A SYSTEM FOR SYNTHESIZING OPTIMIZED FPGA HARDWARE FROM MATLAB®

Malay HaldarandAnshumarNayak Alok ChoudharyandPrith Banerjee

MachDesignSystemsi|nc.
www.MachDesignSystems.com

ABSTRACT

Efficient high level designtools that can map behavioal descriptionsto
FPGAarchitectuesare oneof thekey requirrmentdo fully leverage FPGA
for high throughputcomputationsand meettime-to-marlkt pressues. We
presenta compilerthat takes as input algorithms describedin MATLAB
andgenentesRTLVHDL. TheRTLVHDL thencanbe mappedo FPGAs
usingexistingcommecial tools. Theinput applicationis mappedo multi-
ple FPGAsby parallelizing theapplicationandembeddingommunication
andsyndironizationprimitivesautomatically Our compilerinfers the min-
imumnumberof bits requiredto representhevariable througha precision
analysisframeavork. The compilercan leverage optimizedIP coresto en-
hancethe hardware geneated. The compileralso exploits parallelismin
the input algorithm by pipelining in the presenceof resouce constaints.
We demonstate the utility of the compiler by synthesizinghardware for
a coupleof signal/imaye processingalgorithmsand comparingthemwith
manuallydesignechardware.

1. INTRODUCTION

Theconceptof usingFPGAsfor customcomputingevolvedin the
late 19805. Wide adoptionof the concept,however, hasgained
groundsonly recently Oneof theprincipalenablingfactorwasthe
availability of commercialsynthesisand physicalplacementools
that raisedthe level of designabstractiorto hardware description
languagesuchas VHDL/Verilog. With gatecountsfor modern
FPGAsreachingmillions, we arepoisedfor yetanotherevolution.
Thegoalthistimeis to raisethelevel of abstractiorto generapur-
poseprogramminganguagesuchasC/C++,JavaandMATLAB .
Currentdesignmethodologiesely ontheexpertiseof thehardware
engineeto maptheapplicationontoaFPGAboard.While thisen-
ablesa lot of flexibility andfine grainedcontrolover the design,it
alsointroducesa lot of logic designat a very low level. Not only
is this procesgediousanderrorpronerequiring costly dehugging
iterations muchof thework canbe automatedesultingin designs
which arecorrectby construction. Anotherkey aspecof mapping
applicationsonto hardware is to exploit coarseand fine grained
parallelismin the application. Again, concurrentsimulationsof
multiple statesis not the easiesthing to manage. Many mature
andadwancedcompilertechniquesxist that candiscorer and ex-
ploit parallelismandweigh differenttrade-ofs automatically All
this will relieve the designeito focuson high level algorithmicas-
pectsratherthanlearningaboutnew boardarchitecturesr waysto
boostperformancéy low level manipulations.
Synthesizinchardwarefrom generalpurposdanguage$asre-
ceivedattentionin bothindustryandacademiaA broadclassifica-
tion of the differentapproacheds possiblefrom two perspecties

1. TargetLanguaye: Theapproachesanbecateorizedaccord-
ing to thelanguageshey targetfor synthesisC/C++hasbheen
themostpopularchoice[12, 15, 16,17, 18,20,21, 22, 25,19).

IMATLAB® isa registeredtrademarkof Mathworks, Inc.

Northwesterriniversity
EvanstonJL 60208.

Java hasbeenthe focus of somerecentworks[24, 23]. Our
focusis on MATLAB.

2. Parallelism Specification: The approachesan be classi-
fied dependingon whetherthey attemptto automaticallypar
allelize the input applications[22, 25, 20, 19] or they de-
pend on the userto specify the parallelism[12, 18, 16,
17, 21, 24]. Dependingon the userto specify the paral-
lelism simplifiesthe compilera lot, but it typically requires
modifications/additiongo the tamget language. It also bur-
densthe userto extract the parallelism. User specifiedpar
allelism approachesloesraise the designabstractionfrom
VHDL/Verilog, but still require considerablemanualitera-
tions andinterventions. Automaticparallelizationmakesthe
compilercomplex but it doesnt requireary modificationsto
thelanguageandthe useris not burdenedwith finding paral-
lelism. This cutsdonvn manualiterationsto a minimum. Our
approachis automaticparallelization,but experiencedusers
canalsodirectthe compilerthroughdirectives.

