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Abstract

Shrinking feature sizes and increasing speeds of operation make
interconnect-related effects very relevant for current circuit veri-
fication methodologies. Reliable and accurate system verification
requires the full analysis of circuits together with the environment
that surrounds them, including the common substrate, the packag-
ing structures, and perhaps even board information. In this paper
we discuss circuit-level simulation algorithms that enable the anal-
ysis of the impact of strongly coupled interconnect structures on
nonlinear circuit operation, so as to allow reliable and accurate
system verification.

1 Introduction

While circuit verification for many years has been concerned with
issues of noise coupling between signals and the effects of para-
sitic devices, such considerations were usually assumed local and
handled with tools that relied on simplified formulas and approxi-
mations. Now, such simplified approaches to circuit verification are
not sufficient as rising frequencies of operation increase the perfor-
mance impact of parasitic elements, while shrinking voltage levels
and device feature sizes mean decreased margin for error. Particu-
larly in analog applications, insufficient attention to parasitic mod-
eling considerations can result in design failures. Therefore, there
has been considerable attention devoted to the impact of package
parasitics, non-ideal power/ground networks, substrate effects, rel-
evance of on-chip inductance and device-level parasitics.

Traditional approaches to large interconnect problems are usu-
ally directed at one of the two ends of the accuracy/efficiency spec-
trum : very high speed, or very high accuracy. Rule-based heuris-
tic approaches, aimed at determining the supposedly most relevant
couplings have been the technique of choice for parasitic extraction.
Unfortunately even mature pattern- and formula- based capacitance
extraction tools, which have been under development for the better
part of two decades, commonly produce errors in outlying cases of
20%-50% (or more). Formula-based tools for inductance and sub-
strate extraction are far less mature and in the case of packaging
nearly non-existent. Even if such formulas did exist, they would
be targeted at extracting only the most relevant couplings. This can
be very useful to a circuit designer, since the dominant sources of
coupling can be quickly identified, and then remedied. However,
such information is less useful to a builder of CAD tools, since one
of the main points of performing detailed, circuit-level analysis is
to obtain the accurate answers needed to verify design decisions. In

the context of parasitics analysis, this means building a tool that can
predict the amount of residual coupling remainingafter the domi-
nant sources have been removed. Such sources are, by definition,
second order, and without accurately predicting their magnitude,
correct operation of the design cannot be verified. Unfortunately, in
many cases, as we shall show, simple models are likely tounder-
estimate coupling effects in circuits designed to be noise immune.

A more robust approach is based on building a model that fully
describes the couplings using a very accurate method such as a field
solver, and then devise a better numerical algorithm to accelerate
the circuit simulation. Traditionally this approach has been con-
sidered infeasible for large circuits as the extraction stage quickly
becomes computationally intractable since several thousand field
solutions must be performed to extract the circuit matrix and even
more modern “fast solvers” [13, 9, 12] are only capable of perform-
ing rapid extraction on small sections of layout geometry. Recently,
however, super-fast field solvers [11] have emerged that are capa-
ble of performing single high-accuracy extractions on large portions
of layout. Techniques have also been demonstrated [10]that show
how to reduce the total number of extraction steps that must be
performed. Since in circuit level simulation of parasitic effects the
intent is to assess the performance impact of the parasitics on oper-
ation of nonlinear circuitry, the remaining challenge is to show how
to efficiently include models extracted by such means in circuit-
level simulation.

Inclusion of parasitic models introduces additional variables into
the circuit equations which immediately represent a constant fac-
tor increase in cost, as simulation cost is roughly proportional to
the number of unknown variables. More important, however, is
that parasitic elements tend to make the circuit simulation problem
morestrongly coupled, increasing the average number of connec-
tions to each circuit node, behavior which adversely impacts the
performance of the sparse-matrix operations needed in most circuit
simulators by increasing the number of “fill-in” elements created
during matrix factorization. Mutual inductive couplings in pack-
age models, and resistive couplings in substrate analysis, generate
nearly full, or what is calleddenselarge matrices which will lead to
unacceptable simulation requirements. The complexity of the sim-
ulation which, in the absence of strong parasitic coupling, is empir-
ically observed to scale at the rate ofO(n)�O(n1:2), wheren is the
total number of circuit variables, can increase to betweenO(n1:5)
(for simple mesh topologies ) andO(n3) (for the most complicated
package and substrate models). Furthermore, the storage of a dense
N�N matrix of couplings in a circuit simulator is impractical for
largeN, particularly in RF simulation. As a result simulation of



