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ABSTRACT

We propose a new optimization paradigm for solving intractable
combinatorial problems. The technique, named Probabilistic Constructive
(PC), combines the advantages of both constructive and probabilistic
algorithms. The constructive aspect provides reldively short runtime and
makes the technique amenable for the inclusion of insights through heuristic
rues The probabilistic nature fadlitetes a flexible trade-off between
runtime and the quality of solution.

In addition to presenting the generic technique, we apply it to the
Maximal Independent Set problem. Extensive experimentation indicates
that the new approach provides very attractive trade-offs between the qudity
of the solution and runtime, often outperforming the best previoudy
published approaches.

1. Introduction

In order to build high quaity CAD software, a number of components
need to be in place. These components indude proper abstractions of
synthesis problems that capture important features and diminate non-
important ones, and models that characterize design components such as
delay, area, and early power prediction. Any developed software must be
modular and written in such away that it can be easily reused and modified.
Furthermore, there is a srong demand for user interfaces that smplify the
designer’ s interaction with CAD tools during the design process. While the
list of desired CAD software componentsislong, at the heart of al synthesis
software are optimization algorithms for solving computationally intractable
problems.

It is interesing and enlightening to dassify the developed dgorithms.
Figure 1 shows the dassification according totwo main criteria: (i) theway in
which the sdlution is built and (ii) the presence or absence of randomness.
More specificaly, dl dgorithms can be dassfied as ether determinigtic or
probabiligic in one dimension, and as congtructive or iterativeimprovement in
the second dimension. The largest group of algorithms are determinigtic
condructive For example, many CAD dgorithms are based on the forced
directed paradigm or use dynamic programming. In the lagt three decades,
determinidtic iterative improvement agorithms [15] were proposed for many
problems and were able to produce the best results In particular, determinidtic
iterative improvement adgorithms ae widdy and frequently used for
patitioning [2]. Since the mid-80's, when Smulated Annealing wes first
proposed for usein designing multi-chip computers [16], probabiligtic iterative
improvement has atracted agreat deal of attention for solving CAD problems,
Techniques such as Genetic Algorithms, Tabu Search, and Smulated
Evolution, dueto ther programming smplicity and flexibility, have been used
for a variety of synthesis tasks Their main disadvantage however, is usudly
long runtime.

While numerous agorithms popul ate three of the quadrants in Figure
1, the probabilistic constructive quadrant is empty. The dosest in spirit to
this quedrant are randomized deterministic algorithms [19]. Our godl in this
paper is to push the envelope well beyond this type of randomization and
develop agorithms that are simultaneously constructive and probabilistic,
by leveraging on the positive properties of both constructive algorithms and

probabiligtic algorithms. The main advantage of constructive algorithmsis’
their redively short runtime and flexibility to incorporate a variety of
insights as efficient heurigtics. On the other hand, the main advantage of
probabiligic agorithms is their inherent flexibility that facilitates the trade-
off between quality of solution and runtime.

The new approach can best be explained &t the intuitive level in the
following way: We start by searching for a small part of the solution that
can be solved effectively, in such away that the remainder of the problemis
adso suitable for similar optimization. For this search, we propose a
probabiligtic methodology, where parts of the solution are considered, and
the decision of which to select is made in a probabilisic manner so that the
likdihood of obtaining a high quality solution is maximized. The quality of
the solution is evaluated using an objective function. After the small part is
solved, we eiminate it from further consideration and solve the remaining
problem iteratively using the same agpproach. The find dage is to
incorporate the solutions to each of the small parts together to form the final
solution to the problem.
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Figure 1 - Classfication of Optimization Algorithms
2. Related Work

By far the most popular and widely used generic algorithmic paradigm
is the deterministic constructive approach. Algorithms of this type have
been applied on a vast variety of problems, starting from sorting and basic
graph agorithms such as Breadth First Search and Topological Sort, to
more complex graph agorithms, such as All-Pairs Shortest Path and
Maximum Flow. Severa generic agorithmic techniques of the constructive
deterministic approach have found many applications. For example, Greedy
Algorithms, Dynamic Programming, and Branch-and-Bound are used to
solve many different problems.