Optimizedhardwaresynthesigrom agenerapurposdanguage
is avery complex taskandthe associate@¢ompilerframevork has
mary components.The componentsncludethe front-endof the
compilerdealingdirectly with the targetlanguagethe intermedi-
ate synthesidramework, the optimizationsinvolvedin synthesiz-
ing thehardwareandthe back-endvhich outputsthehardwareand
interfaceswith lower level tools. All the componentshave their
own specificissues which were addressedh individual bits and
pieceswith mary alternate solutions[4, 6, 5, 7, 10, 11, 15, 18,
19,20, 22, 21, 24, 17,16, 25]. Our attemptin this paperis to dis-
cussthecompletesystemof anoptimizing hardwaresynthesigool
and put forward a working combinationof the massof solutions
contributedfor eachaspecbf thecompiler

2. WHY MATLAB?

While mostof theindustryandacademidasfocusedon C/C++as

thesystendescriptionanguagepur mainfocusis on MATLAB ®
[1]. Whereasnary synthesisssuesseemindependendf theinput
specificationanguageMATLAB doesoffer distinctive advantage
dueto thefollowing two reasons

1. MATLAB is extremely popularin the signal/imageprocess-
ing communitywith over 500,000users. MATLAB is more
intuitive thanC/C++ andit enablesimulationandvisualiza-
tion of algorithmswith muchlesseffort thanC/C++. A direct
synthesigathfrom MATLAB withoutfirst convertingit into
anotherlanguagédike C/C++will be very usefulandit will
enablevery rapid and easyevaluationof alot of algorithms.
Thusa designemwill be ableto directly seethe tradeofs re-
sultingfrom high level algorithmicchanges.

2. A key techniquehatenablesnulti-million gatedesignss re-
useof IntellectualProperty(IP) cores.Suchcorescorrespond
to commonfunctionssuchasFFT, Viterbi decoderandMa-
trix Multiplication. Thesefunctionsare available in MAT-
LAB asstandardunction calls and operatorswith standard

interfaces.This featurebecomegarticularlyusefulin recog-
nizingthata particularlP block canbeusedfor partof thein-
putapplicationandhow to generateheinterfacesignalscor
respondingo it. In languagesvithout standardibrary calls
for thealgorithms theremaybeinnumerablevaysto specify
andinvoke thealgorithms.In sucha situationit becomewery
difficult to recognizethatan P block canbe usedfor partof

thealgorithmandgeneratinghe interfacesfor it.
However, MATLAB™ doeshave somedisadwantages.The two

mainissuesdn thatrespectre:)))
1. MATLAB doesnt have ary notion of type/shapéor its vari-

ables. This becomesa nightmarefrom the compiler per
spectve and using existing techniquesjn mostcasesneffi-
cient codeis generatedhat covers all or mary of the pos-
sible types/shape®f the variables. We have developeda
type/shapealgebraframevork thatenablesaccuraténferenc-
ing, leadingto efficient hardware generatior[9]. In spite of
the inferencingframework, if the compileris unableto do a
satishctoryjob, theusercanforcethetype/shapef avariable
throughdirectives.

2. Simulation of scalarizedMATLAB codeis slower than a
compiledapproach. This is becauseMATLAB is an inter-
preted languagewhich incurs a lot of overheadif simple
computationsaredonein a loop. However, our focusis on
signal/imageprocessingind of applicationswherearbitrary
loopsandarraymanipulationds not thenorm. Regularloops
with extensie useof library functionsis more commonfor
suchapplicationsor which MATLAB is ideally suited.