large circuits can quickly become intractable.
In this paper we examine several approaches to reduce the

growth of complexity encountered when simulating large dense
coupling networks representing interconnect and substrate struc-
tures. As a model problem, we will consider substrate coupling
interactions, though we emphasize that most of our results can be
applied to the other common interconnect problems as well. We
present several algorithms that enable such a simulation within an
acceptable timeframe while preserving high accuracy, and compare
the virtues of each. Furthermore, the methods proposed are flex-
ible in the sense that they allow easy trade-off of accuracy versus
efficiency. Therefore they can be applied in accurate circuit-level
simulation at acceptable albeit large cost, or they can be relaxed
and applied in fast circuit verification using simplified models and
algorithms such as used presently in fast timing simulators.

In Section 2, we present background on circuit simulation and
our model problem, substrate coupling analysis, and establish no-
tation. In Section 3, we overview the most simple approach to an-
alyzing strongly-coupled interconnect, matrix truncation, and dis-
cuss some situations in which it may fail. The heart of the paper
is Section 4, where we present algorithms capable of manipulat-
ing large substrate networks with minimal loss of accuracy. We
present a novel class of semi-implicit integration schemes, and dis-
cuss the relation of these schemes with iterative solution methods
for implicit discretizations. Section 5 presents the results of com-
putational experiments and conclusions are drawn in Section 6.

2 Technical Background

2.1 Electrical Circuit Simulation
Contemporary circuit simulation programs are designed to solve the
differential-algebraic equations governing the time-domain evolu-
tion of circuit state quantities in response to specified stimuli. With-
out loss of generality, we may write these equations as

d
dt

q(v)+ i(v) = u(t): (1)

This notation is motivated from nodal analysis whereq repre-
sents stored charge,i device currents,v node voltages that are the
state variables,u external sources and the above equation enforces
current conservation (KCL). For circuits containing inductors and
other elements, modified nodal analysis can be used but in essence
the formulation above is still valid albeit the meaning of the var-
ious variables needs to be changed appropriately. There is a vast
literature (e.g., [6]) associated with the solution of such equations,
to which the reader may refer for details of their solution. For our
purposes it is enough to note that circuits generate equations that
arestiff, meaning having a wide range of time constants in the so-
lution, and that contain algebraic constraints. Such equations are
solved using implicit discretizations, the simplest of which is the
backward-Euler method:

q(vn+1)�q(vn)

h
+ i(vn+1) = u(tn+1): (2)

wherevn is the approximate solution to (1) at thenth timepoint,tn.
At each timestep, this nonlinear set of equations must be solved for
the solution at the next timepoint,vn+1. This is usually done using
Newton’s method. Newton’s method requires solution of consecu-
tive solutions of linear equations,�

C(vn+1)

h
+G(vn+1)

�
x= b; (3)

for somex andb, whereC andG are the Jacobian matrices associ-
ated withq andi, respectively:

C(vn+1)�
∂q
∂v

����
vn+1

G(vn+1)�
∂i
∂v

����
vn+1

: (4)

These equations are usually solved by direct LU factorization of
the Jacobian matrix,J=C=h+G, using sparse linear algebra tech-
niques [4].

2.2 Modeling Substrate Coupling
The substrate problem is a potentially major problem in analog, RF,
and mixed-signal designs. It is generally defined as the unintended
electrical coupling through the common substrate between circuit
nodes that are designed to be isolated. Mixed-signal design, where
the concern is usually with noise generated by fast-switching dig-
ital nodes impacting sensitive analog nodes, has received the most
attention. However undesired effects of coupling through the sub-
strate is also known to affect purely digital circuits by introducing
noise in lines and affecting the delays of certain gates. In purely
analog, and particularly RF designs, coupling between different
parts of an analog circuit is the issue. Substrate parasitics may
reduce performance, or in severe cases create unwanted feedback
paths that can lead to instabilities.

