21% of all node
pairs.

The false noise analysis was used on a number of industrial cir-
cuit, as shown in Table 2. Circyitldriver andcntrl are small con-

and I-SLIs analogous to that for zero-delay SLIs. Also, we can use trol blocks. Circuitxbar is a small crossbar switch, circuiots,

the same implicit decomposition for ROBDD for complex gates

and formulate the constraint graph discussed in Section 3.1 for E-

rotl6 androt32 are 8, 16 and 32 bit shifters, circatider32is a 32
bit adder, circuittontrolis a large control block. The second col-

SLlIs and I-SLI. Therefore, we can use the results of timing analy- umn shows the number of top level nets analyzed for noise. The
sis, combined with zero-delay SLlIs, to calculate timed E-SLIs and fourth column shows the number of noise failures without false
I-SLIs in the circuit. Timed SLIs can then be used to perform a hoise analysis and column 5 shows the number of failures with
conservative false noise analysis for circuits with glitches. false noise analysis as presented in this paper. Note that the num-



Table 2. Results of SLI based noise analysis on block level.

[10]
ber of failures can exceed the number of nodes, since there are sev-
eral noise types for each net. The final column shows the
percentage decrease in the number noise failures due to the use of
false noise analysis. On average, a decrease of 27% is obtained11]
over all test cases, which significantly reduced the task of fixing
noise failures for the designers. The test results show that for the
control circuit the reduction obtained from using false noise analy- [12]
sis is smaller than for the other blocks. This is due to the fact that it
is a large random block constructed using standard place and routg13]
tools. Therefore, the likelihood that a significant number of the
aggressor nets in a noise cluster have a close logic distance is
small. We therefore found our analysis to be especially effective [14]
for structures where routing is highly controlled, such as bus struc-
tures, and the neighboring nets have a small logic distance. Fortu-
nately, these are often also the interconnects with the most severd15]
noise problems. Besides reducing the number of noise failures,
SLIs reduce the noise value of the nets, that remain failures. For
example for the circuitontrol the proposed approach reduces the [16]
noise estimation for 3500 nets.

7 Conclusions
(17]

In this paper, we presented a new approach for false noise anal-
ysis. We propose the use of logic implications for eliminating [18]
aggressor nets that cannot simultaneously switch. We first show
how simple logic implications can be effectively generated and
propagated in the circuit. We prove that SLIs fully represent the
logic function of a circuit only if it consists of simple NAND,
NOR, and INV gates. We then show how SLIs can be generated for

] complex gates using implicit decomposition of their ROBDD rep-
. #SLIs w/o | #SLIswith | % | #SLIs/ resentation. We also introduce a new, so-callatéral propaga-
circuit | #nets . . . . . . ; h -
laterial laterial | laterial | pair(%) tion method to increase the number of obtained SLIs in a circuit.
Using the SLIs we show how the false noise problem can be for-
cnt 0 83 1196 146p 23 21 mulated as a constraint graph and solved as a maximum weighted
independent set problem. Finally, we show how the proposed SLIs
cnt_1 87 1222 1516 24 20 can be extended to timed implications for conservative false noise
] analysis in non-glitch-free circuits. The presented algorithms were
cnt_oneg T 1976 2248 14 4 implemented and used on industrial circuits. The results show a
) i reduction of 27% in the number of failures on average, underscor-
cnt_zerog o9 181p 2098 16 ?1  ing the importance of false noise analysis.
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