
A Probabilistic Constructive Approach
To Optimization Problems

Jennifer L. Wong, Farinaz Koushanfar†, Seapahn Meguerdichian, Miodrag Potkonjak
Computer Science Department, University of California, Los Angeles, CA 90095

† EECS Department, University of California, Berkeley, CA 94720

ABSTRACT
We propose a new optimization paradigm for solving intractable

combinatorial problems. The technique, named Probabilistic Constructive
(PC), combines the advantages of both constructive and probabilistic
algorithms. The constructive aspect provides relatively short runtime and
makes the technique amenable for the inclusion of insights through heuristic
rules. The probabilistic nature facilitates a flexible trade-off between
runtime and the quality of solution.

In addition to presenting the generic technique, we apply it to the
Maximal Independent Set problem. Extensive experimentation indicates
that the new approach provides very attractive trade-offs between the quality
of the solution and runtime, often outperforming the best previously
published approaches.

1. Introduction
In order to build high quality CAD software, a number of components

need to be in place. These components include proper abstractions of
synthesis problems that capture important features and eliminate non-
important ones, and models that characterize design components such as
delay, area, and early power prediction. Any developed software must be
modular and written in such a way that it can be easily reused and modified.
Furthermore, there is a strong demand for user interfaces that simplify the
designer’s interaction with CAD tools during the design process. While the
list of desired CAD software components is long, at the heart of all synthesis
software are optimization algorithms for solving computationally intractable
problems.

It is interesting and enlightening to classify the developed algorithms.
Figure 1 shows the classification according to two main criteria: (i) the way in
which the solution is built and (ii) the presence or absence of randomness.
More specifically, all algorithms can be classified as either deterministic or
probabilistic in one dimension, and as constructive or iterative improvement in
the second dimension. The largest group of algorithms are deterministic
constructive. For example, many CAD algorithms are based on the forced
directed paradigm or use dynamic programming. In the last three decades,
deterministic iterative improvement algorithms [15] were proposed for many
problems and were able to produce the best results. In particular, deterministic
iterative improvement algorithms are widely and frequently used for
partitioning [2]. Since the mid-80’s, when Simulated Annealing was first
proposed for use in designing multi-chip computers [16], probabilistic iterative
improvement has attracted a great deal of attention for solving CAD problems.
Techniques such as Genetic Algorithms, Tabu Search, and Simulated
Evolution, due to their programming simplicity and flexibility, have been used
for a variety of synthesis tasks. Their main disadvantage however, is usually
long runtime.

While numerous algorithms populate three of the quadrants in Figure
1, the probabilistic constructive quadrant is empty. The closest in spirit to
this quadrant are randomized deterministic algorithms [19]. Our goal in this
paper is to push the envelope well beyond this type of randomization and
develop algorithms that are simultaneously constructive and probabilistic,
by leveraging on the positive properties of both constructive algorithms and

probabilistic algorithms. The main advantage of constructive algorithms is*

their relatively short runtime and flexibility to incorporate a variety of
insights as efficient heuristics. On the other hand, the main advantage of
probabilistic algorithms is their inherent flexibility that facilitates the trade-
off between quality of solution and runtime.

The new approach can best be explained at the intuitive level in the
following way: We start by searching for a small part of the solution that
can be solved effectively, in such a way that the remainder of the problem is
also suitable for similar optimization. For this search, we propose a
probabilistic methodology, where parts of the solution are considered, and
the decision of which to select is made in a probabilistic manner so that the
likelihood of obtaining a high quality solution is maximized. The quality of
the solution is evaluated using an objective function. After the small part is
solved, we eliminate it from further consideration and solve the remaining
problem iteratively using the same approach. The final stage is to
incorporate the solutions to each of the small parts together to form the final
solution to the problem.

Figure 1 - Classification of Optimization Algorithms

2. Related Work
By far the most popular and widely used generic algorithmic paradigm

is the deterministic constructive approach. Algorithms of this type have
been applied on a vast variety of problems, starting from sorting and basic
graph algorithms such as Breadth First Search and Topological Sort, to
more complex graph algorithms, such as All-Pairs Shortest Path and
Maximum Flow. Several generic algorithmic techniques of the constructive
deterministic approach have found many applications. For example, Greedy
Algorithms, Dynamic Programming, and Branch-and-Bound are used to
solve many different problems.

