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Abstract 

The growing market of multi-media applications has 
required the development of complex ASICs with 
significant data-path portions.  Unfortunately, most high-
level synthesis tools and methods cannot automatically 
synthesize data paths such that complex arithmetic library 
blocks are intelligently used.  Symbolic computer algebra 
has been previously used to automate mapping data flow 
into a minimal set of complex arithmetic components.  In 
this paper, we present extensions to the previous methods 
in order to find the minimal critical path delay (CPD) 
mapping.  A new algorithm is proposed that incorporates 
symbolic manipulations such as tree-height-reduction, 
factorization, expansion, and Horner transformation.  
Such manipulations are used as guidelines in initial 
library element selection. Furthermore, we demonstrate 
how substitution can be used for multi-expression 
component sharing and critical path delay optimization. 

1. Introduction 
Automating the design of data paths from high-level 

specifications is necessary to meet the tight time to market 
requirements of multi-media applications. The optimal 
choice of the arithmetic units implementing complex data 
flows strongly affects the cost, performance and power 
consumption of the silicon implementations.  Unfortunately, 
current commercial tools rely on synthesis directives 
(pragmas) from designers in order to map data-flow into 
complex arithmetic library elements. 

However, current high-level synthesis tools are effective 
in capturing HDL models of hardware and mapping them 
into control/data-flow graphs (CDFGs), performing 
scheduling, resource sharing, retiming, and control 
synthesis [1]. The approach presented in this paper fits 
seamlessly into the current high-level synthesis flow.  We 
propose to analyze the data-flow segments of the CDFG 
models in light of the arithmetic units available as library 
blocks, and to construct data paths that exploit at best the 
given library.  We assume that design is done using 
libraries that contain beyond the basic elements such as 
adders and multipliers, more complex cells such as 
multiplier-accumulator (MAC), sine, cosine, etc. An example 
of such a library is Synopsys Designware [2] library. 

Two factors are key in automating the optimal mapping 
of data flow blocks.  First, a functionality description 
formalism for data flow and library components.  Second, a 

method supporting the decomposition of the data flow into 
a set of library elements.  Polynomial representation has 
been proven as an effective technique for representing both 
high-level specification and bit-level description of an 
implementation (library component) [3, 4].  Symbolic 
computer algebra has been utilized to decompose the 
polynomial representation of a data path into library 
elements in the symbolic synthesis tool SymSyn [5].  
However, the algorithm implemented previously in SymSyn 
was limited to find the minimal-component mapping of a 
given data flow.   

Due to the importance of high performance design, we 
have developed a new algorithm in the SymSyn framework 
to automatically map the data flow to arithmetic library 
elements such that the optimum critical path delay is 
achieved.  For such purpose, we leverage results from 
Gröbner basis applications and symbolic polynomial 
manipulation techniques.  In this paper, we propose a 
timing-driven decomposing algorithm that uses various 
polynomial manipulation techniques guidelines to achieve 
optimal component mapping and resource sharing.   

The paper is organized as follows:  Section 2 describes 
related work and gives a brief overview of data-flow 
synthesis using symbolic computer algebra.  Section 3 
provides an insight to the polynomial manipulations used 
for delay optimization with simple examples.  In Section 4, 
we present how we can leverage results from symbolic 
algebra and methods previously used in logic minimization 
to construct an algorithm that finds a minimal-critical path 
delay decomposition of a polynomial representing a 
(portion of) data flow. Finally, Section 5 presents some 
experimental results. 

2. Related Work 
Our tool, SymSyn [5] maps a (portion of) data flow to 

complex arithmetic library elements such that a given criteria 
is satisfied (minimal number of components or minimal 
critical path delay).  In order to achieve this goal, we assume 
that the data flow is represented as a polynomial.  This 
assumption is based on the fact that polynomial 
approximations such as Taylor, Pade, continued fractions, 
Hermite-Pade, and others are generally used to implement 
complex arithmetic functions in hardware [8].  This is 
especially the case for the growing market of multi-media 
applications.  We also require the library elements to have a 
polynomial representation associated with them. In 
previous work [3,4], a mechanism was provided to derive a 



minimum order word-level polynomial representation for a 
given complex Boolean circuit description.  This method 
provides polynomial representations for legacy library 
elements without trivial polynomial representations.   

