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ABSTRACT

More aggressive design practices have created renewed interest in
techniques for analyzing substrate coupling problems. Most previ-
ous work has focused primarily on faster techniques for extracting
coupling resistances, but has offered little help for reducing the re-
sulting resistance matrix, whose number of nonzero entries grows
quadratically with the number of contacts. Wavelet-like methods
have been applied to sparsifying the resistance matrix represent-
ing the substrate coupling, but the accuracy of the method is very
sengitive to the particulars of the contact layout. In this paper we
show that for the substrate problem it is possible to improve con-
siderably on the wavelet-like methods by making use of the algo-
rithmic structure common to the fast multipole and wavelet-like
algorithms, but making judicious use of low-rank approximations.
The approach, motivated by the hierarchical SVD agorithm, can
achieve more than an order of magnitude better accuracy for com-
mensurate sparsity, or can achieve much better sparsity at commen-
surate accuracy, when compared to the wavel et-like algorithm.

1. INTRODUCTION

Designers of analog blocks that are incorporated in mixed signal
integrated circuits are making more extensive use of layout tech-
niques to block signal interference from the substrate. In order to
assess the effectiveness of these techniques, not only must extrac-
tion tools be devel oped to accurately compute substrate coupling[1,
2, 3,4, 5], but the extracted model must be sufficiently efficient that
it can be included in acircuit-level simulation of the analog block.
The difficulty is that a complicated analog block might have more
than 10,000 contacts to the substrate, and a naive representation of
the substrate coupling conductance matrix would have more than
100 million entries.

It is possible to reduce the number of coupling conductances by
"thresholding”, that is by removing al the coupling conductances
smaller than a fixed threshold. In alarge substrate, one might ex-
pect that geometrically distant contacts would have small coupling,
but this is often not the case. If the substrate is made of a thin
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top layer of relatively low conductivity and lower layers of higher
conductivity, a situation desirable for latchup suppression, distant
contacts can still have significant coupling. For these problems, an-
other approach is needed to find an efficient representation of the
coupling.

The problem of how to find a sparse representation of a dense
matrix, like the coupling conductance matrix, has received consid-
erable attention in the last decade. There are methods that exploit
analytic properties of the matrix entries, like the fast multipole al-
gorithms developed for the fast integral equation solvers[6], and
methods that exploit a” near-convolutional” structure to the matrix,
like the precorrected-FFT methods[7]. The conductance matrix has
neither of those properties, because the matrix entries depend glob-
ally on the distribution of contacts. For this reason, general mul-
tiresolution, or wavelet-like, methods were applied to the substrate
sparsification problem[8, 9].

In this paper we show that for the substrate problem it is possible
to improve considerably on the wavelet-like methods by making
use of the algorithmic structure common to the fast multipole and
wavelet-like algorithms, but making judicious use of low rank ap-
proximations. The approach, motivated by the hierarchical SVD
algorithm [10], can achieve more than an order of magnitude bet-
ter accuracy for commensurate sparsity, or can achieve much better
sparsity at commensurate accuracy.

Developing an efficient extraction algorithm based on low-rank
approximation is significantly more difficult for the substrate cou-
pling problem than for potential-from-charge problems. The added
difficulty arisesin the substrate coupling problem because one must
rely on substrate analysis algorithms (i.e. finite-difference or fast
integral equation methods) that can compute contact currents due
to an entire set of contact voltages, but cannot efficiently compute
theindividual sensitivity of a single contact current to a single con-
tact voltage.

In the next section we begin with a motivating example, and then
in Section 3 we present the low-rank algorithm. Results on severa
examples are presented in Section 5 and conclusions are given in
Section 6.

2. SOME INTUITION

In our setting, the substrate model is purely resistive (with layers
of different conductivities), and the voltage (v) to current (z) rela-
tion is therefore linear, denoted by Gv = 7 where G is caled the
conductance matrix. The goal is to obtain an efficient representa-
tion of G; the tool we have is a solver which, by discretizing the
layout geometry, gives Gv for any particular v.

