
Color Permutation: an Iterative Algorithm for Memory Packing

Jianwen Zhu
Edward S. Rogers Sr.

Department of Electrical and Computer Engineering
University of Toronto, Ontario M5S 3G4, Canada

jzhu@eecg.toronto.edu

Abstract

It is predicted that 70% of the silicon real-estate will be occu-
pied by memories in future system-on-chips. The minimiza-
tion of on-chip memory hence becomes increasingly impor-
tant for cost, performance and energy consumption. In this
paper, we present a reasonably fast algorithm based on iter-
ative improvement, which packs a large number of memory
blocks into a minimum-size address space. The efficiency of
the algorithm is achieved by two new techniques. First, in
order to evaluate each solution in linear time, we propose a
new algorithm based on the acyclic orientation of the mem-
ory conflict graph. Second, we propose a novel representa-
tion of the solution which effectively compresses the poten-
tially infinite solution space to a finite value ofn!, wheren
is the number of vertices in th memory conflict graph. Fur-
thermore, if a near-optimal solution is satisfactory, this value
can be dramatically reduced toχ!, whereχ! is the chromatic
number of the memory conflict graph. Experiments show
that consistent improvement over scalar method by 30% can
be achieved.

1 Introduction

Today’s telecommunication and consumer electronics appli-
cations demand computational power that can be met only
by integrating more and more hardware components. Given
that such applications typically buffer and process a large
amount of data, the interface between logic and memory
tends to become the performance bottleneck. While memo-
ries employing advanced signaling techniques such as Ram-
bus memories are emerging to alleviate the problem, it is
often simpler and faster to integrate memory and logic on a
single chip. It is hence not surprising to find on-chip memo-
ries to occupy a larger portion of silicon area than logic does

in the future systems-on-chips. While traditional CAD has
devoted to the minimization of logic area in order to reduce
manufacturing cost, which exponentially depends on the die
size, the interest in the minimization of memory size, has
emerged only recently.

Naturally, one can achieve memory saving by overlap-
ping the address space of distinct memory blocks by ana-
lyzing their lifetimes. The data analysis techniques, be it
array-based or pointer-based [13], establish the conflict rela-
tionship between the life time of program memory blocks (or
even subblocks). The problem of mapping memory blocks
to addresses which minimize the total size of the address
space, while honoring the conflict relation, remains to be
solved. Previous methods either use a naive extension of
the scalar register allocation algorithms, which produce sub-
optimal results; or use a heuristic algorithm of cubical com-
plexity, yet with no guarantee of optimality. In this paper,
we develop a new algorithm under the classical framework
of iterative improvement, where either a greedy or simulated
annealing strategy can be used. The contribution of this al-
gorithm is three-fold: First, we find that an acyclic orienta-
tion of the undirected conflict graph leads to a linear algo-
rithm for memory packing and therefore is perfect for so-
lution evaluation. Second, we are able to discover a finite
solution space that isP-admissiblein the sense that an op-
timal solution is guaranteed to be included. This solution
space has a size ofn!, wheren is the number of the vertices.
Third, we show that if the P-admissibility can be relaxed,
we can dramatically reduce the size of the solution space to
χ!, whereχ is the chromatic number of the conflict graph,
thereby dramatically reduce the time of convergence. Fortu-
nately, experiments show that near-optimal solutions can be
found within this solution space.

The rest of the paper is organized as follows: In Sec-
tion 2, we discuss related work. In Section 3, we formally
define the problem. In Section 4 we present our algorithm in
detail. In Section 7, we describe the evaluation methodology
and show the experimental results.

2 Related Work

The storage minimization problem evolves from the scalar
variable minimization problem, which manifests as the reg-
ister allocation problem in the compiler community, where a
heuristic-based graph coloring algorithm is found to be the
most efficient in practice [3]. A simple-minded extension of
the graph coloring algorithm to storage minimization leads
to inferior result due to the fact that unlike registers, the sizes
of the memory blocks are different.

The storage minimization problem has been attempted
at the system level. For example, Bhattacharyya and Lee
[1] have studied buffer minimization for the so-called syn-
chronous dataflow SDF) programs. A SDF program models
the data (memory) access explicitly using arcs between the
computational actors. The buffer memory usage can be op-
timized by a careful schedule of actor execution.