Substrate coupling and the modeling of the effects of that cou-
pling have been the subject of much research over the past few
years. The problem is made more difficult due to the fact that sub-
strate coupling is in the most general analysis a global phenomena
and its effect cannot always be accurately and reliably predicted by
analyzing small subsets of the layout. Fast switching logic com-
ponents inject current into the substrate causing voltage fluctuation
which can affect the operation of sensitive as well as far away ana-
log circuitry for instance through the body-effect, since the transis-
tor threshold is a strong function of substrate bias. The main chal-
lenge is therefore to accurately and efficiently include all the mu-
tual interactions among the substrate nodes, sources and receptors,
which can easily number in the thousands, each potentially coupled
to all the other (or at least to a large number of other) nodes.

When a substrate model is added to the circuit equations, ad-
ditional nodes, needed to model substrate contacts, transistor bulk
nodes, and so forth, are typically added to the circuit equations. In
any event we may always formulate and order the equations such
that we can write the new augmented state vectorvaug as

vaug=

�
v

vsub

�
(5)

wherevsub are the new variables. As substrate coupling is a linear
effect, to describe the computational impact on the above equations
it is sufficient to describe the impact on the Jacobian matrices,C
andG. These matrices are enlarged as

C!Caug=

�
C Ccs

Csc Csub

�
G!Gaug=

�
G Gcs

Gsc Gsub

�
(6)

whereG is the original conductive circuit Jacobian,Gsub represents
coupling among the substrate nodes,Gcs andGsc coupling between
the primary circuit and the substrate parasitics. Similar notation
holds for theC-matrices. In this notation the circuit equations be-
come

d
dt

�
q(v)

�
+

d
dt

�
C Ccs

Csc Csub

��
v

vsub

�
+

�
i(v)

�

+

�
G Gcs

Gsc Gsub

��
v

vsub

�
=

�
u(t)

�
: (7)



The six substrate-related matrices are determined by the model-
ing strategy used. The simplest such strategy is to generate compact
analytical representations of the substrate induced parasitics by ex-
perimenting with simple test configurations consisting of a small
number of contacts [8, 15, 7, 16]. Such models can give good in-
tuition about the underlying physics of the substrate, but cannot
account for complex many-body interactions such as introduced by
intervening contacts, guard rings and other isolation

An alternative approach is to perform a full numerical solu-
tion of the differential equations that describe substrate trans-
port [3, 17, 14, 5]. Many different approaches to this problem
are possible, including finite-difference, finite-element, boundary-
element and related methods. Often the substrate itself is modeled
as purely resistive, meaning that the matricesCcs;Csc;Csubwill con-
tain entries due only to junctions, wells, and other localized cir-
cuitry. They are therefore sparse, and often do not contribute to the
poor computational scaling of the extraction problem to any signif-
icant degree. The matricesGsc;Gcs are also often sparse, represent-
ing the relatively few connections the substrate nodes have with the
external circuitry. In the most general case, however,Gsub is dense.

Both extraction and later circuit simulation is difficult ifGsub is
dense. Extraction is difficult because, for each of theN columns of
Gsub, a numerical field solution must be performed. Various algo-
rithms are known for accelerating the step of extracting the coupling
information pertaining to a single contact. However even the best
approaches still requireO(N) time, resulting in a total complexity
of O(N2), with quite large constant factors. If a denseGsub is used
in a standard circuit simulation, the scaling of the computation time
for simulation is asO(N3). Recently an approach [10] was pub-
lished that claims to reduce the overall extraction time toO(N), but
no guidance was given as to how to approach the ensuing circuit
simulation problem. We address that issue in the next section.

3 Truncated Substrate Models

The most widely used approach to making the dense interconnect
simulation problem tractable is to simply truncate the model by
dropping interactions that are thought to be small. If enough terms
can be dropped out of the matrix, it will become sparse. Particularly
in the case of inductive coupling, ad-hoc matrix approximations can
lead to non-physical, unstable interconnect models, but we will as-
sume for now that the truncation can be safely accomplished, and
concentrate on the implications for simulation accuracy.

Truncation is used at two stages of the substrate analysis pro-
cess. First, arguments about what substrate coupling conductances
are likely to be small are often used to simplify the extraction pro-
cess [16, 17]. For example, to obtain the mutual conductances as-
sociated with a given contact, only a section of layout surround-
ing the contact to a user-specified distance may be extracted. Or,
perhaps only conductances to the bulk and to near-neighbors may
be retained. These assumptions simplify the extraction process be-
cause they drastically reduce the complexity of the problem that
must be analyzed for each contact extraction step. They also make
the circuit matrix sparse. Secondly, once extraction has proceeded,
in order to further reduce the complexity of circuit model that must
be analyzed, conductances that are relatively small may be dropped
from the matrix entirely.