We begin by trying to give some intuition for why an approach,
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Figure 1. Simple example contact layout

such as ours, which uses information from applying G to form the
new basis for the voltages and currents, may be more effective than
one which simply relies on geometric information. We would like
to find abasis function, nonzero on the two contacts on the left side
in Figure 1, such that the current response at the four right-hand
side contacts is very small. Geometric moment-matching tech-
niques (the technique of [11, 8, 9]), applied in their simplest (order
0) form, require choosing the two voltages such that their integral
over the 2 left-side contactsis 0. Since the area of the larger contact
(call it contact 2) is 2.25 the area of the smaller contact (contact 1),
this suggests v = (—2.25 1)" (-2.25 volts on contact 1, 1 volt on
contact 2) as a basis function.

Unfortunately, the basis function’s response at the left-side four
contactsis not very small. We computed G using the our solver for
the contact layout of Figure 1 and for a two-layer substrate (thin
high-resistivity layer on top of a low-resistivity layer). Forming
the interaction matrix G, giving current responses at contacts 3
through 6 from voltages at 1 and 2, we get (for this particular ex-
ample)

5.80 11.06 1.99
Gow— 425 812 2.25)2 1.45
P 8.74 16.82 -1 2.84
5.77 11.12 1.87

However, looking at G, we observe that the second column is
very close to a multiple (1.92) of the first column—that is, the
current responses at 3,4,5, and 6 to unit voltage on contact 2 are
very close to 1.92 times the current response at 3,4,5, and 6 to unit
voltage on contact 1. This suggests using (—1.92 1)" as our basis
function. Infact, doing this gives Gpv = (—.08 — .04 .04 .04)", a
much smaller faraway response.

So, by using information obtained from applying G, we were
able to find a much better basis function, one whose faraway re-
sponse is close to zero and can be zeroed out without too much
loss of accuracy. Our agorithm is a generalization of this idea:
instead of just using information from geometry, use information
from carefully chosen applications of G to form the new basis.

3. THEALGORITHM

3.1 Overview

The algorithm, like others which have been proposed for thisand
similar problems [9, 10] is multilevel, and we now define this more
precisely. The number of contacts is denoted by n. For simplicity
assume the substrate surface is a unit square. The levels start from
0, and on level i thereisagrid of 2 x 2¢ squares, each with side-
length 2. The finest level mazlev is chosen so that there are at

most asmall constant number of contacts per square. We denote by
#(s) the number of contactsin a particular square s. The parent of
asquare s on level [ > 0 isthesquare p onlevel [ — 1 containing s,
and s isachild of p. In general, on agiven level, the algorithm will
deal with interactions between squares which are not too far apart
(thiswill be defined more precisely later).

The agorithm is divided into two phases. First, a multilevel row
basis representation is obtained by a process which ascends through
the levels from coarsest to finest. The result is a representation of
the coupling operator which is approximately O(n log n) in both
storage cost and cost of applying the operator to a vector—that is,
getting currents on all n contacts from voltages on al n contacts.
This part of the algorithm gives, by itself, avery efficient and accu-
rate way to apply G.

In order to further improve performance, in the second phase,
we use the multilevel row vector representation obtained in the first
phase to create atransformed basis () for the voltages and currents,
in which the coupling interaction is numerically sparse: that is,
QGQ' isnumerically sparse. Furthermore, we know enough a pri-
ori about the sparsity structure that only approximately O(n log n)
entries of QG Q' need to be computed at al. This phase descends
through the levels from finest to coarsest.

We describe more precisely the goals of each phase and how they
are achieved in the next sections.

3.2 Coarse-to-fine sweep

The goal of the first phase is to form amultilevel row basis rep-
resentation of G. More precisely, consider an interaction matrix
G 1, which isapplied to voltages in square s and gives currentsin
theinteractive squares I, of square s. In general, following Green-
gard [12], we use the notation G, to mean the operator which
takes alength #(a) vector v of the region-a voltages and returns a
length #(b) vector 4 of the region-b currents resulting from putting
the voltagesin v on the contactsin region a and zero voltage on all
other contacts. That is, G.pv = ¢ and G has #(a) columns and
#(b) rows.

The interactive sguares of a level-I square s are the squares on
level [ which are separated from s by at least one square but whose
parent squares are neighbors (adjacent or have a common corner).
Thelocal squares L; of alevel-l square s are s itself and its neigh-
borson level 1. See Figure 2.