In the high level synthesis community, [8] and [9] have
studied clustering array variables into different memory blocks.
[4], [10] and [11] studied the same problem with the goal of
estimation in the context of system level exploration. Philip’s
Phideo project [5], pioneered memory architecture explo-
ration for stream-based signal processing applications. The
architecture group at UC, Irvine [7] studied the memory ar-
chitecture exploration in the context of embedded proces-
sors.

The storage minimization problem for systems-on-chip
has been systematically attacked at IMEC in the MATISSE
project [2]. In MATISSE, a 2-stage strategy was proposed
to perform the “in-place” optimization for multidimensional
arrays. During the first phase, “the intra-signal windowing”
is performed to interleave elements within an array. During
the second phase, the “inter-signal placement” is performed
to interleave arrays.

3 Problem Formulation

The input of the memory allocation problem is a set of mem-
ory blocks, as well as aconflictrelation between these blocks,
which indicate whether or not that any pair of the memory
blocks can be shared, or having an overlapping memory ad-
dress space. The memory block is characterized by its size,
which can be any natural numbers. The conflict relation is
derived by discovering the “life time” of the memory blocks
using dataflow analysis, which is not the subject of this pa-
per.

An allocation, as defined by Definition 1 is then the as-
signment of address location, represented by an integer, to
each of the memory block, such that the conflict relation is
honored.

Definition 1 Given a set of memory blocks1 V : hiBlock, and
a conflict relation E: hiV�V between the memory blocks, a
memory allocation, or a memory packing, is a mapping

1Here we use the notationhiA to represent a power set ofA, and the notation[]A to
represent the set of all sequences over elements ofA.

a b c d e f g
size 1 2 1 1 1 1 3

(a) memory block sizes

a

b

c

d

e

f

g

a

b

c

d

e

f

g

(b) conflict graph (c) colored graph

Figure 1: Memory packing by coloring.

A : V 7! N , such thathu;vi 2 E ! [A(u);A(u)+u:size]\
[A(v);A(v)+v:size] =�.

Obviously, one allocation can be better or worse than an-
other, depending on whether or not the total memory size
occupied by all memory blocks is smaller. According to
Definition 2, the allocation that results in the smallest total
memory size is the optimal allocation.

Definition 2 For an allocationA : V 7!N , its memory size
kAk is defined to be maxv2VA(v)+v:size. An allocationA0

is said to be optimal if8A ;kAk � kA0k.

4 Algorithms

In this section, we outline our proposed algorithm. For a
detailed treatment, the readers are referred to [12]. To of-
fer more insight on why we can perform better, we start by
describing the use of graph coloring for memory allocation.

4.1 Graph coloring

Given a conflict graphhV;Ei, whereV is the set of memory
blocks andE is the conflict relation, a coloring algorithm
assignscolors to each of the vertex in the graph such that
no adjacent vertices have the same color. The result of col-
oring can be directly used to assign memory addresses by
making sure that vertices with the same color will share the
same memory space, while vertices with different colors will
never overlap.

Example 1 Figure 1 (a) and (b) shows a conflict graph as
well as the sizes of the blocks represented by the vertices of
the graph. Figure 1 (c) shows a valid coloring of the conflict
graph and a strategy described above is applied to obtain a
memory allocation, which has a total memory size of 7.

It becomes immediately evident that as soon as the sizes
of the memory blocks vary, the coloring-based allocation al-
gorithm quickly degrades to suboptimal. For example, since
b has a size of two, both e and f in Figure 1 (c) can share the
same memory region as b, although e and f themselves shall
not overlap. For the same reason, c and d should be able to
share space with g, which has a size of three.

Exploiting the memory size variation is not trivial. In [2],
a strategy has been employed where each memory block is
attempted in a greedy fashion to be assigned an address. For
each of such attempts, conflict has to be checked against the
blocks that have been already assigned an address. In case
of failure, another block has to be attempted. This algorithm
has a cubical complexity precisely because of the amount of
comparisons one has to make for conflict detection, as well
as the amount of backtracking one has to perform in case of
failure.

4.2 Acyclic Orientation

One approach to dramatically reduce the complexity of the
cubical allocation algorithm is to carefully devise a proper
orderof address assignment so that:

� each vertex needs to be assigned onlyonce(no need
for backtracking);

� the conflict constraint isimplicitly satisfied (no need
for conflict checking).