Often, simple truncation procedures can be useful in analyzing
the lowest-order effects of substrate parasitics. However, the per-
formance of some analog circuits can be quite sensitive to parasitic
effects, noise, and unwanted feedback paths. For example, an RF

100
1k

10k

100 100
1k

truncated
resistor

100
1k

10k

100 100
1k

0.1nH

0.1ohm

truncated
resistor

Figure 1: (a) simple substrate contact network. (b) with low-
impedance backplane contact and grounded center tap.

front-end may be sensitive to microvolt noise levels and have 80-
100dB of gain through the signal path. In such a high-gain system
100-120dB of isolation may be required to avoid forming possi-
bly unstable feedback paths. Verifying correct operation of such
sensitive circuits requires highly accurate estimates of how much
isolation is actually available.

The problem with truncation-based strategies, and other simpli-
fied models, is that is is difficult to predict, a-priori, when they are
likely to be successful and when they will fail. Partially this is be-
cause, in realistic layouts, with irregular geometries and shapes of
widely varying sizes and aspect ratios, determining the critical cou-
plings is not straightforward. But it is also true that which couplings
turn out to be “important” depends on circuitry that is outside the
purview of the extraction tool.

A simple example is shown in the top of Figure 1. If the nodal
conductance matrix for this circuit,Gsub, is inspected, the entry
corresponding to the 10kΩ coupling resistor will be observed to be
very small compared to the other matrix entries. It is a common
practice to truncate such resistors. For this simple circuit, virtually
no change (less than 1%) will be observed in the amount of coupling
between the first and the third node. Therefore, it might seem rea-
sonable to discard this resistor during or after the extraction process.
However, consider what occurs if some noise-prevention strategies
are applied to this network. Suppose that first a low-impedance
path to ground is provided for the substrate bulk or backplane, as
shown in the lower portion of the figure. A substantial reduction
in the amount of coupling between the first and third nodes will
be observed. If that does not provide sufficient isolation, the sec-
ond node might also be connected to a reference (the inductance
shown above models the effect of the power/ground and/or package
network). The second node might in fact represent a ground ring
inserted specifically for this purpose. In this situation, truncating
the 10k-Ω resistor can result in over-estimating the amount of iso-
lation (under-estimating the coupling effects) by an order of magni-
tude. The reason is simple: in the absence of any other circuitry, the
dominant one-three coupling path is from node one through a 100Ω



resistor to the backplane, then back through another 100Ω resistor
to node three. The second most important path, with ten times the
impedance, is through 1kΩ resistor to node two, then similarly to
node three. But once these paths are removed from consideration by
providing low-impedance paths to stable references, then only the
formerly-small direct coupling 10kΩ resistor is left as the dominant
path.

It should be clear then that the problem with a-priori estimation
of the importance of parasitic elements is that the dominant noise
coupling path potentially depends on all the connecting circuitry, in
particular power/ground and package networks, behavior and con-
nectivity of intervening structures such as guard rings, and loading
on other substrate nodes (such as capacitive decoupling from tran-
sistor bulk nodes). The circuit context is also important. Small cou-
plings to sensitive areas are more important to model accurately that
large couplings in relatively noise-immune circuitry. In a large cir-
cuit, with each node having hundreds or thousands of possible cou-
plings, there is the additional complication that many small noise
contributors can sum to a non-negligible value. The net result is
that truncation can have a poor tradeoff between speed and accu-
racy, when accuracy is properly measured.

On the other hand, if circuit context is available at the time of ex-
traction, it is possible to exploit the information to reduce the com-
plexity of extracted networks. For example, if information about
the package and power/ground networks is available before extract-
ing the substrate network, it is possible to estimate the strength of
the indirect paths (such as between two nodes via the packplane or
a package pin) in relation to the direct substrate conductance con-
tribution. Direct substrate paths that are very weak in comparison
(i.e., have conductance small compared to the divider circuit formed
by the indirect parallel paths) can then be safely ignored.