In 1970, Kernighan and Lin introduced the first iterative improvement
heurigtics, which was gpplied for graph partitioning [15]. The algorithm
uses pair swap moves to iteratively reassign e ementsto different partitions.
It proceeds in a series of passes, during which each component is moved
exactly once. A number of improvements on the basic strategies have been
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proposed over the years [10]. An excellent survey of thisresearch isgivenin
[2]. The iterative improvement paradigm has been applied to many other
optimization problems, including the Traveling Salesman Problem [17].
improves the average runtime of agorithms. There are two types of
randomized algorithms, Las Vegas and Monte Carlo. Las Vegas agorithms
always generate a correct solution, but their runtimes vary depending on the
digtribution of inputs. In contrast, Mote Carlo dgorithms may sometimes
produce an incorrect solution, but they run in a predictable amount of time.
The probability of a Monte Carlo agorithm producing an incorrect solution
can be made arbitrarily small by repetitively running the algorithm, each
with independent random choi ces.

Since 1953, a number of probabiligic iterative improvement
agorithms have been proposed. Two of them have origins in datistical
mechanics: the Metropolis agorithm [19] and Smulated Annealing [16].
Snulated Annealing found a spectrum of application in engineering,
computer science and image recognition [1]. In contrast to deterministic
iterative improvement agorithms, Smulated Annealing alows hill-climbing
moves. Consequently, a number of probabiligtic iterative improvement
agorithms that often explore with analogy to physical and biological world
have been proposed incdluding Genetic Algorithms [13,20], Neural Networks
[14], Smulated Evolution [7,12], and Tabu Search [8,11].

The new probabiligic congructive paradigm is different from dl the
above paradigms. In some sense it is dosest to randomized agorithms.
Conceptudly, the difference is that probabiligic congtructive uses extensive
probabilistic seerch to find an atractive way to solve an arbitrary small part of
the problem and congtruct (as opposite to improve) the solution.

3. Generic Probabilistic Congructive Approach

The basic idea behind the probabiligic congtructive approach is to
search, probabiligtically, for asmall part of the solution which can be solved
well and which leaves the remaining problem amenable for further
optimization. For example, when we are searching for a graph coloring
solution, we can color a few nodes in a particular way and remove them
from further consideration.

The generic approach has the following ten components:

Candidate Part (CP): The candidate part is ardatively smdl portion of the
problem that can be efficently solved in a particular way. In the generd
case, we must make two choi ces regarding the CP: (i) which components of
the problem to consider and (i) how to resolve that part of the problem. It is
important thet the CP is not too small in order to avoid overly locd and
greedy solutions. It is also important that the CP is not too large in order to
avoid long search times. For example, in Graph Coloring, coloring asingle
node a atimeis a CP decision that is too local. However, it is difficult to
find a promising coloring solution if we decide to color too many nodes
simultaneoudly.

Probabilistic Search (PS): One of the more important aspects of the
agorithm is how to efficently search the solution space using probabilistic
congructs. There are two main aternatives. One is to define a move that
probabiligicaly replaces a single component from the CP with the new
component. The second method is to generate a new CP from scratch. The
first technique is faster while the second is capable of quickly scanning the
complete solution space. From the implementation point of view, random
number generation is a computationdly intensive task in the probabilitic
congtructive agorithm. In our implementation, we use a stored list of
randomly generated numbers that is traversed stating from randomly
sdected points  While this approach generates numbers that are not
completely compliant with the standard test for randomness, the extensive
implementation implies that it can speed up the performance of the
agorithm by an order of magnitude without sacrificing the qudity of
solution.

Candidate List (CL): The candidate list contains the k best solutions for the
CPs found using probabilistic search. The most important criteriardated to
the CLs are the ones that select which solutions should be induded in the
list. The Smplest approach isto indude only the k best solutions (with k best

Randomized versions of the determinigtic constructive agorithms have
been popular for a long time [19]. Randomization often dramaticaly

OFs). A more sophisticated approach takes into account the overlap
between the new proposed solution and solutionsin the candidate list.
Objective Function (OF): The objective function is a heuristic measure of
likelihood that a particular solution to a particular part of the final solutionis
apromising choice. The main trade-off here is between accuracy (ability to
estimate) and runtime.