3. COMPILATION OVERVIEW

We now presentan overvien of our compiler architecture. Fig-
ure 1 shaws the differentcompiler phases.The front-end parses
theinputMATLAB programandbuildsaMATLAB AST(Abstract
SyntaxTree). Theinput codemay containdirectives[3] regarding
the types,shapesand precisionof arraysthat cannotbe inferred,
which areattachedo the AST nodesasannotations.This is fol-
lowed by a type-shapénferencephase.MATLAB variableshave
no notion of type or shape.Thetype-shapghaseanalyzeshein-
put programto infer the type and shapeof the variablespresent
for which type/shapds not provided by directives. This is fol-
lowed by a scalarizationphasewhere the operationon matrices
are expandedout into loops. In caseoptimizedlibrary functions
areavailablefor a particularoperationit is not scalarizecandthe
IP corecorrespondindo the library functionis usedinstead.The
scalarizedcodeis then passedhroughthe parallelizationphase.
The parallelizationphaseattemptsto exploit coarsegrain paral-
lelism by eithersplitting aloop onto multiple FPGAson the board
(data-parallelapproach)or by putting differenttasksonto differ-
entFPGAsandpipeliningthe outputof oneto theinput of another
(systolic approach). The parallelizationphaserelies on commu-
nicationlibrariesimplementedor the targetarchitectureboardto
communicatebetweerthe different FPGAs. A statemachinede-
scriptionin VHDL is thensynthesizedrom theparallelizedscalar
izedMATLAB codefor eachof the FPGAs. Most of thehardware
relatedoptimizationsare performedon the VHDL AST. A preci-
sioninferenceschemdinds the minimum numberof bits required
to represeneachvariablein the AST. The precisioninformation
is usedin instantiatingcustomizedP blockscorrespondingo the
functionsand operators. Transformationsare then performedon
the AST to optimizeit accordingto the memoryaccessepresent
in the programandcharacteristicef the externalmemory This is
followed by a phaseto perform optimizationslike pipelining un-
der resourceconstraintsthat alter partsof the statemachinethat
wasconstructeckarlier Finally atraversalof theoptimizedVHDL
AST produceghe outputcode.

4. EXPERIMENTAL SETUP AND BENCHMARKS

Our compileris designedo producecodefor mostcurrentFPGA
architecturesTheresultspresentedn this paperarefor hardware

generatedor the WldChild™ FPGA boardfrom AnnapolisMi-

cro Systemslt is aVME compatibleboardwith eightXilinx 4010
FPGAsandoneXilinx 4028 FPGA. The Xilinx 4028hasan exter-

nalmemorythatis 32-bitwide with 2!* addressablecations.The
memoriesconnectedo the4010sare16-bitwide.

The benchmarks$nclude Matrix Multiplication, FIR filter, IIR
filter, Sobeledgedetectionalgorithm,an Averagefilter anda Mo-
tion Estimationalgorithm. Thesébenchmarksepresentypical sig-
nal/imageprocessingapplicationsthat are of interestto us. On
one hand,suchapplicationsareimportantasthey arerepresenta-
tive of a classof applicationsthat are predictedto be ubiquitous
in next generatiorcomputingplatforms,in environmentsthat de-
mandhigh throughput.On the otherhand,theseapplicationshave
inherentparallelismsuitablefor exploitation by implementatiorin
customizechardware.

5. MATLABTO VHDL

One of the challengesn generatinghardware from MATLAB is
to figure out the type/shapeof the variables. As shavn in Fig-
ure 2, the semanticof anoperatorcandependon the assignments
to the operands.To generatenardware, the compiler mustfigure

a=1; a = rand(256, 234);
b= 3; b = ones(234, 512);
c = a*b;

c=a *b;
(1) (i)

Figure 2. The semantics of an operator depends on the
type/shape of the operands in MATLAB. In (i) * is a scalar
multiplication whereas in (ii) it is a matrix multiplication.

out the exact datatype i.e, integer or floating point, or comple
numbersetc. The compileralsoneedso figure out the shapei.e,
howv mary dimensionghe matrix (array) has,whatarethe extents
in eachdimension,etc. Our type shapealgebraframevork auto-
matically figuresout the type-shapef the variableg[9]. In patho-
logical caseswvherethe compileris unableto infer the type/shape
of thevariablesthe usercanassistthe compilerby specifyingthe
type/shapef selectedvariables.Oncethe type/shapef the vari-
ablesaredeterminedthematrixoperationgrescalarizedtheoper
ationsareexpandedout into loops. Scalarizatiorof the MATLAB
AST is necessarywhen the objective is to perform a source-to-
sourcetransformatiorto a targetlanguagethat s statically typed
and which only supportselementaloperations. MATLAB is an
array-basethnguagewith mary built-in functionsto supportarray
operations.Hence,to generatea VHDL description,it is neces-
sarythatthe correspondindMATLAB AST is scalarizedFigure3
shavs an examplewhereVHDL codeis generatedtorresponding
toamatrixmultiply operation Extensve discussiorof VHDL gen-
erationfrom MATLAB is reportedin [4]. The frameavork is capa-
ble of handlingmulti-dimensionmatriceswhich aremappedo an
externalmemory In addition,theloop andfunctioncall constructs
of MATLAB are alsosupported.Figure 4 shavs the experimen-
tal resultsof executiontimesof the benchmark®n a Xilinx 4028
usingmanualandcompilerapproachesAs canbe seen the man-
ually designedhardware on the averageis five times betterthan
thecompileroutput,notingthatit took severalmonthsto complete
themanualdesignswhile thecompilergeneratedhe hardvarein a
matterof minutesReduction of design timeisthe key advantage
of using the compiler. In thenext few sectionswe elaboratehow
our compiler closesthe performancegap betweenits outputand
themanuallydesignechardware.