4 Full Substrate Models

4.1 Multi-Level Representation
By this point it should be clear that any strategy that relies on ma-
nipulations of the fullGsub matrix is not likely to be efficient. Re-
cently [10], it was proposed that representing the substrate conduc-
tance matrix in a multi-level, wavelet-like, basis can be more ef-
ficient. Adopting the notation of [10], the substrate conductance
matrix is represented as

Gsub=QĜsubQT (8)

whereĜsub is the conductance matrix in the new basis, andQ is the
orthonormal change-of-basis matrix. It is argued that, for a given
level of accuracy,Ĝsub is much sparser thanGsub. By construction,
Q turns out to be sparse (it can be shown to haveO(nlogn) entries).

In our experience not all of the heuristics for “sparsifying”, or
truncating,Ĝsub proposed in [10] are robust, (in particular, well-
separated wavelet basis functions do not always have vanishing in-
teraction, particularly on problems with multiple geometric scales
present, such as the example discussed in Section 5) but the multi-
level analysis offers greater flexibility than the traditional basis in
constructing approximate representations. This increases the like-
lihood that a matrix representation can be found that is simulta-
neously sufficiently sparse and sufficiently accurate. In principle
the multi-level basis can compute “all to all” interactions in nearly
optimal complexity by attacking the problem hierarchically. Inter-
actions between separated regions are lumped into a few vectors of
the basisQ that cover large areas, whereas in traditional truncation

approaches such couplings would be neglected altogether. Further,
because the multi-level basis naturally separates substrate interac-
tions by spatial scales, it may also provide a systematic way to pro-
vide coarse resolution of the substrate in some areas, without ne-
glecting any important noise generators, while simultaneously pro-
viding fine resolution in sensitive areas.

No strategy is given in [10] for circuit simulation, since while
Ĝsub is sparse in the wavelet basis, it is dense in the basis of the
original circuit equations.

4.2 Implicit Integration with Iterative Linear
System Solution

The obvious way to include the multi-level substrate representa-
tion in circuit simulation is to use an iterative linear solver, such
as GMRES, in the inner loop of Newton’s method. The algorithm
would only require matrix-vector products withQĜsubQT , which
can be accomplished onO(N logN) time. If the GMRES method
converges rapidly, this method is then potentially of near-optimal,
O(N), complexity. In practice, there are two difficulties. First, an
adequate preconditioner must be devised. A preconditioner is a ma-
trix P constructed such thatP is an approximation toJ�1, the Jaco-
bian inverse, but a matrix-vector product withP can be computed
quickly, ideally inO(N) time. Instead of solvingJx= b, GMRES is
applied to the equivalent systemPJx= Pb. The hope is thatP is a
sufficiently good approximation that GMRES can be guaranteed to
converge rapidly. It turns out to be worthwhile to defer discussing
preconditioner construction until after the next section.

The second problem is that it may be necessary to converge GM-
RES to very tight tolerances, to avoid losing the stability of the in-
tegration scheme or corrupting other properties of the circuit equa-
tions (such as anomalies caused by loss of strict current conserva-
tion). Therefore, while this strategy can be attractive in terms of its
asymptotic complexity, in practice it may have large constant fac-
tor costs that may make it slow. Therefore we seek other ways to
leverage efficient substrate representations.

4.3 Semi-Implicit Integration
An alternative to accelerating the computations associated with the
implementation of an implicit integration scheme is to change the
integration scheme itself. Consider for the moment the problem
of solving a linear, time-invariant system of ordinary differential
equations,

dx
dt

= Ax+u(t): (9)

The backward-Euler discretization is

xn+1�xn

h
= Axn+1+u(tn+1): (10)

In the backward-Euler (and other Gear discretizations), the key step
is solution of a linear system with coefficient matrixI=h�A. If A
is dense, this is difficult. The idea of a semi-implicit matrix is to
devise a method that is not fully implicit, but implicit enough to
retain sufficient stability [2, 18]. If we split the matrixA into two
parts,Ai (for implicit) andAe (for explicit), A= Ai +Ae, a general
Euler-based semi-implicit scheme is

xn+1�xn

h
= Aixn+1+Aexn+u(tn+1): (11)

One can think of this as a combination of forward- and backward-
Euler, from which it should be obvious that this scheme is still first



order accurate. In the most common semi-implicit schemes, the
Jacobi-Euler scheme [2, 18],Ai is chosen to be the diagonal ofA,
thus making the Jacobian,I=h+Ai , diagonal and trivial to invert.
If A is connectedly diagonally dominant (this occurs in important
cases, such as RC networks and finite difference discretization of
diffusion equations), this scheme retains the A-stability (for a stable
A, it is stable for any choice of timestep) of the original backward-
Euler method. Such schemes are sometimes used for the solution
of certain partial differential equations.

