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Abstract

This paper presents a novel gridless detailed routing approach
based on multilevel optimization. The multilevel framework
with recursive coarsening and refinement in a “V-shaped” flow
allows efficient scaling of our gridless detailed router to very
large designs. The downward pass of recursive coarsening
builds the representations of routing regions at different lev-
els, while the upward pass of iterative refinement allows a
gradual convergence to a globally optimized solution. The
use of a multicommodity flow-based routing algorithm for the
initial routing at the coarsest level and a modified maze algo-
rithm for the refinement at each level considerably improves
the quality of gridless routing results. Compared with the
recently published gridless detailed routing algorithm using
wire planning [1], our multilevel gridless routing algorithm is
3% to 75x faster. We also compared our multilevel framework
with a recently developed three-level routing approach [1] and
a traditional hierarchical routing approach. Our multilevel al-
gorithm generates better detailed routing results with higher
completion rates. To our knowledge, this is the first time that
multilevel optimization has been applied to IC routing.

1 Introduction

IC routing is an old and well studied topic. A traditional
routing system is composed of two stages: global routing and
detailed routing. In global routing, the routing region is par-
titioned into tiles or channels. A rough route for each net is
determined among these tiles to minimize the overall conges-
tion. Next, detailed routing is performed for each tile, where
the exact implementation of each net is determined. Variable
widths and variable spacings may be used for delay and noise
minimization(e.g. see [2]), which implies that the gridless
detailed router should not restrict the wires to a predefined
uniform grid.

Global routing partitions the entire routing region into tiles
and tries to find a tile-to-tile path for each net to guide the
detailed routing. Many global routing algorithms use a flat
approach by trying to find paths for all the nets on the finest
tiles. Early routing algorithms use the maze searching algo-
rithm [3, 4] or the line-probe algorithm [5, 6] in a net-by-net
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approach to find the paths for all nets. Multicommodity flow
based algorithms have also been proposed, where the rout-
ing problem is modeled as a multi-terminal, multicommodity
flow problem. Carden, et al., [7] proposed a flow-based global
routing algorithm that has a theoretical bound on the opti-
mal solutions. Albrecht [8] presented a recent work that uses
anew approximation algorithm to speed up the flow computa-
tion. Another recent work uses a combination of maze search-
ing and iterative deletion, as proposed by Cong and Madden
[9], for a performance-driven global routing algorithm. How-
ever, all flat approaches have a scaling problem when it comes
to large designs. Hierarchical approaches were proposed to
handle global routing problems as the problem size increases.
Heisterman and Lengauer [10] proposed a hierarchical-based
integer programming for global routing. Wang and Kuh [11]
use a hierarchical (a, 8)* algorithm for the MCM global rout-
ing.

The traditional two-level routing approaches, however, have
two limitations in current and future VLSI designs. First,
future designs may integrate over several hundreds of mil-
lions of transistors in a single chip. Traditional two-level de-
sign flow may not scale well to handle problems of such size.
For example, a 2.5 x 2.5¢m? chip using a 0.07um process-
ing technology, as predicted by NTRS’97 [12], may have over
360,000 horizontal and vertical routing tracks at the full chip
level. That will translate to about 600 x 600 routing tiles
if we balance the grid size between the global routing and
detailed routing stages. This presents a significant challenge
to the efficiency of both stages. Even with the three-level
routing system [1], which we proposed for deep sub-micron
VLSI routing, the routing region has to be partitioned into
over 100 x 100 tiles on both the top-level global routing and
intermediate-level wire planning stage (assuming the final tile
for detailed routing is about 30 x 30 tracks for the efficiency
of a gridless router). The problem size at each level is still very
large. Therefore, as the designs grow, more levels of routing
are needed for larger designs. Rather than a predetermined,
manual partition of levels which may have discontinuity be-
tween levels, an automated flow is needed to enable seamless
transitions between the levels.

