
Abstract

    In this work, a new and effective procedure, called REDI, to
efficiently identify redundant single stuck-at faults in
combinational logic circuits is proposed. The method is fault
oriented and uses sensitizability of partial paths to determine
redundant faults. It uses only implications and hence may not
determine all the redundant faults of a circuit. However,
experimental results presented on benchmark circuits show
that the procedure identifies nearly all the redundant faults in
most of the benchmark circuits. The key features of REDI that
make it efficient are: partial path sensitization, blockage
learning, dynamic branch ordering and fault grouping.
Experimental results on benchmark circuits demonstrate the
efficiency of the proposed procedure in identifying redundant
faults in combinational logic circuits.

1. Introduction

    Efficient methods to identify untestable faults in logic
circuits are important for reducing test generation time and for
logic optimization. Several methods have been proposed to
identify untestable stuck-at faults in combinational logic
circuits [5,6,9,10,11]. The procedures can be divided into two
main categories, fault oriented and fault independent. Fault
independent methods typically require smaller run times
compared to fault oriented procedures. On the other hand,
fault oriented procedures identify higher percentages and often
all of the untestable faults in a circuit. Automatic test
generation procedures that belong to the class of fault-oriented
procedures and use the branch-and-bound approach are
guaranteed to identify all the untestable faults given enough
time. Efficient procedures for identification of untestable
faults attempt to identify untestable faults without using
branch-and-bound procedures used in test generators and
hence are faster than test generation procedures, but may not
identify all the untestable faults in a circuit. The procedure
REDI proposed in this work is fault-oriented, yet it requires
much smaller time than a complete ATPG algorithm to

identify a large percentage of redundant faults.
    The proposed procedure addresses the following problem:
Given a set F of single stuck-at faults in a combinational logic
circuit, identify the redundant faults in F.
    The paper is organized in the following way. In Section 2,
the basic algorithm is introduced and basic concepts used in
this work are defined and illustrated. In Section 3, several new
techniques are described in detail. Experimental results on
benchmark circuits are given in Section 4. Section 5 contains
conclusions.

2. Overview

    The basic algorithm of this work is similar to the
propagation procedure of the Single-Path-Oriented Fault-
Effect Propagation (SPOP) test generation procedure [8].
SPOP is an ATPG strategy that propagates fault effects to
primary outputs through a single path prior to performing line
justification. A similar strategy is used in SPIRIT[12]. It was
shown in [8] that many redundant faults could be identified
during the fault effect propagation phase.
    A combinational logic circuit can be uniquely partitioned
into internal fan-out free regions. An example of such a
partition is given in Figure 1. The internal fan-out free regions
(abbreviated as FFRs) are shown enclosed in triangles. From
any input of a gate in a FFR there is a unique path to the
output of the FFR. Hence there is a unique partial path to
propagate the effect of a fault from an input of a gate in a FFR
to the output of the FFR. Examples of partial paths in FFRs
are shown by bold lines in Figure 1.
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    All the paths in a combinational logic circuit can be
obtained by connecting partial paths in the FFRs of the circuit.
We levelize the circuit after it is partitioned into FFRs starting
from the FFR containing the fault, which is at level 1. This is
illustrated in Figure 2. The partial path which starts from the
fault site and ends at the output of the level 1 FFR is called the
first level partial path. For any fault in a FFR, there is a unique
first level partial path. The partial paths in FFRs that are
directly driven by the first level partial path are called second
level partial paths. Each second level partial path drives
several 3rd level partial paths, and so on.

    To propagate the effect of a fault to the primary outputs, a
sensitizable path from the fault site to a primary output must
exist. Thus, if it can be proved that none of the paths from the
fault site are sensitizable, then the fault is proved to be
redundant. However, since the number of paths from a fault
site to the primary outputs can be very large, efficient methods
to analyze sensitizability of a large set of paths are necessary.
    In Figure 3, the pseudo code for the basic procedure to
determine if the effect of a fault can be propagated to a
primary output is given. If the procedure fails to propagate the
effect of a fault, the fault is determined to be redundant.
Several techniques described in the next section are used to
reduce the run time of the procedure.
    In the procedure given in Figure 3, sensitization of a partial
path is determined by using direct and indirect implications
learned through static learning. The X-path check [2] is also
used to make sure that further propagation of fault effects is
possible.
    In a typical application of a procedure to identify the subset
of redundant faults in a given set of faults F, there may be
several testable faults in F in addition to redundant faults. For
this reason, we included in REDI techniques to speed up
identification of redundant faults as well as a technique to
speed up the identification of testable faults. These are
described in the next section.