The simplified linear algebra does not come without a price,
however. Although stability properties of the methods are often
good, stability may hold for a weaker class of systems that for the
fully implicit methods. Semi-implicit methods also suffer from a
solution artifact that can restrict their usefulness. The popular semi-
implicit methods (i.e., the diagonally implicit ones) are known to
have a smallerdomain of dependencethan fully implicit methods.
In the partial differential equation context, this means that informa-
tion can propagate (for example, from the boundaries) across the
solution domain only at a finite speed that is related to the size of
the timestep. If the timestep is sufficiently large that this speed is
far from the speed at which information propagates in the physi-
cal system, an error is introduced. In analog circuit simulation, the
practical impact of this problem is that semi-implicit methods can
exhibit a non-physical, numerically introduced, excess delay in the
computed waveforms. For a given timestep, semi-implicit methods
are generally less accurate than their parent implicit method.

The key to effectively applying semi-implicit methods to the sub-
strate equations, Eq. 7, is to recognize that a more effective matrix
partitioning can resolve some of the accuracy and domain of de-
pendence problems of the semi-implicit methods. In this paper, we
will consider splitting only the dense portion of the substrate matrix
Gsub. This leads to the general Euler-based semi-implicit integra-
tion scheme

1
h

�
q(vn+1)�q(vn)

�
+

1
h

�
C Ccs

Ccs Csub

��
vn+1

�vn

vn+1
sub �vn

sub

�

+

�
i(vn+1)

�
+

�
G Gcs

Gcs Gsub;i

��
vn+1

vn+1
sub

�
+

+

�
0 0
0 Gsub;e

��
vn

vn
sub

�
=

�
u(tn+1)

�
: (12)

Different specific schemes can be obtained by varying the partition-
ing of the matrixGsub, the general goal being to make the implicitly
treated pieceGsub;i sparse enough so that the overall circuit Jaco-
bian can be factored efficiently, but also to retain enough global
information to resolve the domain-of-dependence problems of the
semi-implicit discretization. The reader will note that the imple-
mentation of this technique has strong similarities to the imple-
mentation of preconditioned GMRES. It should be clear that any
given matrix partitioning can be used both as a preconditioner to
GMRES and also defines a semi-implicit integration scheme. Not
surprisingly, we find that a partitioning that makes for an effective
semi-implicit scheme also produces an excellent preconditioner for
GMRES. We shall see, however, that the two methods can have
different numerical properties and error/effort tradeoffs.

We have experimented with several partitioning strategies. Three
are presented in this paper. All three keep the diagonal portion of
Gsub in the implicit part of the matrixGsub;i , in order to preserve
the desirable stability properties of the diagonally-implicit methods,
which are known to be sufficiently stable. Because we will retain
part of the off-diagonal matrix as well, if anything our methods
should be more stable.
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Figure 2: Truncated model with 1Ω backplane impedance to
ground.
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Figure 3: Truncated model with 1kΩ backplane impedance to
ground.

The first method simply chooses a threshold, similar to naive
truncation, and retains the largest entries ofGsub in the implicit
part of the matrixGsub;i . The difference from naive truncation, of
course, is that the remaining matrix entries pass to the explicit part
Gsub;e of the integration scheme, instead of being discarded entirely.
The matrixGsub;e is represented explicitly.

The second method uses the wavelet-sparsified matrixĜsub, and
is based on taking theq� q principle submatrix ofĜsub that has
largest norm, for some smallq, to constructGsub;i . Call thisq�q
submatrixĜq. Then we have

Gsub;i =Q1ĜqQT
1 ; Gsub;e= Q

�
Ĝsub� Ĝq

�
QT : (13)

Both Gsub;i and Gsub;e will be dense. In the case ofGsub;e, this
presents no difficulty, as only a matrix-vector product withGsub;e
is required to compute the right-hand-side needed to implement the
semi-implicit scheme, and all the constituent pieces (Q;Ĝsub) are
sparse. However, we must re-formulate the semi-implicit scheme
slightly to exploit to avoid manipulating a denseGsub;i .