Comprehensve Objective Function (COF): The objective function is
caculated for dl proposed solutions and therefore it isimportant that the OF
is fast. Once the number of candidates is reduced to only a few, it is
essential to evauate them as accurately as possible. Therefore, before the
final selection of a particular candidate from the CL, we caculate the COF.
The main difference between OF and COF is that the former involves
caculations of properties rdaed only to properties of a smdl pat of the
solution, while the latter takes into account properties of the still remaining
unsolved regions.  Ancther important criterion that needs to be taken into
consideration is the overlap between the sdected CP and other candidates
from CL. Clearly, less overlap implies that more of the current candidates
can be reused in the next stages of the agorithm.

Stopping Criteria: The effectiveness of probabilistic search for apromising
CP is positively correlated with the search time. Nevertheless, two genera
guidance criteria can be stated: (i) longer search time is required in the
beginning when the problem is till large, (i) the best indication of finding a
new quality solution for a CP isthet for along period of time no new CPis
observed.

Best Candidate Selection: The best candidate sdlection is the process of
sdlecting the part of the solution that will be acoepted. The Smplest strategy
is to sdect the one with the bes COF. One can envision a multitude of
aternatives where information from the previous runs of the agorithm is
considered or delayed decision is used.

Solution Integration: Divide and conquer is a popular agorithmic
paradigm. Its gpplication is often restricted due to the difficulty of
integrating components. Therefore, one of the most important aspects of the
probabiligtic constructive approach is to devel op mechanisms for integrating
solutions to the small parts into the solution of the overall problem. In a
sense, thisis the most demanding aspect of the PC approach, which requires
the highest degree of credtivity. Nevertheless there exists a generic
technique for this task. The technique is based on constraint manipulation,
where the dready solved parts, are presented as constraints to the remaining
problem. A small example will better explain this paradigm. Consider the
graph-coloring problem. If we decide to color two nodes ny and n, with the
same color as a CP, dl that is needed is to replace these n; and n, with a
single node n’ in the remainder of the problem. Note that n’ should have
edgesto dl the nodes that were connected to n; and .

Overall Control Strategy: Since the new approach is probabilistic, each
run of the algorithm, in principle, produces different solutions and has
different runtimes. One can super-impose a variety of control strategies
using the generic algorithm as the building block. For example, one can
use multi-starts or keep statistics about the difficulty of resolving some
parts of the solution and use this as the decision criteria of when to
terminate an unpromising start.

The new problem-solving paradigm can be explained in the following
way: we attempt to find asma| and readily solvable part of an overal praoblem
and find a high quality solution to thet part. The objective function is used to
evauate the qudity of the proposed solution. Examining al parts of the
problem is a procedure with exponentid time complexity and therefore is
not a plausible approach. This suggests the use of a randomized search
agorithm. The search should avoid visiting the same parts of the problem
more than once. The parts with a high solution quality are stored for future
condderations. In particular, diverse solutions are very beneficia because
they can be used consequently to form other parts of the solution.
Furthermore, if possible, the CP should be flexible in order to dlow the
imposing of additiona control or search strategies later on. The pseudo code



of a generic approach for the probabilistic constructive procedure (GPC) is
listedin Figure 2.

First, the dgorithm builds a CL of promising solvable CPs (CP). The
promising candidate is found after applying the probabilistic search to the
current instance of the problem, P. During this probabilistic sdection, the
agorithm favors CPs that are more likdy to be solved effidently (have
higher OF values), and adds only the best CPs to the CL. Next, the
comprehensive objective function, COF, is calculated for each of the
eements in CL. The BCS is sdected from the CL according to the
corresponding rule. This sdected BCS or CP, which evduated best
according to the BCS rules, is then integrated as part of the solution and
eliminated from the problem. The procedure then repeats on the remainder
of the problem until acomplete solution is found.

while (Overall Controll Srategy is hot satisfied)
Procedure GPC(P)
S=/7;
while (SP) is not conplete)
while (stopping criteriais not satisfied)
CP, = GenerateCP(); /lusng PS
OF,; = CalculateOF(CP);
if(OF; >OFpin) /IOF i is CPwith smallest OF in CL
UpdateCL(CP);
for(all CRinCL)
CalculateCOF(CP);
BCS= BestCandidateSd ection(CL);
SP) = Solutionlntegration(SP),BCS);

Figure 2 - Generic Probabilistic Constructive Algorithm

4. Application To Maximum Independent Set

Wefirg explain how the new PC paradigm can be applied to the Maximum
Independent Set problem.