2.1 Symbolic algebra and data-path synthesis 
Traditional mathematical computation with computers 

and calculators is based on arithmetic of fixed-length 
integers and fixed-precision floating-point numbers, 
otherwise known as numeric computer algebra.  In contrast, 
modern symbolic computation systems support exact 
rational arithmetic, arbitrary-precision floating-point 
arithmetic, and algebraic manipulation of expression 
containing undetermined values (symbols), such as variable 
x in  (x+1)*(x-1).  Several commercial symbolic computer 
algebra systems are available on the market; Maple [13] and 
Mathematica [14] are most widely used.   

The algebraic object that we are interested to manipulate 
symbolically is a multivariate polynomial that represents a 
(portion of) data path of our design.  Most symbolic 
polynomial manipulations that we find interesting in data-
path synthesis are based on Gröbner bases [9-12].  Gröbner 
bases and Buchberger’s algorithm generalize the division 
and GCD algorithms of univariate polynomials to 
multivariate polynomials.  Therefore, it is the heart of 
symbolic polynomial factorization.  Gröbner bases also 
solve variable elimination in a set of polynomials and ideal 
membership problems, which is the core of simplification 
modulo set of polynomials.  We will not dive into the details 
of Gröbner bases and Buchberger’s algorithm and how they 
are applied to symbolic polynomial manipulation.  We refer 
the reader to the literature available in mathematics [9-12]. 

In order to show the power of symbolic algebra, namely 
the simplification modulo set of polynomials routine, let us 
consider a simple example.  The built-in function that 
implements this routine is called simplify  in Maple [13].  In 
order to comply with Maple terminology, we call the set of 
polynomials the side relations.  Consider a data flow 
implementing x^2-y^2 and a library that includes add, 
multiply subtract and square components.  Using Maple 
syntax we have: 

> a:=x^2-y^2: siderels:={b=x-y, c=x+y} 
> simplify(a, siderels,[x,y,b,c]); 

b*c 

This is equivalent to the implementation shown in Figure 
1.a.  Note that siderels is a subset of our library.  Maple 
computes the Gröbner basis G of siderels and uses that 
internally to eliminate x and y variables from the polynomial.  
The result indicates that: 

a:=x^2-y^2:=b*c:=(x-y)*(x+y) 

If the side relation set is changed, other possible 
solutions for the specification may be found, for example: 

> a:=x^2-y^2: siderels:={b=x^2, c=y^2} 
> simplify(a, siderels,[x,y,b,c]); 

b-c 
results in the implementation shown in Figure 1.b.   

Choosing the side relation set is a non-trivial task.  In 
previous work [5], an algorithm was introduced to select the 
side relation set such that the implementation is minimal in 
term of library component count.  In this paper, we describe 
an algorithm to exploit the library components such that the 
CPD of the data path implementation is minimized.   

 
 
 
 
 
 
 
 

3. Expression Manipulation Techniques 
Previously [5], an algorithm was introduced that maps a 

polynomial representation of a (portion of) data flow to 
minimal number of complex arithmetic library elements.  This 
algorithm was implemented in the Symbolic Synthesis tool, 
SymSyn.  To enhance SymSyn such that it enables critical 
path delay minimization, a guideline is necessary for side-
relation selection.  Such guideline should facilitate mapping 
for maximum parallelism.  We have chosen different 
symbolic polynomial manipulation techniques as such 
guidelines.  The intent of this section is to describe the 
manipulation techniques through simple examples. 

3.1 Tree-height Reduction 
Tree-height reduction (THR) was introduced long ago 

[6,7] as an optimization method for parallel software 
compilers.  It is a technique to reduce the height of an 
arithmetic expression tree, where the height of the tree is the 
number of steps required to compute the expression. In the 
best case, it achieves the tree height of O(log n) for an 
expression with n operations.  Tree-height reduction uses 
commutativity, associativity, and distributivity properties of 
addition, subtraction and multiplication.  In the classical 
case, tree-height reduction is achieved at the expense of 
adding more resources to obtain maximum parallelism in the 
expression.  In previous work, THR has been proven useful 
in high-level synthesis of data-intensive circuits such as 
DSP and multimedia applications [15-17]. 