Suppose we must solve a linear system,
�

A B1
B2 Q1ĜqQT

1

��
x1
x2

�
=

�
b1
0

�
(14)



with Q1 andĜq low-rank. This may be reformulated as the equiv-
alent, larger system by introducing the auxiliary variablesx3 and
solving

2
4 A B1 0

B2 0 Q1
0 QT

1 �Ĝ�1
q

3
5
2
4 x1

x2
x3

3
5=

2
4 b1

0
0

3
5 : (15)

It should be recognized that the first system is the Schur comple-
ment of the second with respect toG�1

q . The semi-implicit dis-
cretization may be re-formulated in a similar way to preserve spar-
sity.

The third uses the finest-level basis functions to construct a pre-
conditioner. This gives a much largerĜq andQ1, but it turns out that
because the fine-level basis functions have only short range interac-
tions, the implicit part of this partitioning is sparse in the original
basis.

It is also possible to include the entire wavelet basis directly in
the implicit part of the equations, without manipulation ofĜ�1

sub.
This will lead to fully implicit methods, not semi-implicit ones, but
we discuss it in this section because of the similarity of implemen-
tation to some of the semi-implicit methods. Proceeding by analogy
as in the above example, if the matricesQTB2 andB1Q are sparse,
then we may solve

�
A B1Q

QTB2 Ĝq

��
x1
x2

�
=

�
b1
0

�
(16)

directly. We may also form the (even larger) equivalent system
2
664

A B1 0 0
B2 0 Q 0
0 QT 0 I
0 0 I Ĝq

3
775

2
664

x1
x2
x3
x4

3
775=

2
664

b1
0
0
0

3
775 : (17)

which is guaranteed to be sparse, as long asA;B1;B2, andĜq are.Q
will be sparse by construction. A similar approach was used in [1].

5 Computational Results

For the computational studies in this paper, we have used a scal-
able mock-up of a situation where it is desired to assess the noise
coupling between two well-separated objects consuming relatively
large areas (these might be, for example, two spiral inductors in
an RF design) in a sea of other, relatively unrelated, objects (e.g.,
transistors). Each of the intervening objects is capacitively cou-
pled to a power/ground network. The power/ground network is
modeled as a mesh of resistors, with the resistor values computed
based on length of the mesh edge using parameters typical of up-
per layers in an aluminum interconnect process. The power grid
is tied to ground through a lossy inductor intended to model pack-
age impedance. The number of objects (thus nodes in the substrate
model) can be scaled by adjusting the size/density of the contacts
in the intervening area. All substrate and other parasitic models
were pre-computed and in this section when we quote computa-
tional costs, they pertain purely to the circuit simulation stage. For
time-domain simulation, the “aggressor” node is driven with a unit-
valued 1GHz sinusoid using a 100Ω impedance driver. Implemen-
tation was done using MATLAB’s sparse linear algebra, so simula-
tion times should be considered in a relative sense only.

First we demonstrate the behavior of truncation-like algorithms.
For purposes of illustration, we have followed the simplest strat-
egy, discarding coupling conductances smaller than a threshold. We

have chosen several values for the thresholdε, ranging from a rela-
tive 5% of the largest entry inGsub (that is, we discard any resistor
more than twenty times the smallest substrate resistor) down to rel-
ativeε = 2e�4. In Figures 2 and 3 we show the results. We have
also shownρ, defined to be the percentage of entities inGsub that
are non-zero.ρ = 100% corresponds to a completely full matrix.

Figure 2 was performed with a low impedance from backplane
to ground. The behavior is qualitatively similar to the small ex-
ample discussed in Section 3, but on a much larger, more complex
scale. The first point is that, on this couplings path, aggressive prun-
ings are not accurate. Second, the waveforms approach the correct
solution only slowly as the density of the matrix increases. This
indicates a poor tradeoff of accuracy for computational cost. The
final curve is close to the exact answer, but by that point, the matrix
is nearly full.

Figure 3 shows the opposite case, high impedance from back-
plane to ground. As we might expect from the discussion in 3, the
noise levels in this configuration are considerably higher. We also
observe that truncation performs relatively well. This example il-
lustrates, though, the difficulty of making generalizations about the
effect on circuit behavior of ad-hoc matrix approximations. In con-
trast to the last example, where truncation underestimated the noise
(which seems expected since fewer couplings paths are present), on
this example, truncation causes the noise to be over-estimated.