In 1970, Kernighan and Lin introduced the first iterative improvement
heuristics, which was applied for graph partitioning [15]. The algorithm
uses pair swap moves to iteratively reassign elements to different partitions.
It proceeds in a series of passes, during which each component is moved
exactly once. A number of improvements on the basic strategies have been
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proposed over the years [10]. An excellent survey of this research is given in
[2]. The iterative improvement paradigm has been applied to many other
optimization problems, including the Traveling Salesman Problem [17].

Randomized versions of the deterministic constructive algorithms have
been popular for a long time [19]. Randomization often dramatically

improves the average runtime of algorithms. There are two types of
randomized algorithms, Las Vegas and Monte Carlo. Las Vegas algorithms
always generate a correct solution, but their runtimes vary depending on the
distribution of inputs. In contrast, Mote Carlo algorithms may sometimes
produce an incorrect solution, but they run in a predictable amount of time.
The probability of a Monte Carlo algorithm producing an incorrect solution
can be made arbitrarily small by repetitively running the algorithm, each
with independent random choices.

Since 1953, a number of probabilistic iterative improvement
algorithms have been proposed. Two of them have origins in statistical
mechanics: the Metropolis algorithm [19] and Simulated Annealing [16].
Simulated Annealing found a spectrum of application in engineering,
computer science and image recognition [1]. In contrast to deterministic
iterative improvement algorithms, Simulated Annealing allows hill-climbing
moves. Consequently, a number of probabilistic iterative improvement
algorithms that often explore with analogy to physical and biological world
have been proposed including Genetic Algorithms [13,20], Neural Networks
[14], Simulated Evolution [7,12], and Tabu Search [8,11].

The new probabilistic constructive paradigm is different from all the
above paradigms. In some sense it is closest to randomized algorithms.
Conceptually, the difference is that probabilistic constructive uses extensive
probabilistic search to find an attractive way to solve an arbitrary small part of
the problem and construct (as opposite to improve) the solution.

3. Generic Probabilistic Constructive Approach
The basic idea behind the probabilistic constructive approach is to

search, probabilistically, for a small part of the solution which can be solved
well and which leaves the remaining problem amenable for further
optimization. For example, when we are searching for a graph coloring
solution, we can color a few nodes in a particular way and remove them
from further consideration.

The generic approach has the following ten components:

Candidate Part (CP): The candidate part is a relatively small portion of the
problem that can be efficiently solved in a particular way. In the general
case, we must make two choices regarding the CP: (i) which components of
the problem to consider and (ii) how to resolve that part of the problem. It is
important that the CP is not too small in order to avoid overly local and
greedy solutions. It is also important that the CP is not too large in order to
avoid long search times. For example, in Graph Coloring, coloring a single
node at a time is a CP decision that is too local. However, it is difficult to
find a promising coloring solution if we decide to color too many nodes
simultaneously.
Probabilistic Search (PS): One of the more important aspects of the
algorithm is how to efficiently search the solution space using probabilistic
constructs. There are two main alternatives. One is to define a move that
probabilistically replaces a single component from the CP with the new
component. The second method is to generate a new CP from scratch. The
first technique is faster while the second is capable of quickly scanning the
complete solution space. From the implementation point of view, random
number generation is a computationally intensive task in the probabilistic
constructive algorithm. In our implementation, we use a stored list of
randomly generated numbers that is traversed starting from randomly
selected points. While this approach generates numbers that are not
completely compliant with the standard test for randomness, the extensive
implementation implies that it can speed up the performance of the
algorithm by an order of magnitude without sacrificing the quality of
solution.
Candidate List (CL): The candidate list contains the k best solutions for the
CPs found using probabilistic search. The most important criteria related to
the CLs are the ones that select which solutions should be included in the
list. The simplest approach is to include only the k best solutions (with k best