Problem: Maximum | ndependent Set

Instance: Graph G=(V,E), podtiveinteger K< [V].

Question: Does G contain an independent s&t V', with cardinality greater
than or egual to the cardinality of al other independent sets of G, i.e a
subset V' [V such that for all pairs of verticesu,v/V theedge{u,v} _E.

Given an undirected grgph G=(V,E) where Visthe st of verticesand E
isthe st of edgesin G, an independent st is defined as a subset V' OV such
thet for dl pairs of verticesu,vOV' the edge {uV}E. Anindependent st V' is
aMaximd Independent S, if 0 v/ N, @ther vV’ or thereisauV' such that
the edge {uV}(JE. Anindependent set V' isamaximum independent set, if [V'|
isgregter than or equd tothe cardindity of al other independent setsof G. It is
widdy known that the independent set problem is directly related to severd
other key graph theary problems such as Vertex Cover and Clique[9].

The probabiligic constructive dgorithm can be applied to the
Maximum Independent Set problem in at least two different ways. The first
isto select nodestoindudeinthe MIS. The other way isto select nodes that
are to be exduded from the MIS. In this case, the solution is the nodes that
remain unconnected in thefina graph.

For the first gpproach, sdecting nodes to indude in the MIS, we define
the components in the following way.

Candidate Part (CP): We sdect any subset of nodes where there are no
edges between them to be considered as the CP. Each CP is a possible
subset of the nodes in the find solution, or MIS. The candidate part can be
of sze k, where k is a variable or congtant vaue. In our experimenta
evaluations, we used k = 4 nodes. There are saveral good heurigtics for
sdlecting k. For example, k can be a fraction of the number of nodesin the
graph.

Probabilistic Search: We search the solution space by exduding one node
from a CP of size k, and induding another node. The nodes to exclude, N,
and incdlude, N, in the CP are chosen according to the following equations
calculated for each node:

#_nelb

Ne=W;n + Wbn, + Wsny Where ny = Z n(i)
=

We define n asthe number of neighbors of the node, and n, as the number of
unique neighbors, i.e. neighbors that no ather node in the CP have edges to.
The variable n; isthe tota number of neighbors for dl the neighbors of the
current node. We select probabilisticaly which node to exdude or indude
according to the nodes N or N; vadue.

Candidate Lig (CL): Weindude k; CPs in the CL with the congtraint thet
no node exists in more than 1/5 of the CPs in the CL. We dso dtate that if
the OFs of the CPs are relatively consigtent in vaue, then we continue to
add CPs to the CL to make it twice as long as usud. On the other hand, if
the values of the OF are digributed, then we cease building the lig,
assuming that we have satisfied the minimum ligt Sze, kyin. We reason that
if the values of the OF are relatively consistent, then most likely we should
continue to search further to find a good overall sdection. However, if the
vaues are wide spread, the CL has a good representation of the solution
Space.

Objective Function (OF): The objective function is the weighted sum of ny,
the number of nodes in the remainder of the graph that are Hill digibleto be
induded in the MIS, and eis the total number of edges minus the incident
edges. We give preference to the CPs that leave a large number of nodes
eligible for selection in the next iteration. We aso give preference to the
CPsthat eiminate many edges for the graph. The less edges in the graph the
more likely we are to be able to sdect more nodes to eventudly indude in
theMIS.

OF(CPR)= Q,N, + Q€

Comprehensive Objective Function (COF): For the COF we combine the
OF with an additiona component. This component penalizes a CP for
having alarge number of neighbors outside the CP. We denote the number
of neighbors of node i inthe CP by n;. We dencte the size of the CP by k.

k
COF(CP) =OF(mS)+@; ) _I¥
i=1

We pendize CPs with a higher number of neighbors outside of the CP
because they limit the number of possible nodes for the next iteration. Note
that in this case a3 is negative.