 
 
 
 
 
 

Figure 2.  Performing THR on (a) produces (b) 

In our work, we use THR as an expression tree 
manipulation technique.  THR will achieve the best 
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Figure 1.a.  An implementation of x2-y2 
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Figure 1.b.  Another implementation of x2-y2 
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execution time when using unlimited number of two input 
adders, subtracters and multipliers is allowed.  Since we are 
focusing on libraries that have more complicated blocks, 
THR may or may not result in the optimal execution time.  
The result is dependant on the library components 
available.  Figure 2 shows an example of how THR can 
reduce the critical path delay.  Figure 2 (b) is obtained after 
applying THR on Figure 2 (a).   

3.2 Factor and Expand 
As mentioned previously, traditional tree-height 

reduction [6, 7] only uses associativity, commutativity, and 
distributivity to transform expressions.  Since we have 
access to a symbolic manipulation tool in SymSyn, we can 
benefit from other transformations as well.  One such 
transformation is common sub-expression factorization.  
Factorization can reduce the number of components used as 
well as the tree height of a given expression.  An example is 
shown in Figure 3.  

 

 

 

 

 

Figure 3. Factor may reduce number of components and CPD 

Another useful symbolic manipulation technique is 
expansion.  This manipulation technique changes the 
polynomial into its sum of products format.  Meanwhile, it is 
capable of straightforward simplification techniques that 
can save both delay and area.  A small example of such 
simplification is transforming a+a+a to 3*a.  

3.3 Horner form 
Horner form of a polynomial is a nested normal form with 

minimal number of multiplications and additions.  Any 
polynomial can be rewritten in Horner, or nested, form.  The 
general univariate case is defined as follows [14]:  
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Assume that xn can be calculated using only log2(n) 
multiplications for integer n. For a polynomial of degree n, 
the Horner form requires n multiplications and n additions. 
The expanded form, however, requires: 
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multiplications, which is more than twice as expensive for a 
polynomial of degree 10. Thus, one advantage of Horner 
form is that the work involved in exponentiation is 
distributed across addition and multiplication, resulting in 
savings of some basic arithmetic operations. Another 
advantage is that Horner form is more stable to evaluate 
numerically when compared with the expanded form. The 

reason for this is that each sum or product involves 
quantities which vary on a more evenly distributed scale.  
For hardware implementation, Horner form has a distinct 
advantage.  It effectively maps a univariate polynomial to 
cost effective multiplier-accumulators (MAC).  

Horner form is generalized for multivariate polynomials 
by specifying an ordered list of variables.  As a simple 
example consider the following polynomial in which the 
number of multiplications is reduced from 32 to 13: 
› S:=x^3+3*x^2*y+x^2+3*x*y^2+2*x*y+2*x^2*z+ 

   y^3+y^2+2y^2*z+2*y*z+z^2*x+z^2*y+z^2; 
› convert(S, ’horner’, [x,y,z]; 

z^2+((2+z)*z+(2*z+1+y)*y)*y+((2+z)*z+ 
(2+4*z+3*y)*y+(2*z+1+3*y+x)*x)*x 

3.4 Substitution 
Substitution is defined as replacing a subexpression by 

a previously computed variable [1].  It reduces complexity of 
a function by using an additional variable that was not 
previously in its support set.  This transformation creates a 
new dependency between expressions, but may also 
eliminate previous dependencies.  Substitution has been 
previously used in multi-level combinational logic 
optimization [18,19].  Elimination theory [12] based on the 
Gröbner basis formalizes substitution and variable 
elimination for multivariate polynomials.  We refer the 
interested reader to the reference [12] for the detailed 
mathematical proof.  Note that for arithmetic polynomials, 
use of a more general decomposition model is necessary as 
compared to the algebraic division modeled in 
combinational logic synthesis. This is due to the fact the 
Boolean idempotence property does not hold in arithmetic 
polynomials and exponents are valid.  Therefore, there is no 
restriction on the support set of the divisor and quotient of 
an expression.  For example: 

 yx
yx
yx +=

−
− 22

 is a legitimate division.  