6. PRECISION INFERENCING

Oneimportantfactorin generatingustomizecardwarefor anap-
plication is to efficiently utilize the silicon budgetavailable. A

key obsenration in this regardis that mostimage/signalprocess-
ing computationsare confinedto 8 «~ 16 bits. To fully leverage

MATLAB AST o Expanded o
ferencin Scalarization, Parallelizatio
9 | "with Type/Shape Type/Shape Loops

MATLAB AST Type / Shapd
In

Input MATLAB code
+

—_— Parser
Scanner

Directives (optional)

Optimized P AST
Hardware Traversal

Optimized Pipelining
VHDL AST Scheduling

Partitioned AST
with communication
and sycnhronization

embedded

VHDL AST with IP Core Mlnlmum Precision
optlmlzed cores | Integration | i e repre- | Analysis

sentations

Figure 1. Overview of the synthesis framework.

a = ones(256,256);
() a= 256 X 256 integer

b = ones(256,128); Type/Shape)
: Inferencing b= 256 X 128 integer
: — c = 256 X 128 integer
c=aw*h
Scalarization
state 1:i <= 1; \ll
state 2 : if(i<256) State
next <= state2 Machine
else Generation
next <= state 20; for i=1:256
: forj=1:256
-- calculate address for_ k= l_: 1_28 SNk .
-- apply address to memory interface ce(rl1dk)=l k) +ali,j)*bG, k)
state 12: a_data <= mem_in; end;’
. end;
state 13: 'b_data <= mem_in;
state 19: next<=state 2;
state 20:

Figure 3. An example showing how a state machine is syn-
thesized for matrix multiplication by first doing type/shape
analysis, followed by scalarization.

Matrix Mult Sobel FIR Motion Est. Average Filter

Figure 4. Ratio of execution times of compiler gener-
ated hardware compared to manually designed hardware is
shown. For example, for the matrix multiplication benchmark,
the compiler generated hardware is 4 times slower than the
manually designed hardware.

this fact, the minimum numberof bits requiredto represeneach
variablemustbeinferredandappropriateoperatorsnstantiatedn
placeof generic32-bit operators However, figuring out the preci-
sionmanuallyin areallife designcanbe very tiresomeanderror
prone.Our precisioninferencingalgorithmpropagatesaluerange
information back and forth the AST to figure out the minimum
bits requiredto represent variable,seeFigure5. In casewhere
a=8; % 4 bits required

b= 4; % 3 bits required

d = a+b; % 4 bits required

e = b +input() % unknown , give

% directive

Figure 5. lllustration of precision inferencing.

the precisionof variablescannotbe determinedstatically the user
canspecifythe precisionby a directive; otherwisethe mostcon-
senative estimatds taken. For floating point variables,n associa-
tion with the precisioninferencingalgorithmanerroranalysisand
propagatiorschemas included. Theerroranalysisdetermineshe
resolutionof the floating point variablesneededyiven a specified
error that can be toleratedat the output. Details of the precision
anderroranalysisalgorithmscanbe foundin [7]. Figure6 shavs
the savings of resourcesn termsof CLBs whenthe precisionin-
ferencingalgorithmis appliedasopposedo instantiatinggeneric
32bit operators.

12

10

2 4‘_’—‘_[»

0

Sobel Matrix Mult IIR Filter Motion
Estimation

Image Thresh.

Figure 6. Ratio of the resource utilization in terms of CLBs
while instantiating 32-bit operators as compared to determin-
ing the minimum number of bits required by precision infer-
encing.