OFs). A more sophisticated approach takes into account the overlap
between the new proposed solution and solutions in the candidate list.
Objective Function (OF): The objective function is a heuristic measure of
likelihood that a particular solution to a particular part of the final solution is
a promising choice. The main trade-off here is between accuracy (ability to
estimate) and runtime.
Comprehensive Objective Function (COF): The objective function is
calculated for all proposed solutions and therefore it is important that the OF
is fast. Once the number of candidates is reduced to only a few, it is
essential to evaluate them as accurately as possible. Therefore, before the
final selection of a particular candidate from the CL, we calculate the COF.
The main difference between OF and COF is that the former involves
calculations of properties related only to properties of a small part of the
solution, while the latter takes into account properties of the still remaining
unsolved regions. Another important criterion that needs to be taken into
consideration is the overlap between the selected CP and other candidates
from CL. Clearly, less overlap implies that more of the current candidates
can be reused in the next stages of the algorithm.
Stopping Criteria: The effectiveness of probabilistic search for a promising
CP is positively correlated with the search time. Nevertheless, two general
guidance criteria can be stated: (i) longer search time is required in the
beginning when the problem is still large, (ii) the best indication of finding a
new quality solution for a CP is that for a long period of time no new CP is
observed.
Best Candidate Selection: The best candidate selection is the process of
selecting the part of the solution that will be accepted. The simplest strategy
is to select the one with the best COF. One can envision a multitude of
alternatives where information from the previous runs of the algorithm is
considered or delayed decision is used.
Solution Integration: Divide and conquer is a popular algorithmic
paradigm. Its application is often restricted due to the difficulty of
integrating components. Therefore, one of the most important aspects of the
probabilistic constructive approach is to develop mechanisms for integrating
solutions to the small parts into the solution of the overall problem. In a
sense, this is the most demanding aspect of the PC approach, which requires
the highest degree of creativity. Nevertheless, there exists a generic
technique for this task. The technique is based on constraint manipulation,
where the already solved parts, are presented as constraints to the remaining
problem. A small example will better explain this paradigm. Consider the
graph-coloring problem. If we decide to color two nodes n1 and n2 with the
same color as a CP, all that is needed is to replace these n1 and n2 with a
single node n’ in the remainder of the problem. Note that n’ should have
edges to all the nodes that were connected to n1 and n2.
Overall Control Strategy: Since the new approach is probabilistic, each
run of the algorithm, in principle, produces different solutions and has
different runtimes. One can super-impose a variety of control strategies
using the generic algorithm as the building block. For example, one can
use multi-starts or keep statistics about the difficulty of resolving some
parts of the solution and use this as the decision criteria of when to
terminate an unpromising start.

The new problem-solving paradigm can be explained in the following
way: we attempt to find a small and readily solvable part of an overall problem
and find a high quality solution to that part. The objective function is used to
evaluate the quality of the proposed solution. Examining all parts of the
problem is a procedure with exponential time complexity and therefore is
not a plausible approach. This suggests the use of a randomized search
algorithm. The search should avoid visiting the same parts of the problem
more than once. The parts with a high solution quality are stored for future
considerations. In particular, diverse solutions are very beneficial because
they can be used consequently to form other parts of the solution.
Furthermore, if possible, the CP should be flexible in order to allow the
imposing of additional control or search strategies later on. The pseudo code



of a generic approach for the probabilistic constructive procedure (GPC) is
listed in Figure 2.

First, the algorithm builds a CL of promising solvable CPs (CPi). The
promising candidate is found after applying the probabilistic search to the
current instance of the problem, P. During this probabilistic selection, the
algorithm favors CPs that are more likely to be solved efficiently (have
higher OF values), and adds only the best CPs to the CL. Next, the
comprehensive objective function, COF, is calculated for each of the
elements in CL. The BCS is selected from the CL according to the
corresponding rule. This selected BCS, or CPi which evaluated best
according to the BCS rules, is then integrated as part of the solution and
eliminated from the problem. The procedure then repeats on the remainder
of the problem until a complete solution is found.

while ( Overall Controll Strategy is not satisfied)
Procedure GPC(P)
S=∅ ;
while (S(P) is not complete)

while (stopping criteria is not satisfied)
CPi = GenerateCP(); //using PS
OFi = CalculateOF(CPi);
if(OFi >OFmin) //OFmin is CP with smallest OF in CL

UpdateCL(CPi);
for(all CPj in CL)

CalculateCOF(CPj);
BCS = BestCandidateSelection(CL);
S(P) = SolutionIntegration(S(P),BCS);

Figure 2 - Generic Probabilistic Constructive Algorithm

4. Application To Maximum Independent Set
We first explain how the new PC paradigm can be applied to the Maximum

Independent Set problem.