 
 
 
 
 
 
 
 
 
 

 
 
Figure 4.  Substitution with THR can maximize parallelism 

Substitution can be combined with THR in order to 
select a subexpression that maximizes parallelism.  As a 
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simple example let us consider a basic block which consists 
of two arithmetic expressions: 

X:= a*b*c+d; 
Y:= X+e*f; 
It can be seen that Y is dependent on X, therefore Y is 

calculated after the value of X is known as shown in Figure 
4.a.  However, if we re-substitute X in Y, Y:=a*b*c+d+e*f, 
Y can be evaluated in parallel with X.  Figure 4.b shows the 
results of tree-height reduction on both X and Y 
expressions.  In order to achieve maximum parallelism 
between X and Y, we must substitute only subexpression 
a*b*c in Y, this is shown in Figure 4.c.  

4. Timing Driven Decomposition Algorithm 
In this section, we introduce a new polynomial 

decomposition algorithm that in conjunction with classical 
high-level synthesis algorithms can be used for efficient 
algorithmic-level DSP synthesis.  The core of this algorithm 
is simplification modulo set of polynomials and Gröbner 
basis fundamentals described in Section 2.1.  After 
extracting the CDFG of an algorithmic level DSP model, 
Algorithm 4.1 intelligently decomposes the data flow to 
library components such that the critical path delay of the 
implemented data path is minimized.   

 As seen in Section 2.1, different side relation sets result 
in different implementations of the data-flow specification.   
Therefore, to find the best possible implementation, the side 
relation set should be set equal to all subsets of the library.  
Since this is exponentially expensive, a guided architectural 
exploration is necessary.  The algorithm presented in this 
section, uses the branch-and-bound method to reduce the 
search space.  We define the bounding function as the best 
critical path delay of implementations seen so far.  The 
lower bound computed at each decision branch is the 
critical path delay of components in the side relation set in 
view of data dependencies.  If this lower bound is greater 
than the best critical path delay of implementations seen so 
far, the corresponding decision branch is pruned.  

 In general, the branch-and-bound algorithm is 
practically applicable to most problems.  However, 
introducing heuristics that lead quickly to promising 
solutions can improve the execution time without hampering 
the quality of the solution.  We use the expression 
manipulation techniques presented in Section 3 as heuristic 
guidelines for choosing the side relation set.  As all branch-
and-bound algorithms, the worst-case complexity remains 
exponential.   

Algorithm 4.1 shows the pseudo-code of the proposed 
timing-driven algorithm.  Let S be the polynomial 
representation of the data flow.  Our goal is to decompose S 
into the elements of the library L such that the critical path 
delay of S is minimized.  Decomposing S is synonym to 
simplifying S modulo elements of the library L as side 
relations.  In order to decide which library elements should 
be used as the side relations, we use a decision tree 
(solution_tree) to implement the branch-and-bound 

algorithm.  The bounding variable is initialized to the critical 
path delay of mapping the polynomial solely to adders and 
multipliers, the lexicographical mapping. 

The simplify  results are also saved in the tree data 
structure.  If a simplification result is identical (or within an 
acceptable tolerance) to the polynomial representation of a 
library element, a possible solution is found and the 
corresponding tree node is marked accordingly.  If the 
critical path delay of the solution is less than previously 
encountered solutions, we set the bounding variable to the 
current delay.  In case the simplification result stored in a 
tree node does not correspond to any library elements, we 
recursively apply the same steps to the new tree node.   

