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Abstract  A new routing algorithm is presented. It is based on a multiple
star net model, force-directed placement and maze searching techniques.
The algorithm inherits the power of maze routing in that it is able to route
complex layouts with various obstructions. The large memory requirement
of the conventional maze algorithm is alleviated through successive net
refinement, which constrains the maze searching to small regions. The
algorithm shows advantages in routing designs with complicated layout
obstructions.

1. Introduction

With the development of integrated circuit technology, the demand for
higher density of system integration on chip challenges physical design
automation tools. New problems have emerged in the past few years,
such as macro-cell integration, performance driven layout design etc.
The trend is toward integrating tens or even hundreds of fairly
heterogeneous IP blocks on one chip. To meet high performance and
reliability requirements, special nets like power, ground and clock are
planned and routed via special tools. The special nets are fixed in the
subsequent routing; therefore they become obstructions.

To handle complicated obstructions, maze searching is the most
commonly adopted technique [1,4,14,17-23,25]. A maze router is able
to find the shortest path from a given source to a given target, if the
path exists. However a maze router also has huge memory
requirements. Although today a desktop microcomputer may have
memories larger than the hard drive of a workstation in 1980’s, and one
can even argue that virtual memory can provide as much storage as
needed, the speed of searching in such a large and increasing size of
memory is not tolerable. Another severe problem with a maze router is
net ordering [3,4,16,19,25], which has not been well solved yet.
Finally, one must deal with strategies required when the maze routing
of some nets fails. A few re-routing therapies have been proposed
[7,8,10,11,13,14], however none is cheap and efficient. Re-routing does
not overcome the net ordering problem. All these difficulties have
canceled the benefit of maze routing, limiting its applications to sub-
routines of other routing algorithms. Therefore, the problem becomes
how to do maze searching efficiently, and how to overcome the net
ordering difficulty. In fact these two questions are dependent. The
trouble comes from routing net by net. Nets can have multiple pins
distributed all around the chip. Even just routing one net may require a
search over the entire chip. Not knowing how the subsequent nets are to
be routed, the routing of the current net is likely to create blockage to
others. The longer the net, the more possible blockages it may generate.
Rip-up and re-route does not touch this weakness at all.

Our approach is to refine nets until they become short wires, which
can be connected by maze searching fast and locally. The short wires
are placed in such a way that they can be connected with a smaller
probability of blocking other wires. All nets are refined simultaneously,
and are wires placed simultaneously, which removes the global net
ordering problem. A multiple star net model is suitable for this task.
The stars are placed through force-directed and density-balancing
techniques as in cell placement. Density reflects the blockage caused by
obstructions and possible wires. By generating stars and breaking long
wires into shorter ones, the net topology is successively refined.
Together with other net topology optimizations on stars, nets can have
an almost unlimited number of shapes. Maze routing comes into play

when nets have been sufficiently refined and wires well planned by
placing the stars.

In the mixed force-directed maze router, the boundary between
global routing and detailed routing is blurred. The later iterations of the
successive refinement of nets can be regarded as a coarse detailed
routing. Moreover, nets can still have chances of changing their shapes
even if maze routing has started. Although there is no theoretical proof
that such mixed global and detailed routing is better than separate
global and detailed routing, it is clear, intuitively, that tighter
integration of the two stages can prevent inaccurate estimation made
earlier due to lack of detail layout information. Another advantage is
that since force-directed and density-balancing techniques have been
successfully used in placement [2,24], this router is potentially capable
of interacting with a force-directed placement algorithm. Although in
the current version of the router, cells and pins are fixed, it is not hard
to make them movable. Furthermore, if cell shapes are allowed to
change, logic synthesis may take place during the routing. In addition,
the router is incremental; hence it can start with partially routed
designs. This feature makes the algorithm suitable for mixed manual-
automatic routing.

The rest of this paper is organized as follows. In Section 2, force-
directed star placement, net topology optimization and special
techniques in maze routing are discussed. Experimental results and
discussion are given in Section 3. Section 4 concludes and discusses
future directions.

