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ABSTRACT

In this paper, we address the problem of performance ori-
ented synthesis of pass transistor logic (PTL) circuits us-
ing a binary decision diagram (BDD) decomposition tech-
nique. We transform the BDD decomposition problem into
a recursive bipartitioning problem and solve the latter using
a maz-flow min-cut technique. We use the area and de-
lay cost of the PTL implementation of the logic function to
guide the bipartitioning scheme. Using recursive bipartition-
ing and a one-hot multiplezer circuit, we show that our PTL
implementation has logarithmic delay in the number of in-
puts, under certain assumptions. The experimental results
on benchmark circuits are promising, since they show the
significant delay reductions with small or no area overheads
as compared to previous approaches.

1. INTRODUCTION

With the advent of the system-on-chip era and therefore,
with the motivation of packing more logic functionality on
the chip, other logic styles such as domino and pass transis-
tor logic (PTL) are being explored as alternatives to static
CMOS. The primary benefits of PTL include the poten-
tial for a lower transistor count, lower capacitance, smaller
delays and reduced power consumption [1, 2]. Synthesis
techniques for PTL circuits have been closely related to the
binary decision diagram (BDD) representation of logic func-
tions, for reasons such as elimination of sneak paths and
the availability of efficient algorithms for the construction
of BDD’s. Buch et al. propose a greedy heuristic to decom-
pose the BDD’s into smaller BDD’s whose sizes are kept
under a specified threshold [3]. For area-driven PTL syn-
thesis, Chaudhary et al. propose an approach [4] similar to
traditional multi-level logic optimizations involving iterative
application of transformations after which the BDD repre-
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sentation is mapped on to a PTL cell library. A similar
philosophy has been used for performance driven synthe-
sis. Both [3] and [5] imply that multi-level BDD’s are to be
used, but the limitation of these approaches is that they are
unable to predict the performance gain beforehand. Other
relevant work on BDD optimization includes [6], in which
transformations such as AND/OR decomposition based on
0/1 dominators, and XOR and functional MUX-based de-
compositions are proposed; synthesis for performance is not
specifically targeted. Becker et al. reported the use of mul-
tiplexer circuits for area and delay optimizations of PTL
circuits [7]. Unlike [3], they allowed varied threshold size of
BDD and their cost function allows area and depth to be
traded off.

In this paper, we present a novel approach to perform-
ing PTL synthesis through a decomposition of a monolithic
BDD representing a circuit. We employ a bipartitioning
scheme that uses max-flow min-cut technique to halve the
depth of a PTL implementation of a BDD with the least
area overhead. We first illustrate how the BDD can be parti-
tioned into smaller pieces and implemented as a PTL circuit
using multiplexers. We apply bipartitioning recursively and
with the use of a one-hot multiplexer circuit, we show that
it results in the implementation with logarithmic depth in
number of inputs. Unlike many previous techniques for PTL
circuit synthesis, we predict the delays in the circuit before-
hand through a theoretical analysis of the circuit delay that
motivates our partitioning algorithm.

2. PTL IMPLEMENTATION
2.1 Delays in PTL Implementation

Pass transistor logic can be used to build a 2-input multi-
plexer; there is a one-to-one correspondence between BDD’s
and their PTL implementations. Each node of a BDD im-
plements a Shannon expansion, F = z-F, +x'-F,/ about the
variable z associated with the node, where F, and F): are,
respectively, the Shannon cofactors of the function F. This
may be translated to a multiplexer that passes F, when z
is high, and F,s» when z is low; the procedure can be ap-
plied recursively to the functions F, and F,s to arrive at
PTL implementation of a given BDD representation. For
the purposes of this paper, all BDD’s are reduced ordered
BDD’s (ROBDD’s), implying that the order of variables on
any path from an output node to a leaf node is identical.