The important point is that the interaction matrix is numerically
very low-rank. Specificaly, thereis a small number (denoted c¢) of
rows, each of which isalinear combination of rows of G,r,, such
that these rows form a basis (to a close approximation) for the row
space of Gsr,. (In our examples, we've found that choosing ¢ =
6 rows is a close enough approximation for very good accuracy.)
Write down these few rowsin amatrix V, (c rows, #(s) columns).
Any vector v of voltagesin square s which is orthogonal to V; (i.e.
Viv = 0) will have Gsr,v =~ 0, because all the rows of G, are
approximate linear combinations of rows of V. Thus, we can get
an accurate representation of Gsr, by projecting v onto the rows
of V) and knowing the responses to the ¢ voltage vectors given by
rows of V,—in matrix notation the responses are G, V,. If we
construct V, so that its rows are orthonormal, we get a compact
representation of our approximation:

Gsi, = (GsISVS)VS’~
Note that using this representation gives a dramatic efficiency
improvement over using the dense G, if the number of contacts
in s is large: computing Gsr,v directly requires #(s) - #(Is)
multiply-add operations, whereas applying (Gsr, V)V, requires
only 2¢#(I,) multiply-adds. (We will refine this idea to improve



Figure 2: Interactive (labeled |) and local (labeled L) squares
of shaded square: next-coarser level squares shown with bold
lines

accuracy later.) So the goal isto form the row basis representation
of Gsr, for every square and its interactive squares at every level,
consisting of V' (row basis) and G,r, Vs (responses to row basis).

Coarsest level

For this phase, the coarsest level (which isthe one we start with),
ischosen to be ! = 2. (The reason is that using our definition,
for squares on levels less than 2, there are no interactive squares.)
There are 16 squares on this level. We fix a square s, and show
how to form the row basis V; for G,r,. One approach is to take
atruncated singular value decomposition (taking only the largest ¢
singular values, or taking only singular values bigger than athresh-
olde)

Ger, = USV'

where the number of columns of U equals the number of rows of V/
equals the number of singular valueskept. Thenset V; = V'. Now
by writing Gsr, ~ (UX)VY, it's clear that V; is an approximate
row basisfor G, .

The problem with this approach is that it requires obtaining the
whole dense G;r,, which would require a number of black-box
callsequa to the number of contactsin the square, for every square.
We want to keep the number of black-box calls proportiona to
log n. In order to achieve this, we use a version of sampling, sim-
ilar to [10]. The ideaisto get afew sample rows of G, and get
the row basis from the svd of the sample rows (actualy, for us a
sample row isalinear combination of rows of G;r, ). Specificaly,
if we pick a small number (say 2¢) of column vectors, each with
one entry for each contact in I, and put them in amatrix of sample
vectors Ss, the matrix of sample rows is S.Gsr.. Notice that by
symmetry of G' and transpose properties,

S.Gs1, = (Gr,5Ss)".

Thus it suffices to obtain G1,sSs, which can be done with 2¢
black-box solver calls (one for each column of S;). In fact, sample
vectors can be shared among different squares on a given level, by
choosing each sample vector to have support in exactly one square.
Then for asquare s, the sample vectors used are those with support
intheinteractive squares of s. In our implementation, 1 or 2 sample
vectors per level per square works well.

Then we take the truncated svd S, G5, = USV' and set V, =
V'. V! isour row basis, and with < ¢ additional black-box calls,
we obtain G,r, V. (In fact, we actually have the responses to V;
everywhere, and in particular at the interactive and local squares
together. We denote the interactive and local squares together by

P,. We have G, p, V5, which will be important on the finer levels.)

Finer levels

The goal for the finer levels is the same: to obtain a small row
basis V; for each square s to represent the interaction of square
s with the interactive squares I, of s. (Notice that even as the
number of sguares multiplies on the finer levels, the number of
interactive squares per square is bounded by a small constant—
this is part of the reason for the low-rank agorithm’s efficiency
in deriving the representation.) The same approach of choosing 1
or 2 sample vectors per square and sharing these among the source
squaresto form G, for every s that was described for the coarsest
level isused here.

However, the difference from the coarsest level is in how the
sampl e vector and row basis responses are cal cul ated in each sgquare.
If this were done in the obvious way, by calling the black-box once
per sample vector and row-basis vector in each square, the resulting
algorithm would be very inefficient, because the number of squares
on the finest level is O(n), so O(n) solves would be needed.