Moreover, the delay and noise due to the global intercon-
nects should be carefully considered during routing [13]. A
timing- and crosstalk-driven detailed router [14] may be too
restricted to local optimal solutions due to the lack of a global
picture of the performance issues. Several optimization al-



gorithms are proposed at the global routing level, such as
a performance-driven global router using high-performance
routing topologies and optimal wire sizing [9], and a noise-
constrained wire spacing and track assignment algorithm for
global routing refinement [15, 16]. Although each algorithm
tries to optimize one or two performance aspects on its own,
these optimization algorithms are implemented as separated
modules and interleaving them in the current routing flow is
difficult. A simple integration of putting them one after an-
other may not get the best overall performance on the final
layouts.

In this paper, we propose a novel multilevel routing frame-
work for the gridless routing problem of large VLSI designs.
The multilevel methods was originally used as a means of ac-
celerating numerical algorithms for partial differential equa-
tions (e.g. [17, 18]). In this past decade, it has been also ap-
plied to other areas, such as image processing, combinatorial
optimization, control theory, statistical mechanics, quantum
electrodynamics, and linear algebra. Multilevel techniques
for VLSI physical designs have shown promising results re-
cently. Good progress has been made in multilevel circuit
partitioning and placement. The multilevel partitioning algo-
rithm AMETIS [19] produces the best cut size minimization in
circuit partitioning. The multilevel performance-driven parti-
tioning algorithm HPM [20] produces the best balance of de-
lay and cut size minimization results for circuit partitioning.
The multilevel placement algorithm mPL [21] achieves com-
parable circuit placement quality with the well known GOR-
DIAN package [22] with over 10x speed-up on designs with
over 200K movable objects. These successes led us to inves-
tigate the application of the multilevel scheme to handling
large VLSI routing problems.

Our multilevel framework features an iterative coarsening
algorithm and an iterative refinement algorithm in a “V-
shaped” flow, which is typical for multilevel optimization (see
Figure 1). On the downward pass, the design is recursively
coarsened, and an estimation of routing resources is calcu-
lated at each level. At the coarsest level, a multicommodity
flow algorithm is used to generate an initial routing result.
On the upward pass, a modified maze searching algorithm is
carried out iteratively to refine the results from level to level.
The final results of the multilevel planning algorithm are tile-
to-tile paths for all the nets. These paths are used to guide a
gridless detailed routing algorithm to find the exact connec-
tion for each net. The hierarchical nature of the multilevel
scheme makes it very scalable to large designs. Moreover, the
iterative refinement process provides a framework for seam-
less integration of different algorithms on different levels. Our
experimental results show that the multilevel flow improves
routability over the traditional two-step approach of global
routing followed by detailed routing and the hierarchical ap-
proaches.

Section 2 provides an overview of our multilevel routing
framework. Section 3 explains our tile partitioning and re-
source estimation algorithm. A coarsening process generates
the level representations from the finest level to the coarsest
level. A multicommodity flow algorithm is used to compute

the initial routing solution at the coarsest level in Section 4. A
modified maze searching algorithm is proposed in Section 5 for
un-coarsening and refinement in the multilevel routing flow.
Finally, the effectiveness of our algorithm is validated with
experimental results in Section 6. The paper concludes with
a discussion of several possible extensions of the proposed
multilevel framework for VLSI routing in Section 7.

2 Overview

Figure 1 illustrates our multilevel framework for VLSI rout-
ing. The routing area is partitioned into routing tiles. Our
algorithm goes through multilevel planning to find a tile-to-
tile path for each net among these tiles. In contrast, most
traditional global routing algorithms [7, 8, 9] try to directly
find routing solutions on the finest tiles. For large designs, the
number of tiles may be too great for these algorithms to han-
dle. Our multilevel approach first accurately estimates the
routing resource using a line-sweeping algorithm on the finest
tile level. A recursive coarsening process is then employed to
merge the tiles and build coarser and coarser level represen-
tations (Section 3). At each coarsening stage, the resource of
each tile is estimated from the previous finer level tiles forming
the current tile. This coarsening process is known in multi-
level literature as the “downward pass.” Once the coarsening
process has reduced the number of tiles to below a certain
threshold, the initial routing is computed using a multicom-
modity flow based algorithm (Section 4). The initial routing
result is refined in the reverse direction of coarsening, known
as the “upward pass,” by a modified maze searching algorithm
(Section 5). When the final tile-to-tile paths are found at the
finest level of tiles for all the nets, a gridless detailed routing
algorithm [23] is applied to find the exact path for each net.