Consider a PTL implementation of a function that de-
pends on N inputs obtained by direct mapping of a BDD
on those N inputs. We estimate the delay along the crit-



ical path, Delayn, as the delay along a path containing
N — 1 pass transistors in series assuming that buffers are
also added when k pass transistors are in series to regen-
erate the signal; we will assume k£ = 3 here, but a simi-
lar analysis can be carried out for any other value of k.
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Figure 1: (a) Three pass transistors in series (b) The
equivalent RC model

To estimate Delaynr, we build an equivalent RC model for
the pass tranmsistor circuit, shown in Figure 1. Assuming
that the resistance of a pass transistor is R,, and the re-
sistance of the driver node (buffer) is R4, we can calculate
the Elmore delay of this structure as Ry - (3Cp + 3Cs +
CBufs) + Ry - (6Cp + 3Cs + 3CBuyy), where Cp(s) is the
drain (source) capacitance and Cp, sy is the input capaci-
tance of buffer. In case of a chain of N — 1 pass transistors
with one buffer placed at every third pass transistor, there
are [ (N —1)/3] three-transistor segments of the type shown
in Figure 1. Therefore, the worst-case delay, is given by

Delaymy = [(N —1)/3](Rp(6Cp + 3Cs + 3Cpusy) +
Ri(3Cp +3Cs + Cpusfy)) = O(N —-1) (1)

2.2 Decomposition of the BDD

Figure 2: (a) Carry Function for 3-bit Adder, (b)
Introducing dummy nodes V0, V1, V2 (c) Select
function for one-hot encoding, (d) Select function
for minimum-bit encoding.

In this subsection, we outline a general BDD decompo-
sition technique for delay reduction using the following ex-
ample. Consider a carry output function for a 3-bit adder
whose optimized BDD, on 6 input variables a0, b0, al, b1,
a2 and b2, is shown in Figure 2. We take a cut across the
BDD as shown by the shaded nodes in Figure 2(a) and in-
troduce dummy nodes V0, V1, V2 to replace these shaded
nodes, as shown in Figure 2(b) These dummy nodes can be
assigned unique codes using one-hot or minimum-bit encod-
ing as shown in Table 1.

One-hot Encoding Minimum-bit encoding

Terminal Node | OgO102 | Terminal Node | Sp.S1
VO 100 VO 00
V1 010 V1 01
V2 001 V2 11

Table 1: Encodings for dummy terminal nodes

After encoding, the next step in decomposition is to con-
struct the BDD’s corresponding to the select and data in-
puts of a multiplexer. Each such select input corresponds
to a BDD representation that sets the leaf nodes according
to the chosen encoding. As an example, the select bit Og
corresponds to the combination VO =1, V1 = V2 = 0. By
substituting these values into the dummy terminals in Fig-
ure 2(b), we can obtain the BDD for the select input Op
as shown in Figure 2(c). The BDD'’s for other select inputs
such as O1 and O3 can be obtained similarly. Figure 2(d)
shows the BDD’s for select inputs Sp and S1, respectively.
‘We observe that depth of the BDD’s for the select inputs is
the same for one-hot encoding as well as minimum-bit en-
coding. Note that in case of select functions obtained by
one-hot encoding, for any assignment of a0, b0, al, only
one of the select functions is true and we can use a one-hot
multiplexer circuit to implement ¢3. The implementation of
c3 using a one-hot multiplexer and a regular multiplexer is
shown in Figure 3. The select inputs are simply the PTL
implementations of the BDD’s shown in Figures 2(c) and
2(d). Table 2 shows the active area and delay, obtained
by HSPICE simulations for 100ps transition time exciting
input, for implementations obtained by direct mapping of
BDD, one-hot multiplexer based and regular multiplexer
based implementation. Clearly, one-hot multiplexer based
implementation has the least delay with slightly larger area
than the one obtained by direct mapping of BDD. We also
observe that in the decomposed implementation using the
one-hot multiplexer, the depth of the circuit is halved as
compared to the implementation obtained by a direct map-
ping of the BDD.

Figure 3: Various implementation of ¢3

Implementation Active Area(u?) | Delay(ps)

Monolithic BDD 3.25 708.4
One-hot Multiplexer 4.125 409.4
Regular Multiplexer 4.875 458.5

Table 2: Comparison of various implementations

3. BIPARTITIONING

The decomposition technique presented in Section 2 can
be thought of as a bipartitioning that halves the circuit
depth and therefore, shortens the critical path and its delay.
If we take a single cut halving the critical path, then using
equation (1), we find that the delay using a one-hot mul-
tiplexer, which adds one extra series transistor, is approxi-
mately halved. We can apply this bipartitioning procedure
recursively, such that on each application of the procedure,
the critical path is halved. The price being paid for delay



reduction is in terms of area, since the number of transis-
tors increases as we recursively bipartition the BDD. We can
perform this bipartitioning for the minimum area penalty.