To reduce the number of solves, we combine solves as described
in [9]. For asquare s on level I, avector v, (length #(s)) of the
voltages in that square can be expressed as a sum of two vectors
in the parent square p as follows. First extend v, to a vector v of
voltages in p (length #(p)) in the natural way, that is by copying
the voltages in v, to the entries corresponding to square s in v and
putting zerosin the entries corresponding to the other three children
of p. Then:

v=VVou+ (I =V, V,)v @

Now

Gpp,v = (Gpp, Vp)v;;” + Gpp, (I — V},Vp')v.

The reason we need to show how to obtain the current responses
in P, which contains the local squares as well as the interactive
squares of s, is that the first term on the right relies on having
Gpp, V), from the parent level, which we do, since P; is contained
in P,. I, isnot contained in I,,, so the agorithm wouldn’t work if
we substituted I for P above.

The first term on the right is computed from the next-coarser
level (I — 1) row-basis representation. The second term is G, p,
appliedto (I —V,V,)v, and (I — V,,V,,)v isorthogonal to the level
! — 1 row-basis in square p. Thus we expect that G(I — V,V,)v
will be nearly 0 outside local squares of p. Asdescribed in[9], itis
possible to combine black-box applications of G for many vectors
into one solve under these circumstances, and to keep the number
of solves per level constant. In this way we compute the second
term.

Adding the two terms we obtain the responses to sample vectors
with support in square s at the interactive squares I(s). We use the
same technique to obtain responses to the row basis obtained on
level [ at theinteractive and local squares P(s).

Finest level

At this point, we have represented all of G corresponding to
squares which are interactive (thisis a symmetric relation) at some
level. The only part of G that remains to be computed is the inter-
actions of local sguares on the finest level. In fact, for each finest-
level square s we already have the local responses to the row-basis
vectors V. Denote by U; a matrix the columns of which form a
basis for the vectors in s which are orthogonal to V;. (If V; has
a columns then U, has #(s) — a columns.) The combine-solves
technique is used to obtain local responses to the U;. Since any
vector v with support in square s can be written as a sum of avec-



tor in V; and a vector orthogonal to V; (that is, in Us), this gives
the complete local interaction for the finest level.

3.3 Applying the operator

On each level, for each square s, we now have a low-rank rep-
resentation of the current response in the interactive squares due to
voltagesin s given by (Gsr, Vi)V, . It can be applied quickly (lin-
ear in the number of contactsin I,). However, we gain asubstantial
improvement in accuracy by refining this technique. For the refine-
ment, we consider the interaction between two interactive squares
on a given level, denoted by G4 where s is the voltage source
square and d isthe sguare where the current is being measured.

Since G54 just restrictsthe contacts at which current is measured,
compared to G 1, , we know that because Gs1, =~ (Gsr1,Vs) V3, it's
asotruethat G4 ~ (GsaVs)V; . (Wehave G,V becauseit'sjust
asubset of the rows of G,1,V5.)

We claim that

Gsa = ViViGsq

as well, and we use this to refine the approximation. Note that we
have V; since we have arow basis for every square at every level.
To justify the claim, observe that V; is an approximate row basis
for Gus = G';; by symmetry, and thus it's an approximate column
basis of G,4. So, writing

ViV Gsav = (ViV))(Gsav),

we see that V;V,; G4 is the projection of the exact Gs4v onto the
(approximate) column space of Gs4. But Gs4v isalinear combi-
nation of the columns of G54 anyway, so the projection is accurate
to the extent that the columns of V;; span the columns of G4. The
approximation for G4 is obtained as follows:

Gsa = GuaViV] +Gu(I—-VV))
GsaViVy + VaVaGea(I =V, V)
= (GuaVi)V; + Va(GasVa) (I — Vi V)

A similar observation applies to the decomposition step described
in the previous subsection (Equation 1). This is analogous to the
improvement in accuracy gained in wavelet techniques [9] by not
dropping interactions between fast-decaying wavelet basis voltage
functions and standard basis current basis functions, but instead
dropping only wavel et-wavel et interactions.)