We observe that such an order can be found by converting
the reflectiveconflict relation into anirreflectivepartial or-
der. In other words, converting the undirected conflict graph
into a directed acyclic graph. With such conversion, we
effectively convert the memory allocation problem into the
scheduling problem, if we equate the memory space domain
to the time domain, and memory block size to the delay.

Example 2 Figure 2 (a) shows an orientation of the undi-
rected conflict graph in Figure 1 (b). This directed graph
can be “scheduled” as shown in Figure 2 (b) to obtain the
memory allocation, which has a total size of 6. Note that this
result is better than the one obtained in Figure 1 (c).

One can apply any scheduling algorithms to obtained a
valid memory allocation. Theorem 1 states that the an ASAP
strategy is in fact optimal for a given orientation.

Theorem 1 Let g= hV;Ei � Block� (Block�Block) be
a memory conflict graph. Let F be an acyclic orientation.
Then for any schedule S of F,jjSjj � jjasapSchedule(V;F)jj.

5 Vertex Permutation

Now the question is whether an acyclic orientation always
exists. Theorem 2 provides a positive, constructive answer.

Definition 3 A permutationof finite set A is a function P:
A 7! N such that8u;v2 A:u 6= v) P(u) 6= P(v).

a

b

c

d

e

f

g

a

b

c

d

e

f

g

(a) an oriented graph (b) schedule of an oriented graph

Figure 2: Memory allocation by acyclic orientation.

1

1

1

1

1

1

1

1

1

1

1

1

Figure 3: Good and bad orientations.

Theorem 2 Let g= hV;Ei � Block� (Block�Block) be
a memory conflict graph, then for any vertex permutation
P : V 7! N , there exists an acyclic orientation F of g.

What becomes crucial is whether an orientation that can
lead to optimal memory allocation can be obtained. To see
how the conflict graph orientation strongly affects the result
of allocation, consider the example in Figure 3, where two
different orientations of the same conflict graph are shown.
Assume each vertex has a size of one, then the orientation at
the left leads to an allocation of size 4, while the orientation
at the right leads to an allocation of size 2.

Since Theorem 2 ensures that the set of all vertex permu-
tations form a solution space of sizen!, a heuristic search
algorithm can be used to traverse the solution space, where
the linear ASAP scheduling algorithm can be used to eval-
uate the solution. Theorem 3 and Corollary 1 ensures that
an optimal solution is included in the solution space and it is
therefore P-admissible. This result corresponds very well to
the sequence-pair algorithm used in floorplanning [6].

Theorem 3 Let g= hV;Ei � Block� (Block�Block) be
a memory conflict graph, then for any memory packing A:
V 7! N , there exists a vertex permutation P: V 7! N from
which A can be derived.

Corollary 1 Let g= hV;Ei � Block� (Block�Block) be a
memory conflict graph, then there exists a vertex permuta-
tion P : V 7! N from which an optimal memory allocation
can be derived.

6 Color Permutation

Sincen! is still a large number, the search for the optimal so-
lution can become much more efficient if the solution space
can be compressed further. Our next observation is that a
coloring of the conflict graph also defines an acyclic orien-
tation.

Theorem 4 Let g= hV;Ei � Block� (Block�Block) be a
memory conflict graph, and for any coloring C: V 7! N of
g, there exists an acyclic orientation F of g.

This leads to the strategy that a minimum coloring of the
conflict graph is first found, and then different permutation
of the color assignment is used to define the solution space.
If we denote the chromatic number, that is, the number of
color used in the minimum coloring, asχ, then the size of
the solution space becomesχ!, which is substantially smaller
thann!.

Note that while the solution space is substantially com-
pressed, it is no longer P-admissible. Fortunately, our ex-
periments, as detailed in the next section, show that a near-
optimal solution can always be found. In addition, expensive
search strategies such as simulated annealing are not neces-
sary in practice.

7 Experimental Result

We implemented the discussed algorithms in the C program-
ming language and applied them on the DIAMCS bench-
marks with randomly generated memory sizes. The result is
summarized in Table 1: For each benchmark, we show its
size in terms of the number of nodes and edges in the graph.
We also report the allocation results for both the coloring
based algorithm (color) and our proposed algorithm (perm),
as well as its percentage of improvement over the coloring
based algorithm. The algorithm runtime in units of millisec-
onds on a Ultra-5 Sun workstation with 128M of memory is
also displayed.

We found that our algorithm performs on average 30%
better than the coloring algorithm.