Compared to the flat approaches, the multilevel algorithm
is much more scalable to large designs. Traditionally, hier-
archical approaches [10, 11] are used to overcome the scaling
problem on large designs. These methods also build multilevel
hierarchical representations of the routing region, however,
from the coarsest level to the finest level. The key problem
with the hierarchical approaches is the lack of detailed routing
information available to make routing decisions at the coarse
level, while these coarse-level decisions constrain the fine-level
solutions. Thus, if an unwise decision is made at any level, it
is almost impossible or very costly to revise it at a finer level
in hierarchical approaches, as illustrated in Figure 2. The “V-
shaped” flow of a multilevel approach is more flexible than a
hierarchical approach. The uncoarsening pass allows the fine
level router to refine the coarse level result. The coarse level
solution only provides a guide (as opposed to a constraint in
the case of hierarchical routing) to fine level path searching.
That is the fine level path searching algorithm has the flexibil-
ity to deviate from the coarse level path when more detailed
information about local resource and congestion is considered.
This feature makes the multilevel method converge to better
solutions with higher efficiency.
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Figure 2: Limitation of Hierarchical Approaches. In a
hierarchical approach, coarse-level decisions are based
on limited information, as shown in (a). However,
fine-level refinement lacks the flexibility to change the
coarse-level results. Thus, we have a local congestion
after the refinement, as shown in (b).

3 Routing Resource Estimation and
Generation of Multilevel Hierar-
chy

The first step in our multilevel flow is to build up the multiple
levels of routing region representations along the “downward
pass.” The routing region is first partitioned into an array of
fine tiles, each with the same height and width. We denote
this level as level 0. We then build a three-dimensional routing
graph, denoted Gy, such that each node in G represents a tile
in some routing layer in level 0. Every two nodes in G that
represent a pair of neighboring tiles are connected with an
edge. The edge capacity represents the routing resources at
the common boundary of the two tiles. The ultimate objective

of the multilevel routing algorithm is to find a tile-to-tile path
for each net in Gy to be used to guide our gridless detailed
router for searching a connection for each net.

The multilevel algorithm first accurately estimates the rout-
ing resources at the finest level, then recursively coarsens the
representations on different levels in a downward pass. The
resources at the finest level is estimated as follows. Due to the
gridless nature of our routing problem, we use actual dimen-
sions of the obstacles to compute the routing resources. For
each tile boundary, we use a line-sweeping algorithm, similar
to the estimation algorithm used in [1], to compute its capac-
ity C. The sweeping algorithm cuts the routing region into
horizontal (or vertical) empty rectangles called slices. Let W;
and D; be the width and depth of each slice S;, as shown in
Figure 3. Suppose that the tile depth is D. Then, the bound-
ary capacity can be computed as a weighted sum of widths of
empty slices along the tile boundary computed by the follow-
ing formula:

Z W; x D; /D (1)
K3

The inter-layer edge capacity of the routing graph G; repre-

sents the available resources for vias, and is computed as the

sum of the areas of all empty slices intersections between the

two tiles connected by the edge.

Given the accurate routing capacity estimation at the finest
level and the grid graph Go that stores such information, the
coarsening process for our multilevel routing is actually quite
straightforward. At a coarser level (level i+1), the tiles are
built from the finer level tiles (level i) by merging neighbor-
ing tiles. The coarse level graph, G;;1, which represents the
routing resources available at the coarse tiles, can also be de-
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Figure 3: Resource Estimation in Initial Tiles

rived from the fine level graph G; directly. The capacity of
an edge (uit1, vir1) on Giyq is the sum the capacities of the
edges in G; that connect the tiles merged into u;+1 and the
tiles merged into v;41. We iteratively coarsen the tiles and
the routing graphs until the size of the graph falls below a
predetermined threshold.

4 Initial Routing Using Multicom-
modity Flow Algorithm

After the routing tiles are coarsened to a certain level, the
coarsening process stops. A set of tile-to-tile paths are com-
puted for the nets crossing the coarsest tile boundaries. This
process is called the initial routing, which is quite important
to the final result of multilevel routing. First, long inter-
connects that span multiple tiles are among the nets in ini-
tial routing. Normally, these long interconnects are timing-
critical and may also suffer noise problems due to coupling
along their paths. Initial routing algorithms should be capa-
ble of handling these performance issues. Second, the initial
routing result will be carried all the way down to the finest
tiles through the refinement process in the multilevel scheme.
Although a multilevel framework allows finer level designs to
change coarser level solutions, a bad initial routing solution
will slow down the refinement process and may even degrade
the final solution.

