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ABSTRACT

Efficient high level designtools that can mapbehavioral descriptionsto
FPGAarchitecturesareoneof thekey requirementsto fully leverage FPGA
for high throughputcomputationsandmeettime-to-market pressures. We
presenta compiler that takes as input algorithmsdescribedin MATLAB
andgeneratesRTLVHDL. TheRTLVHDL thencanbemappedto FPGAs
usingexistingcommercial tools.Theinput applicationis mappedto multi-
pleFPGAsbyparallelizingtheapplicationandembeddingcommunication
andsynchronizationprimitivesautomatically. Our compilerinfers themin-
imumnumberof bits requiredto representthevariablethrougha precision
analysisframework. Thecompilercan leverage optimizedIP coresto en-
hancethe hardware generated. Thecompileralso exploits parallelism in
the input algorithm by pipelining in the presenceof resource constraints.
We demonstrate the utility of the compiler by synthesizinghardware for
a coupleof signal/image processingalgorithmsandcomparingthemwith
manuallydesignedhardware.

1. INTRODUCTION

Theconceptof usingFPGAsfor customcomputingevolvedin the
late 1980’s. Wide adoptionof the concept,however, hasgained
groundsonly recently. Oneof theprincipalenablingfactorwasthe
availability of commercialsynthesisandphysicalplacementtools
that raisedthe level of designabstractionto hardwaredescription
languagessuchas VHDL/Verilog. With gatecountsfor modern
FPGAsreachingmillions,wearepoisedfor yetanotherrevolution.
Thegoalthis time is to raisethelevel of abstractionto generalpur-
poseprogramminglanguagessuchasC/C++,JavaandMATLAB � .
Currentdesignmethodologiesrely ontheexpertiseof thehardware
engineerto maptheapplicationontoaFPGAboard.While thisen-
ablesa lot of flexibility andfine grainedcontrolover thedesign,it
alsointroducesa lot of logic designat a very low level. Not only
is this processtediousanderror-pronerequiringcostlydebugging
iterations,muchof thework canbeautomatedresultingin designs
which arecorrectby construction.Anotherkey aspectof mapping
applicationsonto hardware is to exploit coarseand fine grained
parallelismin the application. Again, concurrentsimulationsof
multiple statesis not the easiestthing to manage.Many mature
andadvancedcompilertechniquesexist that candiscover andex-
ploit parallelismandweighdifferenttrade-offs automatically. All
this will relieve thedesignerto focuson high level algorithmicas-
pectsratherthanlearningaboutnew boardarchitecturesor waysto
boostperformanceby low level manipulations.

Synthesizinghardwarefrom generalpurposelanguageshasre-
ceivedattentionin bothindustryandacademia.A broadclassifica-
tion of thedifferentapproachedis possiblefrom two perspectives
:

1. TargetLanguage : Theapproachescanbecategorizedaccord-
ing to thelanguagesthey targetfor synthesis.C/C++hasbeen
themostpopularchoice[12, 15, 16, 17, 18,20,21, 22, 25, 19].

� MATLAB � is a registeredtrademarkof Mathworks,Inc.

Java hasbeenthe focusof somerecentworks [24, 23]. Our
focusis on MATLAB.

2. Parallelism Specification: The approachescan be classi-
fied dependingon whetherthey attemptto automaticallypar-
allelize the input applications[22, 25, 20, 19] or they de-
pend on the user to specify the parallelism [12, 18, 16,
17, 21, 24]. Dependingon the user to specify the paral-
lelism simplifies the compilera lot, but it typically requires
modifications/additionsto the target language. It also bur-
densthe userto extract the parallelism. Userspecifiedpar-
allelism approachesdoesraise the designabstractionfrom
VHDL/Verilog, but still require considerablemanualitera-
tionsandinterventions.Automaticparallelizationmakesthe
compilercomplex but it doesn’t requireany modificationsto
thelanguageandtheuseris not burdenedwith finding paral-
lelism. This cutsdown manualiterationsto a minimum. Our
approachis automaticparallelization,but experiencedusers
canalsodirectthecompilerthroughdirectives.