7. 1P CORE INTEGRATION

IP coresrangefrom optimizedimplementationsf FFT andViterbi
decoderdo addersandmultipliers [13, 14]. To producea design
that rivals manualdesigns,one must be able to integrate these
IP coresautomaticallyinto the designssynthesized.To leverage
IP coresprovided by differentvendors,our compiler provides a
standardandopeninterfacebetweerthe compilerandthe IP core

databaseThelP coredatabaseontainghe EDIF/HDL implemen-
tationsandinterfacesto the IP cores. Along with eachlP core,a
code(in C/C++)is alsopresenthatgeneratesheinterfacefor us-
ing the particularIP core. This codeis referredto asthe interface
generatoof the IP core. Theinterfacegeneratocanaccessnfor-
mationaboutthe AST througha uniform and openinterfacewith
thecompiler Thecompilerneeddo provide informationregarding
thevariablesandoperatorslik e whetherthey aresigned/unsigned,
integer/floatingpoint, constant/ariableandwhatprecision.ThelP
databasen the otherhandmustprovide informationto the com-
piler regardingthe area/performancef the IP cores.The standard
interfaceis a way of facilitating theseinformationflows from dif-
ferentlP coresprovided by differentvendors.Detailsof theinter-
faceandissuessurroundingheinterfacegeneratoweredescribed
in [2]. Figure7 summarizeshe improvementsobtainedby using
the optimizedIP coresasopposedo genericoperatorsaandscalar
izing all thefunctions.

9%tage improvement

20— —

10— —

Motion Est. Average Filt. Image Corr.

Benchmraks

Figure 7. Percentage improvement in execution time by us-
ing optimized IP cores over generic operators.

8. PIPELINING

A closestudyof themanuallydesignedhardwareandthecompiler
generatechardware shaved that the principal reasonbehindthe
betterperformanceof the manuallygeneratechardware was ex-

ploitation of fine grain parallelismand pipelining of the memory
accessesThis promptedusto devise anautomatedvay of pipelin-
ing thememoryaccesseandexploit fine grainedparallelism.Our
pipeliningframenork achievesthis objective,anoverview of which
is givenin Figure8. The pipelining phasestartsby performingde-

No produce unpipelined code

Input

MATLAB

check if Yes construct nodes

loop pipelining can be and predicated nodes

statement applied for conditionals
pipelined VHDL construct dataflow
code for the loop graph

roduce VHDL produce pipeline .

Eode from the <= | schedule and renamd <—— | @PPly scheduling
pipeline schedule overlapping live scalars algorithm

Figure 8. An overview of the pipelining framework.

pendeng analysisof the loopsandbasicblocks. The GCD testis
emplogyedto figureoutloop carrieddependenciedn casethereare
no backward dependenciem a loop, the loop is deemedbipelin-
able. Next the numberof memoryports arereadasinput to the
pipeliningalgorithm.Thepipeliningalgorithmthenperformsmod-
ulo scheduling6] which overlapsdifferentiterationsof aloopsuch
that numberof memoryaccessn ary statedoesnot exceedthe
numberof memoryportsspecified. The moduloschedulingalgo-
rithm canbebasedn eitherASAP (assoonaspossible)or ALAP

(aslate as possible)algorithms. The reasonthe pipelining algo-
rithm is basedon memoryportsis that mary of theimage/signal
processingpplicationsarememorybound. They tendto perform
simpleoperationson relatively large datasetsthatresidein exter
nal memories.Hence,optimizingthe memoryaccesses general
hasa hugeimpacton performance.Conflictscreatedn variables
dueto overlappingof iterationsis solved by renaminghevariables
asdiscussedn [6]. Figure 9 shawvs the impact of pipelining on
performanceThe compilergenerategbipelinedhardwarematches

OManual @ Compiler OPipelined

N = Hl=

Matrix Multiply Sobel FIR

Motion EstAvg.
Filter

Avg. Filter

Figure 9. Ratio of the execution times of the compiler gener-
ated hardware with and without pipelining is shown, normal-
ized to the execution time of manually designed hardware.
For example, for the Sobel benchmark, the compiler gener-
ated hardware without pipelining is 8 times slower, whereas
the pipelined hardware is as fast as the manual design.

the manualdesignsn mostcases.In fact, the compilergenerated
pipelinedhardware faresbetterthanthe manuallydesignechard-
warefor the FIR and Motion Estimationbenchmark.This is due
to thefactthatmanualdesignersypically pipelineandexploit par
allelism within a single iteration of the loop. The compiler can
handlemuchmore complity andexploits parallelismacrossthe
differentiterationsof the loops. For example,the pipelinekernel
synthesizedor the motion estimationbenchmarkcontained200
concurrenstatementspanningb iterations. Suchcompleity can
only behandledn anautomatedashion.