3.1 The Algorithm for Bipartitioning

Our aim is to find an optimum cut that halves the crit-
ical path, measured in terms of Elmore delay and has the
least area penalty. We estimate the Elmore delay assum-
ing PTL implementation of a given BDD with buffers after
every three pass transistors in series and inverters for com-
plemented edges. We assign two delays to each node.

Delay from Bottom(Duottom) : This is the Elmore delay
of the PTL network rooted at a given node.

Delay from Top(D;op) : Thisis the maximum Elmore de-
lay from node to any of the outputs.

These delays can be found out using a PERT-like traversal
on the digraph. Clearly, the critical path is a path on which
the node with maximum Elmore delay lies. We define two
types of nodes for delay balanced bipartitioning:

Essential Nodes, for which Dyo¢t0m equals half of the crit-
ical path delay. In other words, essential nodes lie in
the middle of critical path.

Candidate Nodes, for which Dy, and Dpottom are both
less than half of the critical path delay.

The optimum cut will halve the critical path ensuring that
no other path in the decomposed implementation has a delay
of more than half the critical path delay. All essential nodes
must be in the cut while we have a freedom to choose among
the candidate nodes. We assign an area cost candidate nodes
assuming PTL implementation of the circuit and then use
the max-flow min-cut technique [8] to find the optimum cut
that halves the circuit delay at the least area cost.
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Figure 4: Creating a flow network

Figure 4 shows the creation of the flow network from a
digraph corresponding to the given BDD. Figure 4(a) shows
the digraph corresponding to a BDD, in which there are
three nodes fi, fo, and fs corresponding to the three pri-
mary outputs, three candidate nodes ci1, ¢2 and c3, and two
essential nodes e1 and e2. Dashed edges in Figure 4(a) (for
instance, an edge from fi to ¢1) indicate that there are di-
rected paths between the corresponding nodes. Figure 4(b)
shows the corresponding flow network with one source node
s and one destination node ¢. Each essential node in the
digraph is split into two nodes, for instance, node e; in the
digraph is represented by two nodes e and e; with an edge
from e1 to €] of a small capacity e. Similarly, candidate
nodes in the digraph are represented by splitting them into
two nodes, for instance, node ¢; in the digraph is represented

by two nodes c¢; and ¢}, respectively, with an edge of capac-
ity fo1 from c1 to ¢j. Since we want essential nodes to be
included in the optimum cut, we assign a small capacity to
the edge between the split essential nodes, and since we want
to choose the candidate nodes with the least area penalty,
we assign a capacity proportional to the area cost of candi-
date nodes to the edges between split candidate nodes. The
remaining edges in the flow network are assigned a capacity
of 0o, and therefore, will not appear in the cut. Thus, there
are two possible cuts, Cut A and Cut B, corresponding to
cut-sets Acutser = {€1,e2,c3} and Beutser = {€1,€2,¢1,¢2}
in the digraph corresponding to the given BDD. Applica-
tion of the Ford-Fulkerson technique to find the minimum
cut will result in one of these, depending on values of f,,
fes and fc,. The pseudocode for the algorithm is shown in
Figure 5.

Input: G(V,E) = Digraph corresponding to given
BDD, V = Nodes, E = Edges.

Output: Scy¢t = Optimum cut-set.

Steps:

PERT Traversal(G); /* Assign Diop, DBottomVVeV */
Decrit = max{DBpottomVveV'}; /* Critical Path Delay */
VEssential = {'U:'UEV and Dyottom = Dcrit/2 };
VCandidate = {U:UGV and DtopyDbottom < Dcrit/z };
AreaCostEstimate (Vogndidate ) ;

GFiow= CreateFlowNetwork(G,VEssential » Voandidate) ;
Ford-Fulkerson(Griow, G, Scut) ;/*¥Find optimum cut */

Figure 5: Pseudocode for Algorithm

Once the cut is determined, the vertices in the cut are
replaced by dummy terminal nodes, which can be assigned
unique codes, and implemented, as illustrated in subsection
2.2. The bipartitioning procedure can be applied recursively
till no further delay reduction can be achieved and the re-
sulting implementation has a delay which is logarithmic in
terms of number of inputs, as stated by the following theo-
rem, without proof due to space limitation.