3. New Techniques

    In this section, we describe the new techniques used to
reduce the run time of the SPOP based procedure to identify
redundant faults in combinational logic circuits.

3.1 Blockage Learning
    Blockage learning is used to determine necessary conditions
to propagate fault effects through partial paths in FFRs. These
necessary conditions are in addition to those learned using
static learning. We use these additional necessary conditions
and those found using static learning in the procedure
find_sensitizable_path () given in Figure 3. The example given
in Figure 4 illustrates blockage learning. In Figure 4, it can be
observed that to propagate the effect of a fault through FFR1
to any output requires S to be set to 1. Requirements of this
nature can be learned by implying logic value 0 and 1 on each
fan-out stem of the circuit, and backtracing from every
unspecified input of a gate that has at least one input that was
set to the controlling value. An FFR is blocked if every one of
its fan-out branches is reached during backtracing. The
procedure for learning the necessary conditions to avoid
blocking of fault propagation is similar to the ones in FIRE [9]
and MUST [11]. The important difference between the goals
of the blockage learning in REDI and FIRE or MUST is that
the blocked signal lines of interest in REDI are fan-out stems
whereas in FIRE or MUST the targets are the faults in a given
set of faults.  Additionally, the necessary conditions found
using blockage learning are used to eliminate partial paths
through which effects of faults cannot be propagated during
the execution of the procedure find_sensitizable_path () given

Redundancy_Identify (fault line/v)
{
    if (imply (line, v’) == FAIL)
       return (REDUNDANT);
    set SENS=Φ;
    if (find_sensitizable_path(line,SENS) == FAIL)
       return (REDUNDANT);
    else return (SUCCESS);
}

find_sensitizable_path(line,SENS)
{
    find the set SENS’ of values necessary to sensitize the partial

path from line to the output of its FFR;
    if (imply(SENS ∪ SENS’) == FAIL)
       return (FAIL);
    else if (the end line of the partial path is a PO)
       return (SUCCESS);
    else
      set SENS = SENS ∪ SENS’;
      for (every fan out branch fobi of the end line
            of the partial path)
           {
               if(find_sensitizable_path(fobi,SENS)
                == SUCCESS) return (SUCCESS);
           }
    return (FAIL);
}

Figure 3. Pseudo code for path sensitization

PP1
Fault f

PP11

PP12

PP1r

PP111

PP11s

1st level PP   2nd level PP   3rd level PP

Figure. 2. Illustration of partial path levelization



in Figure 3. The pseudo code of the procedure used for
blockage learning is given in Figure 5.
    In Figure 6, we show the total number of redundant faults
identified in six ITC99 benchmark circuits B14s, B15s, B17s,
B20s, B21s and B22s, with and without using blockage
learning. These benchmark circuits are used in this experiment
and in the one reported in the next subsection, since they
contain faults that require relatively larger run times to
classify. The horizontal axis in Figure 6 gives the number of
FFR levels analyzed starting from the fault site to determine
the number of redundant faults indicated by the height of the
corresponding bar. The following observations can be made
from Figure 6:
1. The total number of redundant faults identified with and

without blockage learning is the same if all the paths from
the fault sites to the circuit outputs are analyzed. This
implies that blockage learning does not help to increase
the total number of redundant faults identified if the
number of levels is not restricted.

2. The number of redundant faults identified by analyzing
partial paths over a restricted number of levels is higher
with blockage learning than without blockage learning.
This implies that, in this case, blockage learning reduces
the number of partial paths analyzed to determine
redundant faults, and hence helps to reduce run times.

    For example, by analyzing partial paths with blockage
learning through six levels of FFRs from the sites of faults,
3743 out of a total of 3896 redundant faults are identified in
the benchmark circuits above. This means that 3743 redundant
faults are identified because their effects could not be
propagated through any of the partial paths in the first six
levels from the fault sites. Without blockage learning, we
could only find 3116 redundant faults by analyzing partial
paths through six levels of FFRs.

    Blockage learning is also “inexpensive”. What it requires is
stem implications and backtracing to find blocked FFRs. Since
static learning procedures also perform stem implications, one
can combine these two procedures and then the increase in
compute time for blockage learning over the time for static
learning will be small.

3.2 Dynamic branch ordering
    If a fault is testable, there must be at least one sensitizable
path from the site of the fault. Quickly determining that such a
sensitizable path exists reduces the time to determine that the
fault cannot be proved to be redundant using conditions for
fault propagation only.
    Decisions on which partial path through a FFR is to be used
to propagate the effect of a fault is made at a fan-out stem.
This is done by selecting a branch of the stem. Previous
strategies for selecting paths to propagate fault effects used
static measures such as observalility[1] to select partial paths.
We use the following dynamic procedure to order the branches
of a fan-out stem.