Algorithm 4.1 Decompose S into elements of library L 
function GuidedDecomposition(exp_tree, max_CPD){ 

# initialize a solution tree 
solution_tree ← tree(exp_tree); 
depth ← 0 
bound ← max_CPD 
for all n ∈ in tree with depth depth do{ 

if depth ==0 then  
choose all sr ∈ L that preserve the expression tree structure 

else for all sr ∈ L do{ 
if cost of sr + cost of node n < bound then { 

result = simplify(n, sr); 
# make result a child of node n  
addchild(n, result);  
add cost of sr to cost of result; 
depth ← depth +1   
if result ∈ L then {  

# solution is found  
bound = cost of node result;  }}}} 

return  the best solution in solution_tree 
end 

int function CalcMaxCPD(expression_tree){ 
CPD = the critical path delay of expression_tree assuming  
            the expression is mapped to adders and multipliers only.  
return(CPD) 

end  

procedure main(S, L) 
# Given a polynomial representation of the spec S  
# and a set of polynomials L as component library, 
# decompose S into elements of library L such that  
# the critical path delay (CPD) of S is minimized. 
# perform expression manipulation techniques 
exp_tree[1..NumberOfManipulations]=AllManipulations(S); 
for i= 1 to NumberOfManipulations do{ 

maxCPD[i]=CalcMaxCPD(exp_tree[i]); 
solution[i]=GuidedDecomposition(exp_tree[i], maxCPD[i]); 

} 
report the best solution in solutions[i] 

end 

In order to reduce the execution time, we introduce 
heuristics to select the initial side relation.  The heuristics 
used are based on the symbolic polynomial manipulations 
described in Section 3.  Initially, we apply tree-height 
reduction, factorization, expansion, and Horner-based 
transform on S.  As a result, we have several polynomials 
(exp_tree) representing the same data flow.  Each of these 
representations can result in the desirable implementation 
based on the available library elements.  Starting with the 



primary inputs, we try covering the expression tree with the 
library elements.  We choose all library elements that cover 
the primary inputs and a portion of the expression tree as a 
side relation.  If the result of simplify modulo side relation is 
not a library element, we decompose the result without 
further guidance from the expression tree.  Algorithm 4.1 in 
conjunction with substitution and tree-height reduction can 
be generalized to several polynomials in basic block or 
across basic blocks.     

As an example, consider a data-flow segment of a Gabor 
filter with the following polynomial representation: 
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Assume we would like to map S to a library consisting of 
functions implementing add, multiply, MAC, square, exp.  
After factorization S will be converted to: 
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The factored form of S guides us to use c=a^2+b^2 as 
an initial side relation and sets an initial bound by mapping 
the factored form lexicographically to adders and multiplier.  
SymSyn makes a call to Maple and requests result of the 
following simplify operation.   

> siderel := {c=a^2+b^2}; 

> result:=simplify(S, siderel, [a,b,c]); 

result=1-c+1/2*c^2-1/6*c^3+1/24*c^4 

The last line is the result reported to SymSyn by Maple.  
As it can be seen, the result is a Taylor series expansion of 
exp(c).  Therefore, the data flow can be implemented using 
two square blocks, an adder, and an exp block, as shown in 
Figure 5.  The bounding function is now changed to the 
new implementation found.  By exploring the other branches 
of the decision tree (solution tree).  

 
  
 

Figure 5.  Mapping S to 4 components 

Now, assume that there is no exp block in our library.  In 
order to show the power of other polynomial 
transformations, we perform Horner transform on the result 
polynomial, we obtain: 
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The formula given above can be implemented using a chain 
of 4 MACs, or one MAC in 4 cycles.  Figure 6 demonstrates 
one possible implementation.   
 
 
 

 
 
 
 
 
 

5. Implementation and Experimental Results 
We have implemented Algorithm 4.1 described in this 

paper in C programming language with calls to Maple V [13] 
for the symbolic manipulations in the SymSyn framework.  
The program input is the data flow of a high level 
description of the design and a database of polynomial 
representations of library elements.  Output reported is 
components used in the data-path implementation and their 
interconnection such that the critical path delay is 
minimized. 