THEOREM 3.1. The recursive application of an algorithm
in Figure 5 to any BDD on N input variables with the use
of one-hot multiplezers results in an implementation which
has the Elmore delay of O(log N), under the assumption of
constant delay in the one-hot multiplexer circuit.

Unlike the multiplexer based implementation for PTL cir-
cuits proposed by [7] that obtains a logarithmic depth for
only zor functions, our use of one-hot multiplexers and re-
cursive bipartitioning results in a logarithmic delay imple-
mentation for any circuit, irrespective of the cut-set size.

4. EXPERIMENTAL RESULTS

We have implemented the recursive bipartitioning algo-
rithm and the decomposition procedure as a C++ program
called PTLS (Pass Transistor Logic Synthesizer). PTLS uses
the BDD package CUDD [12] for generating BDD’s and we
used sifting [13] for variable ordering. We used NMOS tran-
sistors of size 0.51/0.25 as pass transistors. Inverters were
inserted after at most three transistors in series, and in case
of implementations using PTLS, to drive the gate nodes of
the one-hot multiplexer. For the inverter, we chose W, /L,
= 1p/0.25p and W,/L, = 0.5p/0.25u. The delays were
measured using static timing analysis of the resulting tran-
sistor netlist, We have used PTLS to synthesise MCNC and
ISCAS’85 benchmark circuits and compared its results with
other libraryless synthesis techniques such as TABA [10],



Example PTLS Ferrandi et al. [9] | Buch et al. [3] | TABA [10] | OTR [11]

Example [#. of Trans/Delay(ps)[CPU Time(s) # of Trans. # of Trans. | # of Trans. |# of Trans.
C1355 1006 2010.92 0.88 1013 1969 1592 1304
C1908 1228 1775.53 1.86 1526 2116 2346 1858
C432 1088 612.76 1.25 727 979 710 644
C499 1072 2061.88 0.91 1013 1947 1464 1352
C2670 3045 640.17 21.4 2674 3194 2880 2842
C6288 9121 744.52 124.01 7073 10787 8096 7992
Total 16562 14026 20992 17088 15992

Table 4: Comparison of PTLS with Ferrandi’s method, Buch’s Method, TABA and OTR

Example | Monolithic PTLS TABA | OTR

## of | Delay | # of | Delay [Recur| # of # of

[Trans| (ps) [Trans| (ps) |level | Trans. | Trans.

5xpl 284 |691.49| 256 |234.25| 2 302 378
9sym 110 [1183.17 99 [456.43| 2 404 272
misex1 142 |562.38| 130 [431.94| 1 148 158
rd53 82 |513.80| 56 [356.49| 3 82 82
rd73 146 (825.49| 104 [488.17| 1 174 152
rd84 202 [1000.59 153 [473.83| 2 290 252
5202 326 [1166.43 439 [362.27| 2 362 320
C17 32 [338.70| 29 [226.19| 1 - -
alu2 1002 [1816.96 1078 |298.58| 3 - -
cm138 70 [562.38| 98 [480.28| 1 - -
cm163 126 |773.67| 145 |250.17| 2 - -
cmb 158 [1267.97| 124 |654.09| 2 - -
comp 1070 [4211.63 1640 [476.36| 8 - -
parity 112 [2285.84] 92 |674.55| 3 - -
t481 160 [2240.37) 277 |162.15| 4 - -
z4ml 130 [777.79] 90 [429.92| 1 - -
f51m 252 |945.52| 569 [178.28] 3 - -
my_adder | 1204 |5417.5| 1281 |1243.9 5 - -

Table 3: Monolithic BDD implementation vs. PTLS

OTR [11], and also with pass transistor logic synthesis tech-
niques such as [3] and [9]. Table 3 shows the number of
transistors required and delays for implementations using
monolithic BDD’s and PTLS and number of transistors re-
quired for implementations using TABA and OTR; delay
figures for TABA and OTR are unavailable and ‘-’ entries
in Columns 6 and 7 shows that the corresponding informa-
tion is unavilable. We observe that the implementations
obtained by using PTLS has significantly less number of
transistors than TABA and OTR in all cases except sao2.
This is because BDD representations for all those exam-
ples are compact and recursive bipartitioning using one-hot
encoding results in simplified expressions. We observe sig-
nificant delay reductions in all cases with marginal increase
in area for the comparison of PTLS implementations with
corresponding monolithic BDD’s implementations.