In our approach, we use a multicommodity flow based algo-
rithm to compute the initial routing solution at the coarsest
level. Several existing routing algorithms use the flow-based
algorithm (e.g., [7, 8]). We chose the flow-based algorithm
rather than a net-by-net approach using a maze-searching al-
gorithm or an iterative-deletion algorithm for several reasons.
First, the flow algorithm is fast enough for a relatively big grid
size. Although in theory we can continue coarsening the tiles
so that the number of tiles is very small, the coarsest level
should have reasonable granularity so that the initial routing
results can influence the later refinement process. Second,
the flow algorithm considers all the nets at the same time.
This removes part of the net ordering problem in the net-
by-net approaches. A globally good solution for all nets is
especially important at the coarsest level because its solution

will be carried to influence all finer-level solutions through
the refinement process. Last, a flow algorithm can be inte-
grated with other optimization algorithms to consider special
requirements of certain critical nets. For example, we can
compute high-performance tree structures using an A-Tree
algorithm [24] to compute minimum Steiner trees [25] or a
RMP algorithm [26] to compute tree structures with buffers.
These tree structures can potentially be used as initial solu-
tions for the flow algorithm.

The objective of the initial routing is to minimize the con-
gestion on the routing graph G, which represents the coars-
est tiles. Our current implementation considers only two-pin
nets. Multi-terminal nets are first partitioned by a heuris-
tic algorithm. We first compute a set of candidate paths for
each net on the coarsest tile graph G. For a given net i,
let P;={P;1,...,P;;,} be the set of possible paths. Our cur-
rent implementation does not consider delay minimization,
and focuses mainly on routability and wirelength optimiza-
tion. Therefore, we use only the shortest paths as candidates
for each net. Assume the capacity of each edge on the routing
graph is ¢(e), and w; . is the cost for net ¢ to go through edge
e. Let z;; be an integer variable with possible values 1 or 0
indicating if path P; ; is chosen or not (1 < j <l; ). Then,
the initial routing problem can be formulated as as a mixed
integer linear programming problem as follows:

min A
subject to
Yecp, WieTiy < Acle) for e € E (2)
Z§=1 Tij 1 for i=1,...,n4
zi; € {0,1} for i=1,...,n;

where ny, is the number of nets to be routed at level k. Nor-
mally, this mixed integer programming problem is relaxed to
a linear programming problem by replacing the last constraint
in Equation 2 with:
zij > 0 for i=1,...,ng (3)
j =1,...,n;
After relaxation, a maximum flow approximation algorithm
can be used to compute the fraction value of x; ; for each net
in the above linear programming formulation. Traditionally,
the maximum flow approximation algorithm picks a path and
routes a unit flow along the path. Then it multiplies the
length of every edge on this path by 1+ € with a fixed €. Our
implementation of fraction computation is faster because it
uses the approximation method proposed in [8]. In this al-
gorithm, a maximum s-t flow is computed using a faster and
more straightforward method: after picking a path, instead of
routing the path with a unit flow, we increase the flow along
the path as much as possible to saturate the minimum capac-
ity edge along the path. Garg and Konemann [27] proved the
optimality of this method and gave a detailed explanation of
its application to multicommodity flow computation.
After the fractional result for each path are computed, we
need to map the fractional results to integer results. Our
algorithm calls a randomized rounding algorithm to convert



the fractional values into 0 or 1 values for candidate paths
of each net so that one path is chosen for each net. The
randomized rounding approach for global routing was first
used in [28] and an error bound was estimated. Using this
simple heuristic, we can quickly get an integral solution. This
method does not guarantee that there is no overflow at the
tile boundaries. In general, overflow can be corrected by ripup
and re-route. Our implementation, however, does not use
ripup and re-route at this level, because congestion is not
a significant problem, and we rely on subsequent refinement
steps to remove the possible overflow.