If we sum up the interactions between each square and its inter-
active sguares on every level, this covers everything but the local
interactions at the finest level, which we have a complete represen-
tation for (discussed at the end of Section 3.2.)

Q

3.4 Fine-to-coarse sweep

In this part of the algorithm, the goal is to use the row-basis rep-
resentation just obtained to obtain arepresentation which iswavel et-
like in structure [11, 9]. That is, we obtain a sparse orthogonal
change-of-basis matrix and a sparse approximate G,, which gives
the conductance matrix in the new basis,

G = QG.Q.

Thisis asimpler representation to work with and has the advan-
tage that further sparsity in G, can be obtained by thresholding out
small entries, trading off the better sparsity for decreased accuracy.
It also makes comparisons to previous work [9] possible. Because
we have the row basis representation to work with, no further calls
to the black-box solver are needed in this phase.

On each level, starting at the finest, we construct fast-decaying
and slow-decaying basis functions in each square. Denote by T;

and W, the matrices whose columns are the fast- and sl ow-decaying
basis functions respectively. That is, the current response to the
fast-decaying basis functions in a square s should be close to 0 out-
sidethelocal squares of s, and the wholebasis (columns of [T, W])
will be orthogonal.

The finest level is very easy: for a square s on the finest level,
W, consists of the row basis for s; i.e. Ts = V5. The columns of
T, form abasisfor the orthogonal space of W, i.e. Ts = U, inthe
notation of the “finest level” discussion of Section 3.2.

Coarser levels

For each parent square p on level [, theideaisto recombine slow-
decaying basis functions from the level-I + 1 children of p to form
many fast-decaying and some slow-decaying basis functions in p.
Thisisdone using the singular value decomposition. Let X,, bethe
matrix whose columns are the columns of ws, , ws,, ws,, aNd ws,
for each of the four children s1, s2, s3, s4 Of p. Take the svd of
Gypr, Xp, and set W), and T}, to sections of V' as shown:

— r_ EIarge 0 W,
Gpr, X, =UXV =U < 0 Samal 7 )

p
Choose the number of columns of W, equal to the number of
singular values in ;.4 (i.€., the number of large singular values
according to whatever threshold we are using). Notice that if we
multiply both sides by T},, we obtain

Gpjp (X,Tp) =U(:,1: |Esma|| |)EsrnaIITp~

Theright-hand side is close to zero (assuming the X;,,,;; @ein
fact very small), suggesting that the columns of X, T}, are a very
good “fast-decaying” basis on the parent level I.

We proceed through the levels, transforming the slow-decaying
basis functions on a level into fast-decaying basis functions on the
next-coarser level. At the end, the only slow-decaying basis func-
tions|eft are at the coarsest level. Eventually al the basis functions
together form our new orthogonal change-of-basis matrix Q.

We briefly sketch how the entries of G, can be computed ef-
ficiently, given the new basis () and the multilevel row-basis rep-
resentation. The only interactions which need to be kept are those
between fast-decaying (7) basis functions in squares which arelo-
cal to each other. (For two basis functions on different levels, we
take the conservative approach of defining “local” to mean that the
finer-level square’s ancestor on the coarser level is the same as or
a neighbor of the coarser-level sguare. In fact, many of these in-
teractions are very small, and are zeroed when a small threshold is
applied). We also keep the top-level slow-decaying basis-function
interactions with everything else. There are at most a small con-
stant number of these.

The essential idea isto keep a data structure for each level con-
taining the local responses to the T, and W basis vectors in each
square at that level. We have this already for the finest level, from
the Phase 1 representation. On coarser levels, the interaction be-
tween a parent square p and its neighbors can be decomposed into
the four interactions between each of its children s; . .. s4 and the
neighbors of p. For each child s;, this interaction can be decom-
posed into the interaction with squares local to that child (on the
child level), and theinteraction with interactive squares of that child
(on thechild level). (Thisisaconsequence of the fact that the local
squares on the parent level are the same as the interactive squares
plusthelocal squares on the child level, ascan be seenin Figure 2.)
Thelocal interactions we get from the data structure maintained on
the child level, and the interactive square interactions can be ob-
tained using the row bases of s; and the interactive squares of s;.