2. Algorithm

2.1. Overview
The algorithm consists of force-directed star placement, net topology
optimization, maze searching and re-routing. Force-directed star
placement and net topology optimization are iteratively performed.
Attractive force and density-balancing force are combined to guide the
placement of the stars. The attractive force is simply in accordance with
Hooke’s Law; while the density-balancing force is a result of the
density field reflecting the congestion/sparseness distribution over the
layout. Hence the combination of the two forces drives the stars to
locations that minimize wire length and decrease congestion. Net
topology optimization is a rule based approach and conducted during
the star placement. The maze routing starts with all stars placed at
optimal locations in the sense that the maze searching is short ranged
and the probability of successful routing is high. When maze routing
fails, several re-routing methods are attempted.

2.2. Star generation
Initially there are no stars but pins. The initial topology of a net is a
spanning tree. Stars are generated when wires meet the criteria
described in section 2.4.

2.3. Force-directed star placement
The only movable objects are the stars. A force-directed placement
technique is adopted. The formulation of the forces is quite similar to
[2,24], so we focus on the unique aspects in the star placement.
2.3.1. Attractive force. Like all other force-directed methods, the
attractive forces are in linear form:
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where function d(⋅) gives the Euclidean distance of the two points, and
k is a constant.
2.3.2. Density-balancing force. The function of density-balancing
force is to guide the star such that the wires attached to the star can get
away from congested places. Density is the measure of congestion in a
region. We discretize the whole layout by a 3-dimensional array of
cubes. Cubes are coarse grids that have the size of about 10 to 50 real
routing grids, and size in Z direction is 1. From now on, density refers
to the density of a cube. Cells and fixed wires are deterministic sources
of density while wires, for which their routing has not been
implemented, contribute to density in probability. So, D(P) (P∈Z3), the
density of a cube is:
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where AR(⋅) is the function counting the portion of cell r covering this
cube, AM(⋅) is the function for fixed wires, and AW(⋅) is the function
describing probable wires passing this cube. AR(⋅) and AM(⋅) are trivial,
and we concentrate on AW(⋅).

The density computation of AW(⋅) should reflect the real routing
strategy as much as possible. We want to choose one closer to maze
searching while the estimation should be simple and efficient. We try to
maze route the connection of two points in coarse grids, that is, the
cubes. Consider the wave propagation within a rectangular cube array
diagonally bounded by the two points. If there is no over-dense cube on
a wave front, let all the cubes on this wave front share the probability of
wiring. If some cubes are fully occupied by cells and/or fixed wires, the
remaining cubes on the wave front share the probability. Sometimes all
the cubes on the same wave front are fully occupied, then we still use
the average sharing as if there is no blockage at all. This certainly
results in cube densities higher than 1, which create pushing forces and
get the movable points away from their original locations. One may ask
if the two points are both pins, there is no way of getting through the
full blockage. As will be shown in section 2.4, a star is to be generated
to split the problematic wire and then the star can move and get the two
wires away from the congested region.

With density of all cubes computed, the density-balancing force
generated at a cube is:
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in which function Φ(⋅) is:
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where φ is around 0.1. The idea is that we would like to keep a little
effect for the function in the v≤1.0 region such that less-dense cubes
can generate small pulling forces. If we cut the tail by letting Φ(v)=0
when v≤1.0, the stars may only get information about areas to keep
away from, but have no idea about where to go. Maintaining small
pulling forces will tell the stars where empty space exists.

We have also experimented with modeling cube density via the
estimation of wires crossing cube edges [5]. Results show no
improvement as compared to the simple formulation given above. The
edge flow model however takes longer computation time. If the cube
size is not chosen too small, the simple density formulation is
reasonable and efficient.
2.3.3. Total force and star displacement. The total force applied to a
star consists of attractive and density-balancing forces. The
displacement of a star is guided by the total force. At iteration i, ωA and
ωB, the weights put on attractive forces and density-balancing forces
satisfy:
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where I is the total iteration number, and ψA controls the decreasing
rate of ωA, ranging from 0.9 to 1.0.