Our experimental results show that the flow-based initial
routing algorithm is more efficient than a maze routing ap-
proach, in terms of both the final completion rate and the
runtime. The results are shown in Table 2 in Section 6.

5 Incremental Refinement Algo-
rithm for Multilevel Framework

One major difference between the hierarchical routing and
multilevel routing approaches is that a multilevel framework
allows the finer level to change coarser-level routing solutions.
In the upward pass of the multilevel framework, paths com-
puted by the initial flow-based algorithm are refined from level
to level until the finest tiles are finally reached.

There are two types of nets during race step of the refine-
ment. One type is “new” nets that just appear at the current
level, as shown by solid lines in Figure 4 (b). These nets
are relatively short and do not cross coarser tile boundaries,
thus, they are not modeled at coarser levels. We call them
local nets. New paths need to be created for these nets at
the current level. Another set of nets are those carried over
from the previous coarser-level routing. We need to refine the
tile-to-tile paths for these nets at the current level.

Finding paths for the local nets is relatively easy as they
are short and each net crosses at most two tiles. Thus, during
each refinement stage, we determine paths for these nets prior
to coarser level path refinements. Furthermore, routing these
nets before any refinement gives a more accurate estimation
of local resources.

The major part of the refinement work comes from refin-
ing those coarser-level nets. In general, the amount of work
needed for refinement depends on the quality of the coarse
level solution. In one extreme, the choices of the paths at the
coarse level are also optimal at the current level. We only
need to refine the paths within the regions defined by the
paths in coarse tiles. In this case, the multilevel algorithm is
the same as a hierarchical algorithm. On another extreme,
when the coarser solution is totally useless or misleading, the
best we can do at the current level is to discard the coarser
level solution and search for a new path for each coarse level
net among all finer tiles at this level. In this case, we end up
doing full planning at the current level. We believe that the
reality lies between these two extreme cases. A good coarse
level routing solution provides some good hints as to where
the the best solution might be. However, if we restrict our
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Figure 4: Constrained Maze Refinement. Previous
routing at coarse grid is shown in (a). Local nets at
current level are routed first. Preferred regions are de-
fined by path at coarse tile, as shown in (c). However,
not restricted to higher-level results, the modified maze
algorithm can change the upper-level tile constraints by
seeing the local congestion and arrive at better solutions

(d)-

search space for the finer tile path to be totally within coarse
level tiles planned in the previous level, as in a hierarchical
approach, we will lose the flexibility to correct the mistakes
made by coarser levels.

In order to keep the coarser-level guide while still maintain-
ing the flexibility to search for all finer tiles, we have imple-
mented a net-by-net refinement algorithm using a modified
maze-searching algorithm. We use the path on coarser tiles
as a guide to search for a path at the current level. A pre-
ferred region is defined as the set of tiles that the coarse level
path goes through. Weights and penalties associated with
each routing graph edge are computed based on the capaci-
ties and usage by routed nets. Additional penalties are as-
signed to graph edges linking to and going between the graph
nodes corresponding to tiles that are not located within the
preferred region, as shown in Figure 4 (c). Dijkstra’s shortest
path algorithm [29] is used to find a weighted shortest path for
each net, considering wire length, congestion, and the coarser-
level planning results. In general, Dijkstra’s algorithm may
be slow in searching for a path in a large graph. However,
by putting penalties to non-preferred regions, we can guide
the path to search within the preferred regions first. The
penalty is chosen so that it does not prevent the router from
finding a better solution that does not fall into the preferred
region. Figure 4 (d) shows an example where, with more ac-
curate finer-level tile information and local nets information,
the modified maze routing algorithm finds a path for net G5
that is not totally within its preferred region.