Optimizedhardwaresynthesisfrom ageneralpurposelanguage
is a very complex taskandtheassociatedcompilerframework has
many components.The componentsincludethe front-endof the
compilerdealingdirectly with the target language,the intermedi-
atesynthesisframework, the optimizationsinvolved in synthesiz-
ing thehardwareandtheback-endwhichoutputsthehardwareand
interfaceswith lower level tools. All the componentshave their
own specificissues,which wereaddressedin individual bits and
pieceswith many alternative solutions[4, 6, 5, 7, 10, 11, 15, 18,
19,20, 22, 21, 24, 17,16, 25]. Our attemptin this paperis to dis-
cussthecompletesystemof anoptimizinghardwaresynthesistool
andput forward a working combinationof the massof solutions
contributedfor eachaspectof thecompiler.

2. WHY MATLAB ?

While mostof theindustryandacademiahasfocusedonC/C++as

thesystemdescriptionlanguage,ourmainfocusis onMATLAB �
[1]. Whereasmany synthesisissuesseemindependentof theinput
specificationlanguage,MATLAB doesoffer distinctive advantage
dueto thefollowing two reasons:

1. MATLAB is extremelypopularin the signal/imageprocess-
ing communitywith over 500,000users.MATLAB is more
intuitive thanC/C++andit enablessimulationandvisualiza-
tion of algorithmswith muchlesseffort thanC/C++.A direct
synthesispathfrom MATLAB without first converting it into
anotherlanguagelike C/C++ will be very usefuland it will
enablevery rapidandeasyevaluationof a lot of algorithms.
Thusa designerwill be ableto directly seethe tradeoffs re-
sultingfrom high level algorithmicchanges.

2. A key techniquethatenablesmulti-million gatedesignsis re-
useof IntellectualProperty(IP) cores.Suchcorescorrespond
to commonfunctionssuchasFFT, Viterbi decodersandMa-
trix Multiplication. Thesefunctionsare available in MAT-
LAB asstandardfunction calls andoperatorswith standard
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interfaces.This featurebecomesparticularlyusefulin recog-
nizing thataparticularIP blockcanbeusedfor partof thein-
put applicationandhow to generatetheinterfacesignalscor-
respondingto it. In languageswithout standardlibrary calls
for thealgorithms,theremaybeinnumerablewaysto specify
andinvoke thealgorithms.In suchasituationit becomesvery
difficult to recognizethatanIP block canbeusedfor partof
thealgorithmandgeneratingtheinterfacesfor it.

However, MATLAB doeshave somedisadvantages.The two
mainissuesin thatrespectare:

1. MATLAB doesn’t have any notionof type/shapefor its vari-
ables. This becomesa nightmarefrom the compiler per-
spective andusingexisting techniques,in mostcasesineffi-
cient codeis generatedthat covers all or many of the pos-
sible types/shapesof the variables. We have developeda
type/shapealgebraframework thatenablesaccurateinferenc-
ing, leadingto efficient hardwaregeneration[9]. In spiteof
the inferencingframework, if the compileris unableto do a
satisfactoryjob, theusercanforcethetype/shapeof avariable
throughdirectives.

2. Simulation of scalarizedMATLAB code is slower than a
compiledapproach. This is becauseMATLAB is an inter-
preted languagewhich incurs a lot of overheadif simple
computationsaredonein a loop. However, our focus is on
signal/imageprocessingkind of applicationswherearbitrary
loopsandarraymanipulationsis not thenorm.Regularloops
with extensive useof library functionsis morecommonfor
suchapplicationsfor whichMATLAB is ideally suited.