1. The initial order of all the branches is based on the
observability provided by SCOAP[1]. This ordering
is only performed once in a preprocessing stage.

2. Consider the case where a redundant fault is
determined on a gate in an arbitrary FFR, FFR0. Let
g1, g2, …, gk be fan-out branches driving FFR0, and
let h1,h2, …, hk be the fan-out stems connected to
g1, g2, …, gk, respectively.  In the list of fan-out
branches of hj, 1≤j≤k, gj is moved to the end of the
list. This ensures that gj is not considered again
unless all the other branches of hj also contribute to
redundant faults.

3. If the effect of a fault is successfully propagated
along a cascade of partial paths to a circuit output, the
fan-out branch driving each partial path is moved up
to the first place.

   The branch ordering proposed above does not aid in
identifying redundant faults. Redundant faults are
identified only if their effects cannot be propagated along
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Figure 6. Blockage learning results

Blockage_Learning( )
{
    For (every stem S in circuit)
       {
           imply(S, 0);
           For (all blocked FFRi)
              Learn: Fault through FFRi requires S =1;
           imply(S, 1);
           For (all blocked FFRi)
              Learn: Fault through FFRi requires S =0;
       }
    Return;
}

Figure 5. Pseudo code for blockage learning
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any path to the outputs. However, it helps reduce the
number of paths tried to determine that the effect of a
testable fault can be propagated to a circuit output.

    In Table I, we give the average number of paths tried to
determine that the effect of a testable fault is propagatable to
an output. In the first row, we give the circuit name, in the
second and third rows, we give the average number of paths
analyzed without branch ordering and with branch ordering,
respectively. It can be seen that branch ordering reduces the
average number of paths analyzed to determine that the effects
of a fault can be propagated to a circuit output.

 3.3 Fault grouping
    In order to reduce the run time of the proposed procedure,
we analyze faults in a manner that allows maximal reuse of
analyses done for faults targeted earlier. This is achieved by
considering faults from circuit outputs to circuit inputs and
considering faults in FFRs in a breadth first manner. In the
following we discuss why this order of considering faults
allows maximal reuse of analysis data needed to identify
redundant faults.
1. The blockage information collected for fan-out stems of

FFRs is common to all the faults in a FFR as well as
faults that drive the FFR when their effects are propagated
through it. Similarly, the dynamic branch ordering uses
the knowledge of partial paths in FFRs containing
redundant faults and sensitizable partial paths to
dynamically order the branches of the fan-out stems in the
preceding levels.

2. By processing faults from the output to the inputs of a
FFR, once a redundant fault is found, appropriate faults in
the fan-in cone of the fault site can be immediately
marked as redundant. This observation was also used in
[4]. In addition, implications made for a fault in a FFR
can be reused for succeeding faults by incrementally
adding to the earlier implications.

3.4 Additional techniques
    In order to further reduce the run time of the procedure we
used five valued logic (0, 1, D, D’ and X) for fault effect
propagation. To compensate for the reduction in the number of
implications due to the use of five valued logic, we used the
parity of the number of inversions on a path driven by the fault
site to determine cases where X values must be replaced by 0
or 1 values to prevent fault effects of the fault under
consideration from blocking sensitization.
    Since we analyze partial paths through FFRs, the number of
levels of FFRs analyzed can be easily limited to reduce the run
time. We restricted the number of FFR levels analyzed from a
fault site to six in the experiments reported in the next section.