In Table 3, column 5 shows the maximum reucrsion level
for the recursive bipartitioning scheme. We observe that
for benchmarks like comp, t481, my_adder and parity when
bipartitioning has been applied 8, 4, 5 and 3 times, respec-
tively, delays are reduced drastically. On the other hand,
for small benchmarks like C17, rd53 and misex1 delays did
not reduce significantly. In these cases bipartitioning could
be applied only once.

In case of ISCAS’85 benchmarks, we ran script.rugged
for minimizing boolean network, and then, created multi-
lvel BDD representation to apply recursive bipartitioning
procedure on this multilevel BDD representation level-wise.
Table 4 shows a comparison of the number of transistors for
ISCAS’85 benchmarks with competing methods. Column 3
and Column 4 in Table 4 shows the delays obtained by static
timing analysis and run time for PTLS on SUN Ultra-60
workstation, respectively. We could not compare the delays

of our method with those reported by other methods be-
cause of the unavailibility of parameters for delay models.
Since none of the above techniques except OTR [11] targets
performance oriented synthesis, our method is quite likely
to outperform other methods. The implementation cost of
PTLS is found to be comparable to all competing approaches
and is better in many cases. More importantly, the delay is
likely to be much better since our approach uses decomposi-
tion for delay reduction, unlike other approaches. In case of
PTLS, preprocessing the multilevel BDDs using algorithms
such as eliminate reported in [4] could result in smaller BDD
node count and therefore, less number of transistors in the
implementation.

S. REFERENCES

[1] K. Yano et al. A 3.8ns CMOS 16 x 16 multiplier using
complementary pass transistor logic. IEEE Journal of
Solid State Circuits, 25(2):388-395, Apr. 1990.

[2] K. Yano, Y. Sasaki, and K. Rikino. Top-down
pass-transistor logic design. IEEE Journal of
Solid-State Circuits, 31(6):792-803, Jun. 1996.

[3] P. Buch et al. Logic synthesis for large pass transistor
circuits. In Proc. ICCAD, pages 663670, Nov. 1997.

[4] R. Chaudhary et al. Area oriented synthesis for pass
transistor logic. In Proc. ICCD, pages 160-167, Oct.
1998.

[5] T. Liu et al. Performance driven synthesis for pass
transistor logic. In Proc. of the VLSI Design
Conference, pages 372-377, Jan. 1999.

[6] C. Yang and M. Ciesielski. BDD decomposition for
efficient logic synthesis. In Proc. ICCD, pages
626-631, Oct. 1999.

[7] C. Scholl and B. Becker. On the generation of
multplexer circuits for pass transistor logic. In Proc.
DATE, pages 372-378, Mar. 2000.

[8] T. H. Cormenet al. Introduction to Algorithms.
Prentice-Hall India, New Delhi, 1998.

[9] F. Ferrandi et al. Symbolic algorithms for layout

oriented synthesis of pass transistor logic circuits. In

Proc. ICCAD, pages 235-241, Nov. 1998.

A. Reiset al. The library free technology mapping

problem. In Proc. IWLS, May 1997.

Y. Jiang, S. S. Sapatnekar, and C. Bamji. A fast

global gate collapsing technique for high performance

designs using static cmos and pass transistor logic. In

Proc. ICCD, pages 276-281, Oct. 1998.

F. Somenzi. CUDD: CU Decision Diagram package,

release 2.3.0. http://vlsi.colorado.edu/ fabio/CUDD/.

R. Rudell. Dynamic variable ordering for ordered

binary decision diagrams. In Proc. DAC, pages 42-47,

Jun. 1993.

[10]

[11]

[12]

[13]



	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index