Problem: Maximum Independent Set
Instance: Graph G=(V,E), positive integer K ≤ |V|.
Question: Does G contain an independent set V’, with cardinality greater
than or equal to the cardinality of all other independent sets of G, i.e. a
subset V’⊆ V such that for all pairs of vertices u,v∈ V’ the edge {u,v}∉ E.

Given an undirected graph G=(V,E) where V is the set of vertices and E
is the set of edges in G, an independent set is defined as a subset V’⊆ V such
that for all pairs of vertices u,v∈ V’ the edge {u,v}∉ E. An independent set V’ is
a Maximal Independent Set, if ∀ v∈ V, either v∈ V’ or there is a u∈ V’ such that
the edge {u,v}∈ E. An independent set V’ is a maximum independent set, if |V’|
is greater than or equal to the cardinality of all other independent sets of G. It is
widely known that the independent set problem is directly related to several
other key graph theory problems such as Vertex Cover and Clique [9].

The probabilistic constructive algorithm can be applied to the
Maximum Independent Set problem in at least two different ways. The first
is to select nodes to include in the MIS. The other way is to select nodes that
are to be excluded from the MIS. In this case, the solution is the nodes that
remain unconnected in the final graph.

For the first approach, selecting nodes to include in the MIS, we define
the components in the following way.
Candidate Part (CP): We select any subset of nodes where there are no
edges between them to be considered as the CP. Each CP is a possible
subset of the nodes in the final solution, or MIS. The candidate part can be
of size k, where k is a variable or constant value. In our experimental
evaluations, we used k = 4 nodes. There are several good heuristics for
selecting k. For example, k can be a fraction of the number of nodes in the
graph.
Probabilistic Search: We search the solution space by excluding one node
from a CP of size k, and including another node. The nodes to exclude, Ne,
and include, Ni, in the CP are chosen according to the following equations
calculated for each node:

Ne = w1n + w2nu + w3n1 where n1 = ∑
=

neib

i

in
_#

1

)(

Ni =
eN

1

We define n as the number of neighbors of the node, and nu as the number of
unique neighbors, i.e. neighbors that no other node in the CP have edges to.
The variable n1 is the total number of neighbors for all the neighbors of the
current node. We select probabilistically which node to exclude or include
according to the nodes Ne or Ni value.
Candidate List (CL): We include k1 CPs in the CL with the constraint that
no node exists in more than 1/5 of the CPs in the CL. We also state that if
the OFs of the CPs are relatively consistent in value, then we continue to
add CPs to the CL to make it twice as long as usual. On the other hand, if
the values of the OF are distributed, then we cease building the list,
assuming that we have satisfied the minimum list size, kmin. We reason that
if the values of the OF are relatively consistent, then most likely we should
continue to search further to find a good overall selection. However, if the
values are wide spread, the CL has a good representation of the solution
space.
Objective Function (OF): The objective function is the weighted sum of nr,
the number of nodes in the remainder of the graph that are still eligible to be
included in the MIS, and e is the total number of edges minus the incident
edges. We give preference to the CPs that leave a large number of nodes
eligible for selection in the next iteration. We also give preference to the
CPs that eliminate many edges for the graph. The less edges in the graph the
more likely we are to be able to select more nodes to eventually include in
the MIS.

OF(CPi) = enr 21 αα +
Comprehensive Objective Function (COF): For the COF we combine the
OF with an additional component. This component penalizes a CP for
having a large number of neighbors outside the CP. We denote the number
of neighbors of node i in the CP by ni. We denote the size of the CP by k.