9. RESOURCE CONSTRAINED PIPELINING

The pipelining algorithm presentedn the previous sectionwas
only constrainedy the numberof memoryports andwas based
on an ASAP/ALAP schedulingalgorithmvariation. However, re-
sourceconstraintanustalsobe taken into accountwhile pipelin-
ing. Typically, the pipelinedversionsconsumedwice the amount
of CLBs whencomparedwith the non-pipelinedversionsfor the
benchmarkgresentedefore. To introducethe capability of pro-
ducingintermediatedesignsthat were pipelinedbut usedlessag-
gressie parallelism,a resourceconstrainecpipelining framewvork
was introduced. The resourceconstraintscan be specifiedto the
pipelining algorithmin termsof numberof high level operators.
The pipelining algorithm usesa list schedulingalgorithm modi-
fied for moduloscheduling5], suchthatthe numberof operators
usedconcurrentlyin ary stateof the pipelinedoesnot exceedthe
specifiednumberof operators. The list schedulingalgorithmre-
liesonaheuristicthatestimateshe priority of eachoperatowhile
scheduling.We experimentedwith existing heuristicswhich gave
precedencéo operatorswith the maximumnumberof childrenor
whosedistancefrom the sink nodeof the control-dataflow graph
waslongest.We alsodevised our own heuristicswhich wasbased
ontheaggregateresourceequirementsf thetreefanningoutfrom
the operatorand the available resources.It hasbeenshovn that
suchan approachproducesefficient pipeline scheduleg5]. Fig-
ure 10 shavs a summaryof the resultsfor the differentheuristics

usedwhile producingresourceconstrainegipelines.

\D Max Pred B Longest Path OAgg. Res\

w
S

N}
a
L

N
[}
L

=
3}
L

=
o
L

Normalized execution times

(&}
i

1 4

I%creaslng TESOUTCES3
Figure 10. Normalized execution times corresponding to the
different heuristics used in the list scheduling algorithm (max-
imum predecessor, longest path from sink, aggregate re-
sources of fanning tree) for the Sobel benchmark is shown.

The execution time with unconstrained resources is shown
at the far right.

10. MULTI-FPGA PARALLELIZATION

The schedulingand pipelining framevork describedabove is

gearedowardsutilizing thefine grainedparallelismpresenin the
application. Most currentFPGA boardscontainmultiple FPGAs.
A mechanisnio leveragecoarsegrainedparallelismis requiredto

malke useof the multiple FPGAs.In this direction,our paralleliza-
tion framework partitionsthe scalarizedMATLAB AST to gener

atea partitionedAST for eachof theindividual FPGAspresenbn

the board. An architecturedescriptionof the FPGA boardis re-

quiredfor specifyingthe target architectureto the parallelization
phase. The parallelizationphaseassumes setof standardcom-
municationandsynchronizatioprimitivesareimplementednthe
FPGA board. The parallelizationphaseembedstheseprimitives
to synchronizebetweerthe differentpartsof the AST mappedto

differentFPGAs. In particular two approacheso parallelizethe
MATLAB AST are adopted. The first approachis a dataparal-
lel approachwhereinthe executionof a loop is spreadacrossthe

FPGAs. The datathatis operatedon by the loop is split across
the memoriesassociatedvith the FPGAs. This is similar to par

allelizing loopsfor distributed memorymachines.In the second
approachdifferentloopsaremappedo differentFPGAs,andthe

output of oneloop is pipedto anotherloop. This is similar to

the systolic parallelizationschemes.While the dataparallel ap-

proachis mosteffective for memoryboundapplicationsdueto the

increasednemorybandwidthof multiple FPGAs,the systolicap-

proachis particularlyusefulfor large applicationsasthe logic for

theapplicationcanbe spreadacrossseveral FPGAs.

For the Sobeledgedetectionbenchmarla speedumf 7.5 was
obtainedby mappingthe applicationonto 8 FPGAs. The speedup
was obtainedin comparisorto the hardware generatedor a sin-
gle FPGA by the compiler Comparisorwith manuallydesigned
hardwarein this caseis somavhatinvolved asmanuallymapping
the applicationsonto multiple FPGAsis a very time consuming
proposition(the very reasonwe designedthe compiler!). More-
over, asthespeedumbtaineds very nearto optimal,we conclude
thatthe parallelizationwas satishictory Extensve benchmarking
andcomparison®f the parallelizationphases partof our current
work.