3. COMPILATION OVERVIEW

We now presentan overview of our compiler architecture. Fig-
ure 1 shows the differentcompilerphases.The front-endparses
theinputMATLAB programandbuildsaMATLAB AST(Abstract
SyntaxTree).Theinput codemaycontaindirectives[3] regarding
the types,shapesandprecisionof arraysthat cannotbe inferred,
which areattachedto the AST nodesasannotations.This is fol-
lowedby a type-shapeinferencephase.MATLAB variableshave
no notionof typeor shape.Thetype-shapephaseanalyzesthein-
put programto infer the type andshapeof the variablespresent
for which type/shapeis not provided by directives. This is fol-
lowed by a scalarizationphasewherethe operationon matrices
areexpandedout into loops. In caseoptimizedlibrary functions
areavailablefor a particularoperation,it is not scalarizedandthe
IP corecorrespondingto the library function is usedinstead.The
scalarizedcodeis then passedthroughthe parallelizationphase.
The parallelizationphaseattemptsto exploit coarsegrain paral-
lelism by eithersplitting a loopontomultiple FPGAson theboard
(data-parallelapproach)or by putting different tasksonto differ-
entFPGAsandpipeliningtheoutputof oneto theinputof another
(systolic approach).The parallelizationphaserelies on commu-
nicationlibrariesimplementedfor the targetarchitectureboardto
communicatebetweenthe differentFPGAs. A statemachinede-
scriptionin VHDL is thensynthesizedfrom theparallelizedscalar-
izedMATLAB codefor eachof theFPGAs. Mostof thehardware
relatedoptimizationsareperformedon the VHDL AST. A preci-
sioninferenceschemefindstheminimumnumberof bits required
to representeachvariablein the AST. The precisioninformation
is usedin instantiatingcustomizedIP blockscorrespondingto the
functionsandoperators.Transformationsare thenperformedon
theAST to optimizeit accordingto the memoryaccessespresent
in theprogramandcharacteristicsof theexternalmemory. This is
followed by a phaseto performoptimizationslike pipelining un-
der resourceconstraintsthat alter partsof the statemachinethat
wasconstructedearlier. Finally a traversalof theoptimizedVHDL
AST producestheoutputcode.

4. EXPERIMENTAL SETUP AND BENCHMARKS

Our compileris designedto producecodefor mostcurrentFPGA
architectures.Theresultspresentedin this paperarefor hardware

generatedfor theWildChild ��� FPGAboardfrom AnnapolisMi-
croSystems.It is a VME compatibleboardwith eightXilinx 4010
FPGAsandoneXilinx 4028FPGA.TheXilinx 4028hasanexter-
nalmemorythatis 32-bitwidewith 2 ��� addressablelocations.The
memoriesconnectedto the4010sare16-bit wide.

The benchmarksincludeMatrix Multiplication, FIR filter, IIR
filter, Sobeledgedetectionalgorithm,anAveragefilter anda Mo-
tionEstimationalgorithm.Thesebenchmarksrepresenttypicalsig-
nal/imageprocessingapplicationsthat are of interestto us. On
onehand,suchapplicationsareimportantasthey arerepresenta-
tive of a classof applicationsthat arepredictedto be ubiquitous
in next generationcomputingplatforms,in environmentsthat de-
mandhigh throughput.On theotherhand,theseapplicationshave
inherentparallelismsuitablefor exploitationby implementationin
customizedhardware.

5. MATLAB TO VHDL

Oneof the challengesin generatinghardware from MATLAB is
to figure out the type/shapeof the variables. As shown in Fig-
ure2, thesemanticsof anoperatorcandependon theassignments
to the operands.To generatehardware, the compilermustfigure

a  =  1   ;
b  =   3  ;

c   =    a  *   b  ;

( i )

a =  rand( 256 , 234 );
b = ones(234, 512 );

c  =  a   *  b  ;

( ii )

Figure 2. The semantics of an operator depends on the
type/shape of the operands in MATLAB. In (i) * is a scalar
multiplication whereas in (ii) it is a matrix multiplication.