8 Conclusion

In this paper, we present the importance of memory min-
imization under the context of systems-on-chip. We then
present a new algorithm for the global minimization of mem-
ory sizes. The novelty of this technique lies in the obser-
vation that memory allocation problem can be efficiently
solved if an orientation of the conflict graph is found and
such orientation can be fully characterized by a permuta-
tion of its vertices, or a permutation of the vertex colors.
The algorithm can then be elegantly encoded in the clas-
sic iterative improvement framework with a complexity of
O(h(jVj+ jEj), whereh is the number of iterations. This
algorithm can quickly converge due to the fact that the size

Benchmark # # total size runtime (ms)
nodes edges color perm color perm

myciel3 11 20 89792 74688 (16%) 0 0
myciel4 23 71 125120 83520 (33%) 0 10
myciel5 47 236 128064 92736 (27%) 0 40

anna 138 986 297600 156544 (47%) 10 200
david 87 812 296768 201408 (32%) 0 130

le45015a 450 8168 543296 383296 (29%) 150 14550
le4505a 450 5714 364160 258112 (29%) 90 3990
le4505d 450 9757 422080 301568 (28%) 170 16890

queen1010 100 2940 415744 290560 (30%) 20 1130
queen1414 196 8372 635456 424640 (33%) 70 13240
queen66 36 580 242752 167104 (31%) 0 180
miles500 128 2340 442240 265408 (39%) 20 2230
mulsol 197 3925 940864 686592 (27%) 100 16940
mulsol 184 3916 600384 449216 (25%) 60 5130
inithx 645 13979 761280 481728 (36%) 310 84690
inithx 621 13969 769024 471552 (38%) 290 98280

Table 1: Experimental results.

of the solution space is onlyχ!, whereχ is the chromatic
number of the conflict graph.

In the future, we will study the interaction of this algo-
rithm with other tasks, such as aggressive inter-procedural
dataflow analysis, in the bigger context of memory optimiza-
tion for system-on-chip.

References

[1] S. S. Bhattacharyya and E. A. Lee. Memory management for
dataflow programming of multirate signal processing algorithms.
IEEE Trans. on Signal Processin, 42(5), May 1994.

[2] F. Catthoor, S. Wuytack, E. D. Greef, F. Balasa, L. Nachtergaele, and
A. Vandecappelle.Custom Memory Management Methodology, Ex-
ploration of memory organization for embedded multimedia system
design. Kluwer Academic Publisher, Boston, MA, June 1998.

[3] G. Chaitin, M. Auslander, A. Chandra, J. Cocke, M. Hopkins, and
P. Markstein. Register allocatinon via coloring.Computer Lan-
guages, 6(1):47–57, 1981.

[4] P. Grun, F. Balasa, and N. Dutt. Memory size estimation for multi-
media applications. InWorkshop on Hardware/Software Codesign,
Seattle, March 1998.

[5] J. V. Meerbergen, P. .Lippens, W. Verhaegh, and A. der Werf. Phe-
dio: high-level synthesis for high throughput applications.Journal
of VLSI Signal Processing, 9(1/2), January 1995.

[6] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. Vlsi module
placement based on rectangle-packing by the sequence-pair.IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 15(12), December 1996.

[7] P. Panda, N. Dutt, and A. Nicolau.Memory Issues in Embedded
Systems-on-chip : Optimization and Exploration. Kluwer Academic
Publisher, Boston, MA, October 1998.

[8] L. Ramachandran, D. Gajski, and V. Chaiyakul. An algorithm for
array variable clustering. InProceedings of the European Design
and Test Conference, Paris, France, March 1994.

[9] H. Schmit and D. E. Thomas. Synthesis of application-specific mem-
ory designs. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 5(1), March 1997.

[10] I. Verbauwhede, C. Sheers, and J. Rabaey. Memory estimation for
high level synthesis. InProceeding of the 31st Design Automation
Conference, San Diego, CA, June 1994.

[11] Y. Zhao and S. Malik. Exact memory size estimation for array com-
putations.IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 8(5), October 2000.

[12] J. Zhu. Color permutation: an iterative algorithm for memory pack-
ing. Technical Report CE-01-04-01, Electrical and Computer Engi-
neering, University of Toronto, April 2001.

[13] J. Zhu. Static memory allocation by pointer analysis and coloring. In
Design Automation and Test in Europe, March 2001.

	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index