11. SUMMARY

We now presentthe resultof performingall the optimizationsin
tandemand comparingagainstmanuallydesignechardware. We
would like to emphasizeonce more that the manually generated

hardwaretook monthsof designeffort whereashe compilergen-
eratedthe hardware in a matterof minutes. While a massve re-
ductionin designtimeis achieved, the quality of thehardwaregen-
eratedwas not compromised.Indeed,the hardware generatedy
the compilerwerevery closeto the manuallygeneratedardware
in performancein factbetterin somecasesFigure11(i) shavs an
input imageto the Sobeledgedetectionalgorithm. Figure 11(ii)
shaws the outputof the Sobeledgedetectionalgorithm as simu-
latedin the MATLAB interpretor

The same MATLAB code was then used to synthesizea
pipelinedhardware. The outputof the hardwareis shovn in Fig-
ure11(iii). Theoutputmatcheghesimulationresultpixel by pixel.
The designggeneratedby the compilerarecorrectby construction
anddo notrequiredeluggingiterations.Figure12 shavs thecom-
parisonof the executiontimesof the compilergeneratedhardware
with the optimizationsagainsthe manuallydesignechardwarefor
the benchmarks.Figure 13 shavs a comparisonof the resource
utilization for the same. The performanceof the compileroutput
and manuallyoptimizedhardware are comparable.The resource
utilization of the compilergeneratechardware arewithin a factor
of four of themanuallydesignechardvare.

0.8 +— —

06

0.4

0.2 +—

0

Matrix Mult Sobel FIR Mest Avg

Figure 12. Ratio of the execution times of the compiler gen-
erated hardware with the optimizations as compared to the
manually generated hardware.

0

Matrix Mult Sobel FIR Mest Avg

Figure 13. Ratio of the CLBs used by the compiler generated
hardware with optimizations as compared to the manually
generated hardware.

12. FUTURE WORK

Themajorfocusof our currentandfuturework is in thefollowing
two directions
1. We areinvestigatingmethodsto identify andutilize opportu-
nitiesto synthesizen-chipcachego reducehememorytraf-
fic andboostthe performancef the synthesizedhardware.
2. We are concentratingpn accuratepredictionof the resource
androutingresourceseededor aparticulardesigrto achieve
designclosurein minimumiterationspossible.

13. CONCLUSIONS

In conclusionwe have presentec compilercapableof generating
highly optimizedhardware from applicationsdescribedn MAT-
LAB. A setof effective optimizationdmplementedn thecompiler

()Input Image

(i)MATLAB Interpreter

& \ &
A TS g A TS

(ii)Annapolis Wildchild

Figure 11. A grayscale image is shown in (i). Output of the Sobel edge detection algorithm simulated in the MATLAB interpretor
is shown in (ii). The MATLAB code is used to synthesize hardware for the Annapolis Wildchild board and its output is shown in

(iii).

ensureghat the quality of the outputhardwareis comparableo
manually optimizedhardware. The optimizationsinclude paral-
lelization,precisioninferencing |P coreintegrationandpipelining.
The effectivenesof the compilerwasdemonstratedy synthesiz-
ing hardwarefor a coupleof signal/imageprocessingpplications.
The outputsof the synthesizechardware were functionally veri-
fied againstheoutputsof the MATLAB interpretor Theexecution
times were almostequivalentto manuallydesignedchardvare, in
fact superiorin somecaseswerelarge amountof parallelismwas
availableacrosdoops. Theresourcautilization werewithin afac-
tor of four of the manualdesigns. All this was achieved while
reducing the design time from monthsto minutes.

REFERENCES
[1] TheMathworks Homepagewww.mathworks.com.

[2] Malay Haldar OptimizedHardware Synthesidor FPGAs PhD The-
sis,NorthwesterrJniversity, 2001.

[3] P. Banerjee,N. Sheng, A. Choudhary S. Hauck, C. Bachmann,
M. Halday P. Joisha,A. Jones,A. Kanhare,A. Nayak, S. Periy-
acheri,M. WalkdenandD. Zaretsly, A MATLAB Compilerfor Dis-
tributed, Hetegeneous Reconfiguable ComputingSystems Proc.
IEEE Symposiumon Field-Programmabl€ustomComputingMa-
chines,FCCM’00, April 2000.