Table 1. SymSyn results for some examples 

Lexicographical 
Mapping 

SymSyn Output 
Data flow 
Examples #of 

comps CPD 
#of 

comps CPD 

a2-b2 3 2.35 3 2.05 

b3+ba2c 9 5.05 2 4.69 
IDCT  9 3.7 2 3.34 

1/2tanh(a-1)+ 
1/2tanh(a+1) 

12 8.75 3 5.63 

PSK 33 7.75 2 7 

Geometric-
transform  

12 11.45 5 7.92 

Gabor-
transform 

79 13.8 6 9.4 

We have tested the efficiency of SymSyn with a number 
of data-path examples.  The results are shown in Table I.  In 
this table, the critical path delay reported is normalized by 
the critical path delay of an adder.  For example, the critical 
path delay of an adder is 1 and critical path delay of a 
multiplier is 1.35.  This number is calculated from the critical 
path delay reported by DC for a 16-bit multiplier divided by 
the critical path delay reported by DC for a 16-bit adder.  
The normalized critical path delay calculation is done for all 
library components available in the DesignWare arithmetic 
component library [2].   

In the first set of results, we assume that the polynomial 
representation is mapped only to multipliers and adders.  
This is same as lexicographical component inference that is 
typical in commercial behavioral synthesis tools.  The 
number of components refers to the numbers of adders and 
multipliers in the data-path polynomial.  The critical path 
delay (CDP) reported is an accumulative delay of 
components on the critical path.  The second set of results 
is derived by SymSyn.  The cost is sum of cost of the 
components used in data path to implement the polynomial 

c=a2+b2 
-1/6 1/2 -1 1 
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representation as recommended by SymSyn.  The library 
used for the examples is the DesignWare library [2] plus the 
tanh(x) and exp(x) operations. 

  The first two data flows in Table I are simple benchmark 
polynomials.  The third polynomial is a basic block in a one-
dimensional inverse discrete cosine transform (IDCT).  
IDCT is widely used in audio and video compression 
standards such as JPEG, MPEG, and MP3. The fourth 
example comes from the digital communication field.  It 
performs phase shift keying (PSK) modulation.  The fifth 
example used in graphics for image rotation.  And the last 
example is a data flow segment of the Gabor transform used 
in neural systems. 
Table 2. Reported by Design Compiler using tsmc.35 library 

DC Results 
without SymSyn   

DC Results 
with SymSyn   Data flow 

Examples 
Timing Area Timing Area 

a2-b2 11.21  66760  9.42  54815 

b3+ba2c 29.09 285926 25.44 166303 
IDCT  29.29 323185 20.52 130753 

With the intention of achieving more precise 
measurement of the critical path delay of the set of 
examples, we used Behavioral Compiler (BC) and Design 
Compiler (DC) to produce the set of results shown in Table 
2.  Due to the limitation of library components available and 
DC, this experiment was restricted to the first three 
examples.  The first set of results is the output of DC on the 
standard behavioral synthesis flow.  The second set of 
results is the output of DC when mapping directives 
suggested by SymSyn are incorporated in the HDL input to 
BC. It can be observed that actual performance 
improvements in these examples are inline and better than 
estimated by SymSyn in Table 1. 

In summary, the results show that we can achieve an 
average performance improvement of 17.6 percent over 
commercial behavioral synthesis flow.  It is also shown that 
even though we are aiming for performance improvement, 
we also achieve significant area improvement by using less 
number of components than lexicographical mapping. 

6. Conclusion 
In this paper we have introduced a timing driven 

architectural decomposition algorithm in order to map data 
flow to a set of complex arithmetic library components.  This 
algorithm fits seamlessly in the high-level synthesis flow 
and enhances the quality of result of data intensive circuit 
synthesis.  Our method takes advantage of previously 
developed concepts; polynomial representation of library 
blocks, symbolic computer algebra, and transformations 
previously used in the fields of multi-level combinational 
logic minimization and parallel computing.  

Polynomial representation is used to represent the 
functionality of library components and the data flow 
segment of the chip under design.  Symbolic computer 

algebra is used to decompose the data flow into a set of 
library components.  From a practical standpoint, the 
contribution of this paper is to make performance 
constrained arithmetic library binding an automated 
process, and eliminate the need for synthesis directives.   

Symbolic computer algebra is a powerful set of 
algorithms not previously used in the field of synthesis.  
We believe these algorithms open a new set of 
opportunities in algorithmic-level synthesis research.  Even 
though algebraic manipulations are best suited for 
combinational arithmetic designs, scheduling, resource 
sharing, and retiming algorithms can be applied to the data-
path output to achieve optimized/pipelined designs. 
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