With the upward pass refinement process, we can get a
globally optimized solution for each net on the finest tiles.
Finally, we use the gridless detailed routing engine presented



Table 1: Examples Used for Multilevel Routing

Table 2: Comparison of Flow-Based with Maze-Based Initial

| Bx. | Size (um) | Layer | #Nets | #Cells | #Pins |  Routing Method
Mccl 39000 4 1694 | MCM | 3101 Ex. Maze-Based Initial Flow-Based Initial
x 45000 Routing Routing
Mcc2 152400 4 7541 | MCM | 25024 Run # Rtd. | Cmp. Run Cmp.
x 152400 Time(s) Nets Rates | Time(s) | Rates
Raytheon 2760 4 430 MCM 950 Mccl 514.8 1672 98.7% 436.7 99.4%
x1560 Mcc2 8116.1 7463 99.0% | 7644.8 99.1%
Struct 4903 3 3551 n/a 5471 Struct 274.6 3551 100% 316.8 100%
%4904 Prim1 335.6 2037 100% 350.2 100%
Primaryl 7552 3 2037 | n/a 2941 Prim2 2546.1 8189 99.9% | 2488.4 100%
x4988 S5378 66.4 2940 94.1% 54.0 94.8%
Primary2 10438 3 8197 | n/a 11226 S9234 65.1 2536 91.4% 41.0 92.3%
x 6468 S13207 290.3 6501 92.9% 188.8 94.0%
S5378 4330 3 3124 1659 4734 S15850 691.4 7887 94.8% 403.4 94.5%
%2370 S38417 921.7 19411 | 92.3% 733.6 93.3%
59234 4020 3 2774 1450 4185 538584 2237.4 26271 93.2% 1721.6 94.1%
%2230 avg. 96.0% 96.5 %
S13207 6590 3 6995 | 3719 10562
x 3640
515850 7040 3 8321 | 4395 12566 tial routing algorithm. Table 2 compares the multilevel rout-
x 3880 ing scheme using a flow-based initial routing algorithm with
538417 11430 3 21035 | 11281 | 32210 the one using maze-based initial routing algorithm. It shows
38584 >1<269148(§) 3 98177 | 14716 | 42589 that using the .ﬂow—based initial routing II}GthOd can achieve
<6710 better completion rate as well as less runtime. Note that the

in [23] to find the final connection for each net under the
guide of the tile-to-tile paths found by our multilevel routing
algorithm.

6 Experimental Results

We have implemented our multilevel routing system includ-
ing recursive coarsening, a multicommodity flow-based initial
routing algorithm, a modified maze-routing algorithm for in-
cremental refinement and a gridless detailed router. The mul-
tilevel routing results are finalized using the efficient multi-
layer gridless routing engine presented in [23]. One major en-
hancement over the method in [23] is that instead of building
up a connection graph for the whole routing area (the planned
path corridor), we store a portion of the routing graph grids
at each tile, and combine them for each net on the fly. In this
way, we significantly reduce the size of the connection graph
(i.e., the non-uniform grid defined in [23], and thus the total
runtime.

We have tested our multilevel routing scheme on a wide
range of benchmarks, including MCM examples and several
standard cell examples (Table 1). Mccl, Mcc2 and Raytheon
are MCM examples, where Mccl has 6 modules, Mcc2 has
56 modules, and Raytheon has 133 modules (a mixed signal
MCM implementation of a high-speed modem). Our exper-
imental results are collected on a Sun Ultra-5 440Mhz with
384MB of memory. Notice that in the tables, “Ex.” stands
for examples, “Rtd. Nets” for routed nets, “Cmp. Rates” for
completion rates, and “avg.” for average.

First, we evaluated the impact of using the flow-based ini-

router will try to search a larger space for solution of a failed
net, which will increase the runtime, so improving the com-
pletion rate often speeds up the algorithm.

We then compared our multilevel routing scheme with a
simple net-by-net gridless detailed router [23] and the recently
presented gridless detailed routing algorithm with wire plan-
ning [1]. Table 3 compares the runtimes and completion rates
for these three approaches. The experimental results show
that the multilevel scheme results in a 3x to 75x speedup
in runtime while generating routing results with higher com-
pletion rates. Note that this experiment only included the
smallest examples from Table 1, since neither the simple net-
by-net approach nor the wire planning approach can scale to
handle larger examples. Their runtimes are very long, and
the memory consumption is high for large designs.