2.4. Net topology optimization
Four rules apply:
Rule I (Splitting due to length): When the Euclidean distance of a wire
exceeds a given threshold, the wire is split into two wires and a star is
generated to connect the two new wires. The star is placed at the mid-
point of the original wire.
Rule II (Splitting due to angle): When a wire has an angle within the
range of 45°±θv where θv is a given value, about 10° or so, the wire is
split and a star is generated and placed at the mid-point of the original
wire. The reason is that such wires cause large wave fronts in the cube
maze searching and thus scatter the routing probability to many cubes.
Thus the difference of estimating a cube being taken and it being
actually taken is large. In contrast, a wire closer to an axis direction is
highly probable to be consistent with its final routing. This is why
wires with small angles with the axes are preferred. But to prevent
generating too many stars by this rule, we limit the number of stars
generated this way.
Rule III (Splitting due to congestion): As mentioned in Section 2.3.2,
when a wire crosses a dense region, it is split. The criterion is that if
over 90% of cubes on the same wave front have density over 1, the
wire is split and the star is placed at the intersection point of the wire
and the wave front. If more than one wave front has over 90% dense
cubes, the wire is only split at the one with the largest number of dense
cubes.
Rule IV (Merging): If two points of the same net are within a given
range, the following action is taken. If they are both pins, do nothing; if
one of them is a star and the other is a pin, the star is absorbed by the
pin; and if both are stars, they are merged into one star to be placed at
the mid-point of the original two stars.

The four rules should not be used simultaneously or very
frequently, otherwise unnecessary oscillation may occur. And wire
connection relations would need to be re-processed after topologies are
changed.

2.5. Maze routing
After generation, merging and placement, the stars are supposed to
reach locations that make successful maze routing highly probable.
Moreover, the stars break nets into short wire segments, thus the maze
connection becomes quite local. This means fast speed and less
memory requirements. For simplicity, only uniform grids are
considered. Extension to non-uniform grids may not be difficult, since
it does not conflict with the star model and the force-directed star
placement.
2.5.1. Constrained wave propagation. The main difference of the
wave propagation in this algorithm and that in conventional maze
routers is that we constrain the search region to a box slightly larger
than the bounding box formed by the two points to be connected. This
is motivated by the fact that within such constrained region the
connection can be finished successfully with high probability. Due to
the existence of the stars, it is not exactly a point-to-point search,
because there is no reason to force the wire to reach the exact location
of a star. Stars are guides for wire connections rather than an actual
point that the wire must arrive at. So whenever the searching involves
stars, we only require the maze algorithm searches from and/or to a
rectangular region centered with the star.
2.5.2. Back tracing. Usually less attention is paid to the back tracing
stage in maze routing, because the task of back tracing is thought to be
trivial. Since the program written to implement the back-tracing is
definite, a definite shape of the final path is derived, given the
obstruction. For example, when writing the back tracing part, if the
programmer wrote trace-X prior to trace-Y, then the algorithm will
always generate a path like the one shown in Figure 1(a). In our



algorithm, we propose two alternative ways of back tracing. One is
called local obstruction guided back tracing, as shown in Figure 1(b).
When there is more than one choice at a certain grid during back
tracing, we choose the one with fewer neighboring blockages. The
motivation is to make the subsequent routing easier. This method is
quite useful in the case where pins are densely arranged. If care is not
taken, early routing to some pins may easily block the routing for the
rest. The other approach, as shown in Figure 1(c), is called global
density-balancing force guided back tracing. It is similar to the local
obstruction guided method in the sense that it tries to leave space, when
possible, for the following routing wires. However the difference is that
the guidance comes from global congestion distribution, that is, the
density-balancing force. In our algorithm the local obstruction and
global density-balancing force guided back tracings are combined to
indicate the “better” choice from a set of candidates.