(Why not just use the Phase 1 row-basis representation directly? It Example | Sparsity ~ Sparsity ~ Max.rel.  Max. rel.
can be shown for reasonably regular contact layouts that this leads factor factor error error
to an O(n log? n) algorithm, whereas the approach just described (lowrank) (wavelets) (lowrank) (wavelets)
leads to an O(n log n) agorithm.) 1 2.8 2.5 1.0% 69%
. la 1.6 13 0.3% 18%
3.5 Algorithm summary 1b 6.8 6.1 1.9% 105%
. ) . 2 2.7 25 0.7% 1.3%
Phase 1: get multilevel row-basis representation 3 24 23 0.9% 30%
for lev:=2 to maxlev
for each square s on level lev Table 1: Accuracy achieved without thresholding
choose a random sample vector m, (nonzero only in s)
end
get responses to sample vectors: end
if lev == Fill in G, form interactions of fast-decaying
for each square s on level lev basis functions with each other and with coarsest-
Get response G'm.; to sample vector level slow-decaying basis functions
using black-box solver
end
r n le vectors using splittin hod:
e rre s oy - ono ttingmahodt 4 = cOMPUTATIONAL RESULTS
Decompose ms = rs + 05 (ms in span of In presenting our results, the key point is that arbitrary sparsity
parent level row-basis, can aways be obtained by reducing accuracy—i.e., set athreshold
o, orthogonal to parent level row-basis) t and drop entries of G with absolute value below ¢. Or, in our
end representation G ~ QG Q', drop entries of G, below ¢t. By
Use combine-sol ves technique to get local and setting ¢ large enough, any desired sparsity is obtained. Of course,
interactive (=local on parent level) responses when ¢ is set very large the sparsified representation will be of very
Gsp,0s todl o, with O(1) black-box calls poor quality. Thus, to address algorithm performance, sparsity and
Use parent-level row-basis responses to get local accuracy must be considered together.
and interactive responses G;sp, 75 to all rs with O(n) We will compare our results using the new low-rank agorithm
work. to the geometric-moments wavelet algorithm presented in [9]. It
for each sgquare s on level lev is worth noting that both these algorithms obtain substantial spar-
get Gsp,ms = Gsp,0s + Gsp, 15 sification on many examples and are clearly better than naive ap-
end proaches such asthresholding out small entriesinthe original dense
end G. However, webelieve the results here show amuch better sparsity-
accuracy tradeoff for the low-rank algorithm. First we mention
Get row basis in each square s on level lev that the number of solves needed for our method is dlightly larger
using sample vectors and svd than for the wavelet method (essentially because we're doing extra
solves for the sample vectors), but in none of our examples more
Get responses to row basis: same method than 20% larger. Thisis not a major issue for many applications,
as getting responses to sample vectors where the representation will be derived once and applied many
end timesin a circuit simulator. The important point is that the opera-
for each sguare s on finest level (lev=maxlev) tor derivation takes only a very efficient O(log n) solves for both
get local responses to every standard basis function in s methods.
using combine-solves technique for orthogonal space To make the comparison, we will consider two ways of using the
of row basis V; sparsification algorithms. First, we can apply the conservative as-
end sumptions described earlier to obtain some sparsity, but try to main-
tain high accuracy. In this case we measure the maximum relative
Phase 2: get wavelet-structure basis Q error in al the n? entries of the dense matrix QG Q' (for medium
for lev:=maxlev downto 2 sized examples where it is tractable to compute this). (Q is the
Form T (fast decaying response), orthogonal basis and G; the sparsified operator, for whichever al-
W (slow decaying response) gorithm, geometric moment-matching or low-rank approximation,
for each square at level lev: isbeing used.) Notice that thisis a particularly harsh standard for
if lev == maxlev small entriesin G where small relative errorswill require extremely
for each sguare s at level maxlev small absolute errors, but the low-rank algorithm still delivers very
set W, = Vs, set T, orthogonal to Vs good results. Table 1 summarizes the results. The sparsity factor
end of a sparse matrix is the ratio of the number of entriesin a dense
else matrix of the same size to the number of nonzeros in the sparse
for each square s at level lev matrix.
use svd to get 7, W, from On the other hand, for many applications a less stringent stan-
child Wy, ... W, dard is appropriate, and we can obtain a more efficient represen-
end tation by thresholding out small entries of G;. To get a handle
end on thiswe'll use as our measure of accuracy the percentage of en-
For each square s on level ley, triesin QG:Q' which deviate by more than 10 percent from the