[4] M. Haldar A. Nayak,A. Choudharyand P. Banerjee FPGA Hard-
ware SynthesisromMATLAB, 14thIntl. Conf.onVLSI Design,Jan-
uary2001.

[5] M. Haldar A. Nayak,A. ChoudharyandP. Banerjee SthedulingAl-
gorithmsfor AutomatedSynthesiof Pipelined Designson FPGAs
for Applicationsdescribedin MATLAB, Intl. Conf. on Compilers,
Architecturesand Synthesisfor EmbeddedSystems,CASES'2000,
November2000.

[6] M. Haldar A. Nayak, N. Sheng, A. Choudharyand P. Banerjee,
AutomatedSynthesi®f PipelinedDesignson FPGAsfor Signaland
Image ProcessingApplicationsDescribedin MATLAB, Asia Pacific
DAC, Januan2001.

[7] A. Nayak,M. Haldar A. ChoudharyandP. Banerjee PrecisionAnd
Error AnalysisOf MATLAB ApplicationsDuring AutomatedHard-
ware Synthesigor FPGAs, DesignAutomationand Testin Europe,
March2001.

[8] A. Nayak,M. Haldar A. ChoudharyandP. Banerjee Parallelization
of MATLAB Applicationsfor a Multi-FPGA SystemInt. Symp.on
FPGA CustomComputingMachines FCCM, April 2001.

[9] P JoishaandP. Banerjeel attice-BasedypeDeterminationin MAT-
LAB, with an Emphasin Handling Typelncorrect Programs Tech
Report CPDC-TR-2001-03-001 NorthwesternUniversity March
2001.

[10] G.D. Micheli,SynthesisandOptimizationof Digital Circuitspg.185-
265,ISBN-0-07-016333-2McGraw-Hill, Inc.

[11] D. Gajski, N. Dutt, A. Wu and S. Lin,High-Level Synthesis:Intro-
ductionto Chip and SystemDesign ISBN-0-7923-9194-2Kluwer
AcademicPublishers.

[12] The SystemQnitiative, www.systemc.ay.
[13] Xilinx Core SolutionsDatabook,SecondEdition, Xilinx Inc.
[14] Altera 1999IntellectualPropertyCatalag, AlteraInc.

[15] G. De Micheli, Hardware Synthesigrom C/C++ Models Proc.De-
sign, Automation and Testin Europe Conferenceand Exhibition,
March1999.

[16] A. Ghosh,J.Kunkel andS. Liao, Hardware Synthesigrom C/C++,
Proc.Design,Automationand Testin EuropeConferenceand Exhi-
bition, 1999.

[17] G.Arnout,C for System_evel Design Proc.Design,Automationand
Testin EuropeConferencendExhibition, March 1999.

[18] J.HammesB. Rinker, W. BohmandW. Najjar, Camepn: High Level
Languaye Compilationfor Reconfiguable SystemsProc.Parallel Ar-
chitecturesandCompilationTechniqueg PACT’99), October1999.

[19] J.Babb, M. Rinard, C.A. Moritz, W. Lee, M. Frank, R. Barua, S.
Amarasinghéarallelizing Applicationsinto Silicon FCCM 1999.

[20] M. WeinhardtandW. Luk, PipelineVectorizationfor Reconfiguable
Systems Proc. Field-Programmabl€ustomComputingMachines,
April 2000.

[21] M. GokhaleJ.StoneJ.Arnold andM. Kalinowski, Stream-Oriented
FPGA Computingin the Streams-CHigh Level Languae, Proc.
Field-Programmabl€ustomComputingMachines April 2000.

[22] Y. Li, T. CallahanE. Darnel,R. Harr, U. KurkureandJ. Stockwood,
Hardware-Softwae Co-Designof EmbeddedReconfiguable Archi-
tectues Proc.37thDAC, June2000.

[23] R. Helaihel and K. Olukotun, Java as a SpecificationLanguaye
for Hardware-Softwae SystemsProc. InternationalConferenceon
ComputerAided Design,pp. 690-697 Novemberl997.

[24] B. L. HutchingsandB. E. Nelsonlsing Generl-PurposeProgram-
ming Languaes for FPGA Design Proc. 37th Design Automation
ConferenceJune2000.

[25] C Level Design,Inc.,SystenCompiler: Compiling ANSIC/C++ to
SynthesisgadyHDL , http://wwwcleveldesign.com .

	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index