out the exact datatype i.e, integer or floating point, or complex
numbersetc. Thecompileralsoneedsto figure out theshapei.e,
how many dimensionsthematrix (array)has,whataretheextents
in eachdimension,etc. Our type shapealgebraframework auto-
maticallyfiguresout thetype-shapeof thevariables[9]. In patho-
logical caseswherethecompileris unableto infer the type/shape
of thevariables,theusercanassistthecompilerby specifyingthe
type/shapeof selectedvariables.Oncethe type/shapeof thevari-
ablesaredetermined,thematrixoperationsarescalarized,theoper-
ationsareexpandedout into loops.Scalarizationof theMATLAB
AST is necessarywhen the objective is to perform a source-to-
sourcetransformationto a target languagethat is statically typed
and which only supportselementaloperations. MATLAB is an
array-basedlanguagewith many built-in functionsto supportarray
operations.Hence,to generatea VHDL description,it is neces-
sarythatthecorrespondingMATLAB AST is scalarized.Figure3
shows anexamplewhereVHDL codeis generatedcorresponding
toamatrixmultiply operation.Extensivediscussionof VHDL gen-
erationfrom MATLAB is reportedin [4]. Theframework is capa-
ble of handlingmulti-dimensionmatriceswhich aremappedto an
externalmemory. In addition,theloopandfunctioncall constructs
of MATLAB arealsosupported.Figure4 shows the experimen-
tal resultsof executiontimesof thebenchmarkson a Xilinx 4028
usingmanualandcompilerapproaches.As canbeseen,theman-
ually designedhardware on the averageis five times betterthan
thecompileroutput,notingthatit tookseveralmonthsto complete
themanualdesignswhile thecompilergeneratedthehardwarein a
matterof minutes.Reduction of design time is the key advantage
of using the compiler. In thenext few sections,we elaboratehow
our compiler closesthe performancegapbetweenits outputand
themanuallydesignedhardware.

6. PRECISION INFERENCING

Oneimportantfactorin generatingcustomizedhardwarefor anap-
plication is to efficiently utilize the silicon budgetavailable. A
key observation in this regard is that most image/signalprocess-
ing computationsareconfinedto 8 	 16 bits. To fully leverage
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Figure 1. Overview of the synthesis framework.

a  =  ones( 256 , 256 ) ;
b  =  ones(256 , 128 ) ;
         :
         :
c   =   a   *  b  ;

Type/Shape
Inferencing

a =  256 X 256  integer

b =  256 X 128  integer

c  =  256 X 128 integer

state 1 : i  <=  1 ;

state 2 :   if( i < 256 )
                 next <= state2
               else
                  next <= state 20;

                    :

--  apply address to memory interface

end;
   end;
     end;

      c(i , k ) = c(i , k ) + a( i, j ) * b(j , k) ;
    for k = 1 : 128
  for j = 1 : 256
for  i = 1 : 256

state    20 :
state   19 :     next <= state 2 ;

state  13 :     b_data <= mem_in ;

state 12 :      a_data <= mem_in ;

:

:

-- calculate    address

Generation

Machine
State

Scalarization

Figure 3. An example showing how a state machine is syn-
thesized for matrix multiplication by first doing type/shape
analysis, followed by scalarization.
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Figure 4. Ratio of execution times of compiler gener-
ated hardware compared to manually designed hardware is
shown. For example, for the matrix multiplication benchmark,
the compiler generated hardware is 4 times slower than the
manually designed hardware.

this fact, the minimum numberof bits requiredto representeach
variablemustbeinferredandappropriateoperatorsinstantiatedin
placeof generic32-bit operators.However, figuring out thepreci-
sionmanuallyin a real life designcanbevery tiresomeanderror
prone.Ourprecisioninferencingalgorithmpropagatesvaluerange
information back and forth the AST to figure out the minimum
bits requiredto representa variable,seeFigure5. In casewhere

a  =  8  ;        %  4  bits  required

b  =   4 ;       % 3 bits required

d  =   a + b ;  %  4 bits required

e  =   b  + input()  % unknown , give
                              % directive

Figure 5. Illustration of precision inferencing.

theprecisionof variablescannotbedeterminedstatically, theuser
canspecify the precisionby a directive; otherwisethe mostcon-
servative estimateis taken.For floatingpoint variables,in associa-
tion with theprecisioninferencingalgorithmanerroranalysisand
propagationschemeis included.Theerroranalysisdeterminesthe
resolutionof the floating point variablesneededgiven a specified
error that canbe toleratedat the output. Detailsof the precision
anderroranalysisalgorithmscanbefound in [7]. Figure6 shows
thesavings of resourcesin termsof CLBs whenthe precisionin-
ferencingalgorithmis appliedasopposedto instantiatinggeneric
32bit operators.
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Figure 6. Ratio of the resource utilization in terms of CLBs
while instantiating 32-bit operators as compared to determin-
ing the minimum number of bits required by precision infer-
encing.