Next we show the time-domain behavior of the semi-implicit
methods. Figure 4 shows the solution obtained from the diagonally-
implicit method. A phase lag error of about 20Æ is clearly notice-
able. The first wavelet-implicit method discussed above, using the
largest principle submatrix, is also shown. The solution is very ac-
curate relative to the baseline backward-Euler method. It appears
that well-chosen semi-implicit methods may have promise. The
relevant question is, however, how do they compare to the other
alternative, iterative solves with GMRES? That is, all other things
being equal, using the same matrix partitioning, is is better to use
GMRES iterative solves on a fully implicit scheme, or use semi-
implicit methods? Figure 5 attempts to answer this question.

For this model, we solved the equations to high accuracy us-
ing the full substrate coupling matrix. In Figure 5, we show cost-
error figures (the change in cost is to to changing the number of
timesteps; in addition to discretization error this affects how well
the semi-implicit partitionings approximate the long-range cou-
plings) for the various schemes. We have not shown direct LU
decomposition or partitionings based on direct truncation – though
on the small example that was used to generate these curves, the
performance is competitive, and semi-implicit partitionings based
on direct truncation can be competitive for fairly large examples –
because our intent is to compare the properties of methods that are
scalable to large circuits.

First, we note that the diagonally-implicit algorithms are not
competitive. This is primarily due to the phase error effects dis-
cussed earlier. The wavelet-based semi-implicit schemes both have
good cost/performance tradeoffs. GMRES based schemes generally
are shifted right along the cost axis. In one case, some anomalies
in the GMRES curves are evident. In other examples, we have ob-
served that sometimes GMRES can be competitive with, or superior
to, the semi-implicit schemes at high accuracies. They are rarely
faster, however. Conversely one might say of the semi-implicit
schemes that they are fast, but lack precision. The fully-wavelet-
implicit scheme is also shown; for this example, it appears to be in-
termediate in cost/accuracy between GMRES and the semi-implicit
methods.

With the preconditioners used in this paper, GMRES converges
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Figure 4: Backward Euler (solid line), diagonally-implicit Euler
(dashed-dot line) and wavelet-implicit Euler (dash line).
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Figure 5: Error versus computation time for various scalable inte-
gration methods. Wavelet : principle-submatrix wavelet partition-
ing. NN: near-interaction wavelet partitioning.
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Figure 6: Waveform computation showing anomalies due to incom-
plete GMRES converge. Relative convergence tolerance for GM-
RES was 10�4.

within ten or twenty iterations. This indicates a preconditioner that
is extraordinarily effective. However, even with this very rapid
convergence, two circumstances conspire to raise the constant fac-
tors of the overall implicit-integration-with-iterative-solves method.
First, the error properties of the method do not degrade gracefully
as the GMRES convergence tolerance is relaxed. This can be seen
in Figure 6, where the time-domain solution from the last point of
the curve for cost/error (Figure 5) of the preconditioned GMRES
iteration using the substrate matrix diagonals. The reason for the
non-monotonic error curve is now clear : for this small timestep,
the Jacobian matrix was sufficiently ill-conditioned that converging
GMRES to a relative tolerance of 10�4 was insufficient to produce
a smooth curve. GMRES can be converged to tighter tolerances;
in this case the cost curves move even further along the cost axis.
Generally, the smaller the timestep, the tighter the GMRES toler-
ance must be. Practically speaking, this means that error control
when using GMRES is often done by being very conservative. In
contrast, the semi-implicit methods appear to be have some ability
to control error by timestep adjustment, and thus offer a smoother
cost/performance tradeoff.

6 Conclusions

In this paper we presented some techniques for simulating large
strongly-coupled interconnect problems. Outright matrix trunca-
tions in the original basis are not effective in reducing circuit sim-
ulation complexity, while preserving accuracy, if the substrate net-
work undergoes non-trivial interactions with external circuitry. We
presented a family of semi-implicit integration schemes, and con-
trasted their behavior with related iterative solution techniques. At
very high accuracies, implicit integration schemes with iterative
solves seem to be preferred. It appears that semi-implicit integra-
tion methods can be fast at moderate accuracy levels, if an effective
partitioning is chosen. We believe these schemes are worthy of fur-
ther investigation.
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