4. Experimental Results

    The procedure described in Figure 3 together with the
techniques proposed in Section 3 was implemented in one
package in the C programming language. We call this
procedure REDI. Results of applying REDI to ISCAS-85 and
the combinational logic of ISCAS-89 and ITC-99 benchmark
circuits are reported in this section.
    In addition to the new techniques described in the last
section, we also used some well-known techniques in REDI.
We used fault simulation of random patterns to identify easily
detectable faults and reduce the number of candidate faults
targeted. Fault simulation was stopped when a set of 32
consecutive random patterns did not detect any yet undetected
faults. We used only simple implications and static learning.
After we imply all the necessary values for a partial path, we
perform the x-path check[2].
   The set of faults F given to the procedure was the set of all
the collapsed single stuck-at faults. For the results given in this
section we limited the number of levels of FFRs analyzed to
six. We also set a limit of 100 on the number of partial paths
considered per fault.
      In Table II, we report the results of REDI for ISCAS-85,
ISCAS-89 and ITC-99 benchmark circuits. In Table II after
the circuit name we give the number of redundant faults
identified by [3] and [12], followed by the results obtained by
REDI. The run times reported are for a SUN Blade-1000
workstation using Unix OS. The run times reported are the
total times including time for fault simulation.
      From Table II it can be seen that REDI finds all the
redundant faults in 20 out of 28 benchmark circuits. Out of a
total of 11239 redundant faults in the 28 circuits, 11047
redundant faults are identified; i.e., approximately 98.3% of
all the redundant faults in the benchmark circuits are found by
REDI.
     In Table III we give run times to identify the redundant
faults by REDI and two deterministic test generators,
ATALANTA [6] and a test generator from Kyushu Institute of
Technology (KIT). All the procedures were run only on the
redundant faults identified by REDI. The recorded run times
are only to process these faults and do not include time for
fault simulation, static learning and processing other faults.
All programs were run on the same workstation described
above. The ATPG programs were allowed 100 backtracks per
fault. After the circuit name we give the number of redundant
faults identified by REDI that were given to all three
procedures to process, followed by the run times for REDI,
ATALANTA and the ATPG from KIT. Since the ATPGs
aborted on some faults we give the number of aborted faults in
parentheses, when applicable. From Table III it can be seen
that the run time for REDI to identify the redundant faults is
much smaller than that for the two ATPGs. Furthermore, some
faults are aborted by the ATPGs with the selected backtrack
limit.

5. Conclusions

    In this work, a new procedure called REDI to efficiently
identify redundant faults in combinational circuits was

CUT B14s B15s B17s B20s B21s B22s
No ord. 6.38 1.66 1.43 2.45 2.82 3.61

With ord. 3.83 1.11 1.22 1.25 1.32 2.23
Table 1. Dynamic branch ordering



presented. Redundant faults were identified by using
implications to determine that fault effects cannot be
propagated to circuit outputs. New techniques used to reduce
the run times to identify redundant faults are blockage
learning, dynamic branch ordering and fault grouping.
Experimental results showed that REDI identifies most of the
redundant faults in benchmark circuits.
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REDI REDI
red. run time (s) red. run time (s)

C432 4 1 0.01 S349 2 2 0.01
C499 8 8 0.01 S444 14 14 0.01

C1355 8 8 0.04 S713 38 38 0.02
C1908 9 9 0.08 S1238 69 66 0.10
C2670 117 98 0.08 S1423 14 14 0.03
C3540 137 137 0.38 S1494 12 12 0.13
C5315 59 59 0.15 S5378 40 40 0.20
C6288 34 34 0.25 S9234 452 440 0.90
C7552 131 131 0.40 S13207 151 150 1.62
B14s 274 264 6.57 S15850 389 388 1.71
B15s 508 500 44.24 S35932 3984 3984 7.47
B17s 1356 1323 165.72 S38417 165 165 2.68
B20s 486 451 11.12 S38584 1506 1506 11.27
B21s 496 466 10.94 B22s 776 739 21.15

Table II. Results for ISCAS-85, ISCAS-89 and ITC-99 Benchmark circuits

Run time in sec. (#abort) Run time in sec. (#abort)
REDI ATA. [6] ATPG* REDI ATA. [6] ATPG*

C432 1 0.00 0.00 0.00 S349 2 0.00 0.00 0.00
C499 8 0.00 0.00 0.00 S444 14 0.00 0.00 0.00

C1355 8 0.00 0.00 0.00 S713 38 0.00 0.01 0.00
C1908 9 0.00 0.01 0.00 S1238 66 0.01 0.02 0.03
C2670 98 0.00 0.51 (20) 0.14 S1423 14 0.00 0.00 0.00
C3540 137 0.01 0.02 0.02 S1494 12 0.00 0.00 0.01
C5315 59 0.01 0.02 0.01 S5378 40 0.00 0.01 0.00
C6288 34 0.01 0.01 0.01 S9234 440 0.07 4.29 (44) 1.80 (4)
C7552 131 0.02 2.82 (54) 3.54 S13207 150 0.05 2.40 (9) 2.58

B14s 264 0.48 12.99 (93) 12.45 S15850 388 0.08 1.59 (1) 0.51
B15s 500 1.52 51.74 (245) 113.84(9) S35932 3984 1.36 10.82 4.95
B17s 1323 4.40 233.23 (648) 317.98(27) S38417 165 0.02 2.44 (4) 0.08
B20s 451 0.48 24.90 (148) 20.79 S38584 1506 0.54 8.29 (14) 2.72

B21s 466 0.50 21.65 (116) 11.69 B22s 739 1.03 58.13 (252) 30.54
*This ATPG was given to us by Professor Seiji Kajihara of Kiyushu Institute of Technology.

Table III. Comparison of REDI with ATPGs
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