7. IP CORE INTEGRATION

IP coresrangefrom optimizedimplementationsof FFTandViterbi
decodersto addersandmultipliers [13, 14]. To producea design
that rivals manualdesigns,one must be able to integrate these
IP coresautomaticallyinto the designssynthesized.To leverage
IP coresprovided by different vendors,our compiler provides a
standardandopeninterfacebetweenthecompilerandthe IP core
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database.TheIP coredatabasecontainstheEDIF/HDL implemen-
tationsandinterfacesto the IP cores.Along with eachIP core,a
code(in C/C++) is alsopresentthatgeneratestheinterfacefor us-
ing theparticularIP core. This codeis referredto asthe interface
generatorof theIP core.Theinterfacegeneratorcanaccessinfor-
mationabouttheAST througha uniform andopeninterfacewith
thecompiler. Thecompilerneedsto provide informationregarding
thevariablesandoperators,like whetherthey aresigned/unsigned,
integer/floatingpoint,constant/variableandwhatprecision.TheIP
databaseon the otherhandmustprovide informationto the com-
piler regardingthearea/performanceof theIP cores.Thestandard
interfaceis a way of facilitating theseinformationflows from dif-
ferentIP coresprovidedby differentvendors.Detailsof the inter-
faceandissuessurroundingtheinterfacegeneratorweredescribed
in [2]. Figure7 summarizesthe improvementsobtainedby using
theoptimizedIP coresasopposedto genericoperatorsandscalar-
izing all thefunctions.
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Figure 7. Percentage improvement in execution time by us-
ing optimized IP cores over generic operators.

8. PIPELINING

A closestudyof themanuallydesignedhardwareandthecompiler
generatedhardware showed that the principal reasonbehindthe
betterperformanceof the manuallygeneratedhardware was ex-
ploitation of fine grain parallelismandpipelining of the memory
accesses.Thispromptedusto deviseanautomatedwayof pipelin-
ing thememoryaccessesandexploit fine grainedparallelism.Our
pipeliningframework achievesthisobjective,anoverview of which
is givenin Figure8. Thepipeliningphasestartsby performingde-

Input

MATLAB   

statement applied for  conditionals

graph

algorithmoverlapping live scalars
code from the 
pipeline schedule

pipelined  VHDL 
code for the loop

Yes

No

loop 
check  if  

pipelining can be
construct nodes

and predicated  nodes

construct  dataflow

produce unpipelined code

apply  scheduling
produce pipeline 

schedule and rename
produce  VHDL

Figure 8. An overview of the pipelining framework.

pendency analysisof the loopsandbasicblocks. TheGCD testis
employedto figureout loopcarrieddependencies.In casethereare
no backward dependenciesin a loop, the loop is deemedpipelin-
able. Next the numberof memoryportsarereadas input to the
pipeliningalgorithm.Thepipeliningalgorithmthenperformsmod-
uloscheduling[6] whichoverlapsdifferentiterationsof aloopsuch
that numberof memoryaccessin any statedoesnot exceedthe
numberof memoryportsspecified.Themoduloschedulingalgo-
rithm canbebasedon eitherASAP (assoonaspossible)or ALAP

(as late aspossible)algorithms. The reasonthe pipelining algo-
rithm is basedon memoryports is that many of the image/signal
processingapplicationsarememorybound.They tendto perform
simpleoperationson relatively largedatasetsthat residein exter-
nal memories.Hence,optimizingthememoryaccessesin general
hasa hugeimpacton performance.Conflictscreatedin variables
dueto overlappingof iterationsis solvedby renamingthevariables
asdiscussedin [6]. Figure9 shows the impact of pipelining on
performance.Thecompilergeneratedpipelinedhardwarematches
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Figure 9. Ratio of the execution times of the compiler gener-
ated hardware with and without pipelining is shown, normal-
ized to the execution time of manually designed hardware.
For example, for the Sobel benchmark, the compiler gener-
ated hardware without pipelining is 8 times slower, whereas
the pipelined hardware is as fast as the manual design.

themanualdesignsin mostcases.In fact, thecompilergenerated
pipelinedhardwarefaresbetterthanthe manuallydesignedhard-
warefor the FIR andMotion Estimationbenchmark.This is due
to thefactthatmanualdesignerstypically pipelineandexploit par-
allelism within a single iteration of the loop. The compiler can
handlemuchmorecomplexity andexploits parallelismacrossthe
differentiterationsof the loops. For example,the pipelinekernel
synthesizedfor the motion estimationbenchmarkcontained200
concurrentstatementsspanning5 iterations.Suchcomplexity can
only behandledin anautomatedfashion.