Furthermore, we compared our multilevel routing algo-
rithm with the three-level routing flow recently presented at
ISPD’2000 [1]. The three-level flow features a performance-
driven global router [9], a noise-constrained wire spacing and
track assignment algorithm [16], and finally a gridless detailed
routing algorithm with wire planning [1]. In this experiment,
the global router partitions each example into 16 x 16 rout-
ing tiles. Nets crossing the tile boundaries are partitioned into
subnets within each tile. After the pin assignment, the grid-
less detailed routing algorithm routes each tile one by one. In
Table 4, we report the total runtimes as well as the time spent
on each of these three steps. We use a separate program to
merge the subnets in different tiles back to the original nets.
We count both the lower bound and the upper bound of the
completion rate. When calculating the lower bound, one sub-
net failure will lead to the failure of all two-pin nets in that
global net; and when calculating the upper bound, one subnet
failure will lead to the failure of only one two-pin net in that



Table 5: Experiment Results of Hierarchical with Ripup and
Replan and Multilevel Routing

Ex. Hierarchical Routing Multilevel Routing
with Ripup and Replan
Run # Rtd. | Cmp. Run Cmp.
Time(s) Nets Rates | Time(s) Rates
Meccl 947.9 1600 94.5% 436.7 99.4%
Mcc2 10101.4 7161 95.6% 7644.8 99.1%
Struct 324.5 3551 100% 316.8 100%
Prim1 353.0 2037 100% 350.2 100%
Prim2 2423.8 8194 100% 2488.4 100%
S5378 57.9 2964 94.9% 54.0 94.8%
S9234 40.7 2564 92.4% 41.0 92.3%
513207 161.9 6540 93.5% 188.8 94.0%
515850 426.1 7874 94.6% 403.4 94.5%
538417 754.6 19596 | 93.2% 733.6 93.3%
S38584 1720 26461 | 93.9% 1721.6 94.1%
avg. 95.7% 96.5%

global net. Our results show that multilevel routing achieves
higher completion rates using shorter runtimes (especially for
large designs).

Another approach to handling large designs is to use a hi-
erarchical routing flow followed by a ripup and replan. As
discussed in Section 2, the difference between a multilevel ap-
proach and a hierarchical approach is that coarse level results
in the hierarchical approach constrain the fine level results.
We modified our multilevel flow and made it a hierarchical ap-
proach with ripup and replan. Table 5 compares the routing
results of such a hierarchical approach with those of the mul-
tilevel approach. Although the hierarchical approach gains a
little bit in runtime in some cases, by constraining the search
spacing during the un-coarsening process, it loses to our mul-
tilevel routing in terms of completion rate. This trend is es-
pecially true in designs with many global nets, such as Mccl
and Mcc2, which means that the multilevel planning method
can generate planning results with better quality.

7 Conclusion and Future Work

We present a novel routing system using a multilevel method.
It has several advantages. First, it scales well on larger de-
signs. The partition of routing regions provides a natural
hierarchy for the routing levels. The downward pass of recur-
sive coarsening builds the representations of routing regions
at different levels. When the designs become larger, addi-
tional levels can be added in the multilevel framework, while
the overall routing flow is preserved. Second, this multilevel
method provides a good framework for integrating different
routing algorithms and allows different algorithms to be used
on different levels. In our approach, we used a flow-based al-
gorithm to compute the initial routing results and a modified
maze-searching algorithm to iteratively refine the results. The
multilevel framework also enables a seamless interaction of the
routing results at different levels. Coarse level results only in-
fluence rather than restrict fine level path searchings. This

is especially important because the iterative refinements with
more and more detailed information are critical for achieving
both the performance and quality of the final routing results.
In our experimental results, we showed that our multilevel
framework gives a 3x to 75x speedup over a gridless detailed
routing [1], allowing us to scale to large VLSI routing exam-
ples. Compared to a classical hierarchical routing flow and a
recent three-level routing flow consisting of a global router,
a pin assignment algorithm and a detailed router, our multi-
level router provides better routability results. This is due to
its ability of continuous optimization across multiple levels,
as well as the ability of integrating different algorithms in the
flow.

There are still several challenges in the proposed multilevel
routing framework. First, we need to understand how to in-
tegrate different performance optimization algorithms in the
framework, allowing them to generate a performance-driven
routing flow. Still unknown to us is at which level to insert
individual optimization algorithms and how those algorithms
will interact with each other throughout the framework. Fur-
ther research is also needed to integrate multilevel routing
with multilevel partitioning [19, 20] and multilevel placement
[21].
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