A

B

A

B

A

B
fB

empty gridoccupied grid

 (a) normal                       (b) local obstruction           (c) global density-balancing
                                               guided                                force guided

Figure 1. Back tracing

2.6. Re-routing
The difficulty of a maze routing algorithm often boils down to the re-
routing strategies. In our algorithm, the maze searching, as described in
section 2.5, is constrained locally, so we could extend maze searching
for the failed nets to the entire chip. This sounds reasonable, however
the cost is very high for large designs, so we do this only when the
following strategies fail.
2.6.1. Star re-placement. If the failed wire involves at least one star, it
is conceivable that the star may be placed at a wrong location, because
the estimation is based on probability. However when a lot of other
wires have been finished successfully, their contribution to the density
shifts from probability to reality. Using realistic and thus more accurate
wiring, the densities and the balance forces can be re-computed. The
star of the failed connection is placed again, and then another run of
constrained maze routing is tried.
2.6.2. Rip-up and re-route. The key problem of rip-up and re-route is
the selection of the set of nets to be ripped. The heuristic used in this
router is based on the concept of blocking likelihood. The more a net
lies perpendicular to the connection line, the more likely it will block
the connection. On the other hand, with same number of occupied grids
and same distribution direction, the one lying close to one of the points
to be connected is more likely to generate blockage. For each net across
the same bounding box as in the constrained maze routing, calculate the
distribution of its distance to s, one of the two points to be connected:
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where N(n) is the number of grids within the bounding box that are
occupied by net n, and d(⋅) is the distance between two points. Then
define a blocking effect value:
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where d(s,t)/2 is the half distance of the two points to be connected, and
κ1 and κ2 are constants.

It is obvious that we postpone the global maze routing until the last
minute because of its high cost. The re-placement is used at first since
it is cheap. When it fails, it is very likely that we have to rip up some
other nets and route this failed net first. All the involved nets have their
blocking effect values calculated. The nets whose effect values exceed
a given threshold will be ripped. Then we route the failed net first, and
the ripped nets next. When this fails, global maze routing is attempted,
or we simply report failure to the user. We also conjecture that push-
and-shove might be a good way of doing re-routing, for it is “mild” as
compared to rip-up. However push-and-shove has not been
implemented in the current version of our router.

3. Experimental results

Three testing examples were chosen from MCNC macro-cell placement
benchmarks. The examples are placed by a force-directed macro-cell
placer [2], which outputs layouts in standardized LEF/DEF/verilog
formats. All these examples use 4 metal layers and a uniform routing
grid. Each example has three difficulty levels with respect to the
distribution of the obstructions. In level A, a cell occupies metal1 and
metal2, and its pins are on metal2. In level B, a set of rectangles on
metal3 and 4 are randomly generated and stacked within the cell area.
Level C is the hardest, in which the space between cells are partially
occupied by metal1 and metal2 objects that simulate power, ground and
pre-routed nets. One additional testing example is mcc1-75 obtained
from the MCM benchmark set. This example has no obstruction.

The characteristics of the testing examples are given in Table 1.
Results for the three MCNC examples are given in Table 2, in which
comparison is made between our algorithm and Cadence’s Warp
Router (Silicon Ensemble, version 5.0) and InternetCAD’s Itools
Router (Itools, version 1.4.0). Table 3 lists the results for the MCM
example, and we cited the results of an MCM router called V4R [12].
All the software except V4R was run on a Sun Ultra 2 workstation with
256MB memory and 2 CPUs. The operating system is SunOS 5.5.1.
Our algorithm is programmed with JAVA. The interpreter is Sun
JAVA jdk1.2.

Table 1. Characteristics of the examples
examples #nets #pins #grids #cells #rectangles
mcc1-75 802 2495 599×599×4 0 0
ami33A 119 279 240×180×4 33 66
ami33B 119 279 240×180×4 33 165
ami33C 119 279 240×180×4 33 297
ami49A 408 933 720×960×4 49 98
ami49B 408 933 720×960×4 49 245
ami49C 408 933 720×960×4 49 441

playoutA 1611 3761 640×880×4 62 124
playoutB 1611 3761 640×880×4 62 310
playoutC 1611 3761 640×880×4 62 558

Table 2. Results of the MCNC examples (1)