9. RESOURCE CONSTRAINED PIPELINING

The pipelining algorithm presentedin the previous sectionwas
only constrainedby the numberof memoryportsandwasbased
on anASAP/ALAP schedulingalgorithmvariation. However, re-
sourceconstraintsmustalsobe taken into accountwhile pipelin-
ing. Typically, thepipelinedversionsconsumedtwice theamount
of CLBs whencomparedwith the non-pipelinedversionsfor the
benchmarkspresentedbefore. To introducethe capabilityof pro-
ducingintermediatedesignsthatwerepipelinedbut usedlessag-
gressive parallelism,a resourceconstrainedpipelining framework
was introduced. The resourceconstraintscanbe specifiedto the
pipelining algorithm in termsof numberof high level operators.
The pipelining algorithm usesa list schedulingalgorithm modi-
fied for moduloscheduling[5], suchthat thenumberof operators
usedconcurrentlyin any stateof thepipelinedoesnot exceedthe
specifiednumberof operators.The list schedulingalgorithmre-
liesonaheuristicthatestimatesthepriority of eachoperatorwhile
scheduling.We experimentedwith existing heuristicswhich gave
precedenceto operatorswith themaximumnumberof childrenor
whosedistancefrom thesink nodeof thecontrol-dataflow graph
waslongest.We alsodevisedour own heuristicswhich wasbased
ontheaggregateresourcerequirementsof thetreefanningoutfrom
the operatorand the available resources.It hasbeenshown that
suchan approachproducesefficient pipelineschedules[5]. Fig-
ure10 shows a summaryof the resultsfor thedifferentheuristics
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usedwhile producingresourceconstrainedpipelines.

0

5

10

15

20

25

30

1 2 3 4
Increasing resources

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

es

Max Pred Longest Path Agg. Res

Figure 10. Normalized execution times corresponding to the
different heuristics used in the list scheduling algorithm (max-
imum predecessor, longest path from sink, aggregate re-
sources of fanning tree) for the Sobel benchmark is shown.
The execution time with unconstrained resources is shown
at the far right.

10. MULTI-FPGA PARALLELIZATION

The schedulingand pipelining framework describedabove is
gearedtowardsutilizing thefine grainedparallelismpresentin the
application.Most currentFPGAboardscontainmultiple FPGAs.
A mechanismto leveragecoarsegrainedparallelismis requiredto
make useof themultipleFPGAs.In this direction,ourparalleliza-
tion framework partitionsthescalarizedMATLAB AST to gener-
atea partitionedAST for eachof theindividual FPGAspresenton
the board. An architecturedescriptionof the FPGA boardis re-
quired for specifyingthe target architectureto the parallelization
phase.The parallelizationphaseassumesa setof standardcom-
municationandsynchronizationprimitivesareimplementedonthe
FPGA board. The parallelizationphaseembedstheseprimitives
to synchronizebetweenthe differentpartsof the AST mappedto
differentFPGAs. In particular, two approachesto parallelizethe
MATLAB AST are adopted. The first approachis a dataparal-
lel approachwhereinthe executionof a loop is spreadacrossthe
FPGAs. The datathat is operatedon by the loop is split across
the memoriesassociatedwith the FPGAs. This is similar to par-
allelizing loops for distributedmemorymachines.In the second
approach,differentloopsaremappedto differentFPGAs,andthe
output of one loop is piped to anotherloop. This is similar to
the systolic parallelizationschemes.While the dataparallel ap-
proachis mosteffective for memoryboundapplicationsdueto the
increasedmemorybandwidthof multiple FPGAs,thesystolicap-
proachis particularlyusefulfor largeapplicationsasthe logic for
theapplicationcanbespreadacrossseveralFPGAs.