Stopping Criteria: We stop searching for new CPs for the CLs after kn,
attempts to find a CP with an improved OF, where n, is the number of
remaining nodes in the graph. Theideaisthat if the recent searching efforts
do not provide any improvement then most likey none will be found. We
found that k =5 performs well in practice.

Best Candidate Sdection: We sdect the best CP by enhancing the COF
with additional criteria - the number of occurrences of the CP nodes in the
CL. If the nodes in the BCS only appear in one CP in the CL, then by
sdlecting the CP we preserve alarge number of dready found CPsin the CL
and leave a large part of the solution space with high potential untouched.

We denate the total number of appearances for nodei inthe CPas &, .
1
BcgcP) = W,COF (CP) +—
g

Solution Integration: We integrate the BCSinto the solution and leave the
remaining problem to be solved by removing al nodes in the selected CP,
aswell as neighbors of the nodes and dl incident edges.

Overall Control Strategy: For the overal control strategy we conduct n/10
multi-starts given that n isthe number of nodesin the original instance. This
number was determined experimentally.

The second gpproach, where we sdlect nodes to exdude from the MIS,
uses many of the same component definitions as the firs approach. The
definitions of the CP, CL, COF, Sopping Criteria, BCS Solution



Integration and Overall Control Srategy dl stay the same. We define the
remai ning components in the following way.
Probabilistic Search: We select any one of the nodes to be excdluded from
the CP and replaced with another node. The nodes to be induded and
exduded are sdlected probabilitically using the following va ues:

1 #_nelb 1

Ne=— N = —

Ni =1 ‘nijk‘
We define the neighbor of node n; as ny, and the neighbor of ny as nyy.
Therefore we eliminate the nodes with many 2™ neighbors, becauise these
neighbors will greatly harm a potential solution by eliminating a significant
number of nodes from consideration.
Objective Function (OF): In this case we smplify the objective function to
only indude the number of edges which remaininthe resulting graph, e

OF(CP) = Q€

5. Experimental Results

In this section we present the experimental results conducted on
severd benchmarks We gpplied the PC technique and compared the results
to previoudy published results [5]. All testing was done on a 300-MHz Sun
Ultra-10 Workstation.

Name Vv CIEi(;Be ,\Em'g y | cpu
chool 1_nsh 358 | 16710 | 47193 | 14 | 022
Kelerd 171 | w435 | 5100 | 11 09
anr200 0.7 200 | 13868 | 6032 | 18 | 371
brock200_1 200 | 14834 | 5066 | 21 | 2258
=n200 0.7 2 200 | 13930 | 5970 | 18 | 031
P_hat300-2 300 | 21928 | 202 | 25 | 0%
Hamming8-4 256 | 20864 | 11776 | 16 | 0006
=n200 0.9 1 200 | 17910 | 1990 | 70 | 102
MANN_a27 378 | 7051 | 702 | 126 | 123

Table1- Experimental Resultsfor Independent Sets

We ran testing on instances for the problem of finding the maximum
dique. The maximum dique problem can be easily mapped to MIS by
complementing the graph. Complemented graph G, of graph G is agraph
that has the same set of vertices as G. However, G, has edges between two
verticesif and only if G does not have edge between these two vertices. The
MISin agraph is the maximum dique in the complemented graph and vise
versa,

Thefirst column of Table 1 indicates the name of the maximum dique
instance (the instances are from [4,6]) while the second column tates the
number of vertices in the graph. The next two columns give the number of
edges in the origind graph and the number of edges in the complemented
graph respectively. The fifth column represents the number of nodes in the
MIS or maximum dique. In al cases, the probabilisic congtructive
approach was &ble to find the optimal solution. Finaly, the sixth column
displays the runtime for finding the MIS using the PC heurigtic. The
reported times are faster than any other previoudy published time[5].

6. Concluson

We introduced a new probabilistic congtructive algorithm paradigm.
The method combines the relatively short runtime of congtructive
agorithms and the flexibility of probabilistic agorithms. We discussed the
main components of the new gpproach. We applied the dgorithm to the
problem of Maximum Independent Set. In [21], the PC approach is applied
to graph coloring and two design problems (code covering and scheduling).
Extensive experimentation indicates that the new dgorithm is capable of

achieving competitive or better results than previoudy published
approaches, often with shorter runtimes.
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