Total wire length (k) # Vias Run time (min’sec)
examples SE Itools This SE Itools This SE Itools This
ami33A 13.1 14.0 13.1 572 579 552 0’6 1’10 0’59
ami33B 13.6 14.5 13.4 583 593 571 0’6 1’01 1’10
ami33C 13.8 16.8 13.6 624 682 609 0’15 1’35 1’10
ami49A 173 182 175 2473 2485 2395 1’07 3’03 15’
ami49B 201 214 208 3212 2991 2954 1’15 3’12 20’
ami49C 223 231 222 3401 3354 3258 1’49 2’58 32’
playoutA 2041 2219 2108 7958 8127 8014 2’05 14’ 45’
playoutB 2557 f(?) 2497 9107  8973 4’58 19’ 44’
playoutC f(15) f(?) f(2)    4’49 18’ 58’

(1) f(#) represents # nets fail; f(?) means failure but without detail information



Table 3. Results of mcc1-75
Total wire length (k) #Vias Run time (min’sec)

layer# V4R SE Itool This V4R SE Itool This V4R SE Itool This
4 394 370 399 392 6993 6373 6207 6392 (1) 0’14 3’40 35’
3  373 f(?) f(5)  6453    0’41 4’15 35’
2  420 f(?) f(30)  8768    1’28 4’08 37’

(1) We get the results of V4R directly from [12]. The run time is not comparable
because the hardware platforms are different.

Table 4. Statistics of our algorithm
% of successful connections

constr. maze rip-up & reroute global maze
examples # stars net wire net wire net wire
ami33A 125 98.7 97.2 100.0 100.0  
ami33B 143 95.4 95.4 100.0 100.0  
ami33C 172 93.1 92.8 100.0 100.0  
ami49A 1744 97.1 96.5 100.0 100.0  
ami49B 2013 95.2 94.7 99.9 99.9 100.0 100.0
ami49C 2094 91.0 89.1 99.9 99.9 100.0 100.0
playoutA 6044 92.8 90.8 99.9 99.9 100.0 100.0
playoutB 6258 91.2 90.8 99.5 99.4 100.0 100.0
playoutC 6306 90.7 90.0 99.4 99.4 99.9 99.9

mcc1-75 4-layer 4281 91.6 90.3 100.0 100.0  
mcc1-75 3-layer 5099 83.0 78.1 99.7 97.2 99.4 97.5
mcc1-75 2-layer 5518 56.0 50.3 93.3 91.7 96.2 96.1

For the MCNC examples, our algorithm shows its power in routing
with complicated layouts (Level C) in terms of routing completeness
and total wire length. For simpler layouts like those in Level A and
Level B, this router can give results comparable to Warp Router. The
run time of our algorithm is large, partially because it is completely a
JAVA program. The experiments on the MCM example disclose the
characteristics of our router. The MCM example has no obstruction at
all, which means the power of maze searching is heavily reduced. So it
is not surprising to find that our router had a hard time in finishing the
work decently. The really surprising thing is that the Warp Router
finished the 100% routing with only two layers in one and half minute.
This shows that our router is not expected to become a universal
routing tool. On the contrary, it has its unique application area where
the power of maze searching can be fully utilized.

We list the statistics of our algorithm in terms of the rate of
successful trials at different stages. It is obvious that, except for the
MCM example, the constrained maze routing usually has over 90%
successful connection in one run. To our best knowledge, there is no
other maze style router that can achieve such high success rate in a
single run.

4. Conclusion

We presented a router based on the combination of force-directed
placement and maze searching techniques. The multiple star net model
enables routing estimation and constrained maze routing. The memory
and net ordering problems with classical maze routers have been
greatly reduced. Experimental results show that the new router
performs well in the routing of layouts with complicated obstructions
and pre-routed objects. Future work includes enhancing the router with
timing-driven features. Since the multiple star net model represents the
net topology explicitly, timing analysis and optimization is easy to
apply. Furthermore, by dropping the constraint that cells and pins are
not allowed to move, an integration of this router with force-directed
macro-cell placer is expected.
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