put vectorsin T into () (wavelet-structure basis) corresponding entry in G. A threshold will be chosen which gives
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Example | Sparsity of Entries Wavelet Wavelet
thresholded Off by more  sparsity QG Q' Entries
G (low than 10% (equiv. Off by More
rank rep.) accuracy) than 10%
(equiv.
sparsity)
1 17.0 1% 25(*) 85%
la 9.6 2% 13(*) 86%
1b 41.0 2% 6.1 (*) 82%
2 16.2 3% 85 20%
3 14.3 8% 55 92%

Table 2: Sparsity/accuracy tradeoff for low rank vs. wavelet
representation: the (*) indicates that even with no threshold-
ing thewavelet method didn’t achieve the same accuracy asthe
low-rank method

the low-rank algorithm a 6x increase in sparsity factor from using it
without thresholding. Then the wavelet algorithm will be compared
to the low-rank algorithm in two ways: first, choose athreshold to
obtain equivalent accuracy to the low-rank algorithm, and compare
the sparsity achieved. Second, choose a threshold to obtain equiv-
alent sparsity to the low-rank algorithm, and compare the accuracy
of the two methods. Table 2 summarizes the results.

The new low-rank method isthe clear winner in al the examples.
In each case the maximum relative error for the very accurate (with-
out thresholding) representations isworse (sometimes much worse)
for the wavelet method. In the more efficient lower-accuracy rep-
resentations, the low-rank method achieves more accuracy at the
same sparsity asthe wavel et-method, and more sparsity at the same
accuracy as the wavelet method.

Example 1 (see Figure 3) represents a bad case for the wavelet
method due to the proximity of large and small contacts throughout;
thisiswhere the greatest advantage is seen for the new method. For
this example we also show a sparsity structure plot of G¢; they are
similar in appearance for the other examples. Examples 1la and 1b
aare the same except the grid of contactsis smaller (16 by 16=256
contacts) for Ex. laand larger (4096 contacts) for Ex. 1b—they
are included mainly to show that the sparsity factor increases as
we increase the problem size (9.6 for 256 contacts, 17 for 1024
contacts, 41 for 4096 contacts), suggesting the algorithm is much
closer to O(n) than O(n?), which is how it was designed. (Also,
due to the extremely large size of the dense 4096 x 4096 matrix,
the results for example 1b are based on a 10 percent sample of the
columns of G.) Example 2 (see Figure 5) is aregular grid of con-
tacts, and a good case for the wavelet algorithm (the fact that all
the contacts are the same size makes the moment-matching repre-
sentations more effective), but the low-rank algorithm still wins.
Example 3 (see Figure 6) illustrates that our method can handle
quite irregular layouts, with different sizes and shapes of contacts,
including such features as guard rings. They are each about 1000
contactsin size.

5. CONCLUSIONSAND FUTURE WORK

We have shown a new method for efficiently extracting a sparse
representation of the conductance matrix of substrate coupling. The
results show very high accuracy for the low-rank algorithm com-
pared to previously known methods, and also demonstrate a better
sparsity/accuracy tradeoff.

Future work may include putting thismodel in acircuit simulator
such as SPICE to try to simulate the substrate effectively. Thereare
some improvements to the algorithm which are possible but not yet

Figure 3: Example 1, alternating rows of large and small con-
tacts (1024 contacts)— Example la is the same but with only
16x16=256 contacts

3007
400l
5001}
600
700
800

900

1000

0 100 200 300 400 50 600 700 800 900 1000
nz = 61526

Figure 4: Example 1 sparsity structure plot for low-rank alg.
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Figure5: Example 2, regular grid (1024 contacts)
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Figure 6: Example 3, with guardrings, long contacts, different-
sized contacts (836 contacts)

implemented (for example, we believe the coarsest level can be set
at level 1 instead of the current level 2). We would like to use
real substrate layouts to test the algorithm further. Some form of
automatic error estimation (outputting an error estimate with the
new representation) would be desirable. It may aso be interesting
to see if any reasonable accuracy can be achieved with the new
algorithm by reducing the rank-6 assumption for faraway squares
even further, which would result in a very sparse representation.
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