COF(CPi) = OF(mISi) + ∑
=

k

i
in

1

2
3α

We penalize CPs with a higher number of neighbors outside of the CP
because they limit the number of possible nodes for the next iteration. Note
that in this case α3 is negative.
Stopping Criteria: We stop searching for new CPs for the CLs after knr

attempts to find a CP with an improved OF, where nr is the number of
remaining nodes in the graph. The idea is that if the recent searching efforts
do not provide any improvement then most likely none will be found. We
found that k = 5 performs well in practice.
Best Candidate Selection: We select the best CP by enhancing the COF
with additional criteria - the number of occurrences of the CP nodes in the
CL. If the nodes in the BCS only appear in one CP in the CL, then by
selecting the CP we preserve a large number of already found CPs in the CL
and leave a large part of the solution space with high potential untouched.

We denote the total number of appearances for node i in the CP as ia .

BCS(CPi) =
i

i a
CPCOFw

1
)(1 +

Solution Integration: We integrate the BCS into the solution and leave the
remaining problem to be solved by removing all nodes in the selected CP,
as well as neighbors of the nodes and all incident edges.
Overall Control Strategy: For the overall control strategy we conduct n/10
multi-starts given that n is the number of nodes in the original instance. This
number was determined experimentally.

The second approach, where we select nodes to exclude from the MIS,
uses many of the same component definitions as the first approach. The
definitions of the CP, CL, COF, Stopping Criteria, BCS, Solution



Integration and Overall Control Strategy all stay the same. We define the
remaining components in the following way.

Probabilistic Search: We select any one of the nodes to be excluded from
the CP and replaced with another node. The nodes to be included and
excluded are selected probabilistically using the following values:

Ne =
iN

1
, Ni = ∑

=

neib

j ijkn

_#

1

1

We define the neighbor of node ni as nij, and the neighbor of nij as nijk.
Therefore we eliminate the nodes with many 2nd neighbors, because these
neighbors will greatly harm a potential solution by eliminating a significant
number of nodes from consideration.
Objective Function (OF): In this case we simplify the objective function to
only include the number of edges which remain in the resulting graph, e.

OF(CPi) = eα
5. Experimental Results

In this section we present the experimental results conducted on
several benchmarks. We applied the PC technique and compared the results
to previously published results [5]. All testing was done on a 300-MHz Sun
Ultra-10 Workstation.

Name V
E in

Clique
E in
MIS

γγγγ    CPU

school1_nsh 358 16710 47193 14 0.22

Keller4 171 9435 5100 11 0.9

sanr200_0.7 200 13868 6032 18 3.71

brock200_1 200 14834 5066 21 22.58

san200_0.7_2 200 13930 5970 18 0.31

P_hat300-2 300 21928 22922 25 0.94

Hamming8-4 256 20864 11776 16 0.006

san200_0.9_1 200 17910 1990 70 1.02

MANN_a27 378 70551 702 126 12.3

Table 1 - Experimental Results for Independent Sets

We ran testing on instances for the problem of finding the maximum
clique. The maximum clique problem can be easily mapped to MIS by
complementing the graph. Complemented graph Gc of graph G is a graph
that has the same set of vertices as G. However, Gc has edges between two
vertices if and only if G does not have edge between these two vertices. The
MIS in a graph is the maximum clique in the complemented graph and vise
versa.

The first column of Table 1 indicates the name of the maximum clique
instance (the instances are from [4,6]) while the second column states the
number of vertices in the graph. The next two columns give the number of
edges in the original graph and the number of edges in the complemented
graph respectively. The fifth column represents the number of nodes in the
MIS or maximum clique. In all cases, the probabilistic constructive
approach was able to find the optimal solution. Finally, the sixth column
displays the runtime for finding the MIS using the PC heuristic. The
reported times are faster than any other previously published time [5].

6. Conclusion
We introduced a new probabilistic constructive algorithm paradigm.

The method combines the relatively short runtime of constructive
algorithms and the flexibility of probabilistic algorithms. We discussed the
main components of the new approach. We applied the algorithm to the
problem of Maximum Independent Set. In [21], the PC approach is applied
to graph coloring and two design problems (code covering and scheduling).
Extensive experimentation indicates that the new algorithm is capable of

achieving competitive or better results than previously published
approaches, often with shorter runtimes.
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