For theSobeledgedetectionbenchmarka speedupof 7.5 was
obtainedby mappingtheapplicationonto8 FPGAs.Thespeedup
wasobtainedin comparisonto the hardwaregeneratedfor a sin-
gle FPGA by the compiler. Comparisonwith manuallydesigned
hardwarein this caseis somewhat involved asmanuallymapping
the applicationsonto multiple FPGAsis a very time consuming
proposition(the very reasonwe designedthe compiler!). More-
over, asthespeedupobtainedis very nearto optimal,we conclude
that the parallelizationwassatisfactory. Extensive benchmarking
andcomparisonsof theparallelizationphaseis partof our current
work.

11. SUMMARY

We now presentthe resultof performingall the optimizationsin
tandemandcomparingagainstmanuallydesignedhardware. We
would like to emphasizeoncemore that the manuallygenerated

hardwaretook monthsof designeffort whereasthecompilergen-
eratedthe hardware in a matterof minutes. While a massive re-
ductionin designtime is achieved,thequalityof thehardwaregen-
eratedwasnot compromised.Indeed,the hardwaregeneratedby
thecompilerwerevery closeto themanuallygeneratedhardware
in performance,in factbetterin somecases.Figure11(i) shows an
input imageto the Sobeledgedetectionalgorithm. Figure11(ii)
shows the outputof the Sobeledgedetectionalgorithmassimu-
latedin theMATLAB interpretor.

The same MATLAB code was then used to synthesizea
pipelinedhardware. The outputof the hardwareis shown in Fig-
ure11(iii). Theoutputmatchesthesimulationresultpixel by pixel.
Thedesignsgeneratedby thecompilerarecorrectby construction
anddonot requiredebuggingiterations.Figure12shows thecom-
parisonof theexecutiontimesof thecompilergeneratedhardware
with theoptimizationsagainstthemanuallydesignedhardwarefor
the benchmarks.Figure 13 shows a comparisonof the resource
utilization for the same.The performanceof the compileroutput
andmanuallyoptimizedhardwarearecomparable.The resource
utilization of thecompilergeneratedhardwarearewithin a factor
of four of themanuallydesignedhardware.
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Figure 12. Ratio of the execution times of the compiler gen-
erated hardware with the optimizations as compared to the
manually generated hardware.

0

1

2

3

4

5

Matrix Mult Sobel FIR Mest Avg

Figure 13. Ratio of the CLBs used by the compiler generated
hardware with optimizations as compared to the manually
generated hardware.

12. FUTURE WORK

Themajorfocusof our currentandfuturework is in thefollowing
two directions

1. We areinvestigatingmethodsto identify andutilize opportu-
nitiesto synthesizeon-chipcachesto reducethememorytraf-
fic andboosttheperformanceof thesynthesizedhardware.

2. We areconcentratingon accuratepredictionof the resource
androutingresourcesneededfor aparticulardesignto achieve
designclosurein minimumiterationspossible.

13. CONCLUSIONS

In conclusionwe have presenteda compilercapableof generating
highly optimizedhardware from applicationsdescribedin MAT-
LAB. A setof effectiveoptimizationsimplementedin thecompiler
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(i)Input Image (ii)MATLAB Interpreter (iii)AnnapolisWildchild

Figure 11. A grayscale image is shown in (i). Output of the Sobel edge detection algorithm simulated in the MATLAB interpretor
is shown in (ii). The MATLAB code is used to synthesize hardware for the Annapolis Wildchild board and its output is shown in
(iii).

ensuresthat the quality of the outputhardware is comparableto
manuallyoptimizedhardware. The optimizationsinclude paral-
lelization,precisioninferencing,IP coreintegrationandpipelining.
Theeffectivenessof thecompilerwasdemonstratedby synthesiz-
ing hardwarefor a coupleof signal/imageprocessingapplications.
The outputsof the synthesizedhardware were functionally veri-
fiedagainsttheoutputsof theMATLAB interpretor. Theexecution
times werealmostequivalent to manuallydesignedhardware, in
fact superiorin somecaseswerelargeamountof parallelismwas
availableacrossloops. Theresourceutilization werewithin a fac-
tor of four of the manualdesigns. All this was achieved while
reducing the design time from months to minutes.
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