
Symbolic Algebra and Timing Driven Data-flow Synthesis
Armita Peymandoust Giovanni De Micheli

Computer Systems Laboratory, Stanford University
Stanford, CA 94305

{armita, nanni}@stanford.edu

Abstract

The growing market of multi-media applications has
required the development of complex ASICs with
significant data-path portions. Unfortunately, most high-
level synthesis tools and methods cannot automatically
synthesize data paths such that complex arithmetic library
blocks are intelligently used. Symbolic computer algebra
has been previously used to automate mapping data flow
into a minimal set of complex arithmetic components. In
this paper, we present extensions to the previous methods
in order to find the minimal critical path delay (CPD)
mapping. A new algorithm is proposed that incorporates
symbolic manipulations such as tree-height-reduction,
factorization, expansion, and Horner transformation.
Such manipulations are used as guidelines in initial
library element selection. Furthermore, we demonstrate
how substitution can be used for multi-expression
component sharing and critical path delay optimization.

1. Introduction
Automating the design of data paths from high-level

specifications is necessary to meet the tight time to market
requirements of multi-media applications. The optimal
choice of the arithmetic units implementing complex data
flows strongly affects the cost, performance and power
consumption of the silicon implementations. Unfortunately,
current commercial tools rely on synthesis directives
(pragmas) from designers in order to map data-flow into
complex arithmetic library elements.

However, current high-level synthesis tools are effective
in capturing HDL models of hardware and mapping them
into control/data-flow graphs (CDFGs), performing
scheduling, resource sharing, retiming, and control
synthesis [1]. The approach presented in this paper fits
seamlessly into the current high-level synthesis flow. We
propose to analyze the data-flow segments of the CDFG
models in light of the arithmetic units available as library
blocks, and to construct data paths that exploit at best the
given library. We assume that design is done using
libraries that contain beyond the basic elements such as
adders and multipliers, more complex cells such as
multiplier-accumulator (MAC), sine, cosine, etc. An example
of such a library is Synopsys Designware [2] library.

Two factors are key in automating the optimal mapping
of data flow blocks. First, a functionality description
formalism for data flow and library components. Second, a

method supporting the decomposition of the data flow into
a set of library elements. Polynomial representation has
been proven as an effective technique for representing both
high-level specification and bit-level description of an
implementation (library component) [3, 4]. Symbolic
computer algebra has been utilized to decompose the
polynomial representation of a data path into library
elements in the symbolic synthesis tool SymSyn [5].
However, the algorithm implemented previously in SymSyn
was limited to find the minimal-component mapping of a
given data flow.

Due to the importance of high performance design, we
have developed a new algorithm in the SymSyn framework
to automatically map the data flow to arithmetic library
elements such that the optimum critical path delay is
achieved. For such purpose, we leverage results from
Gröbner basis applications and symbolic polynomial
manipulation techniques. In this paper, we propose a
timing-driven decomposing algorithm that uses various
polynomial manipulation techniques guidelines to achieve
optimal component mapping and resource sharing.

The paper is organized as follows: Section 2 describes
related work and gives a brief overview of data-flow
synthesis using symbolic computer algebra. Section 3
provides an insight to the polynomial manipulations used
for delay optimization with simple examples. In Section 4,
we present how we can leverage results from symbolic
algebra and methods previously used in logic minimization
to construct an algorithm that finds a minimal-critical path
delay decomposition of a polynomial representing a
(portion of) data flow. Finally, Section 5 presents some
experimental results.

2. Related Work
Our tool, SymSyn [5] maps a (portion of) data flow to

complex arithmetic library elements such that a given criteria
is satisfied (minimal number of components or minimal
critical path delay). In order to achieve this goal, we assume
that the data flow is represented as a polynomial. This
assumption is based on the fact that polynomial
approximations such as Taylor, Pade, continued fractions,
Hermite-Pade, and others are generally used to implement
complex arithmetic functions in hardware [8]. This is
especially the case for the growing market of multi-media
applications. We also require the library elements to have a
polynomial representation associated with them. In
previous work [3,4], a mechanism was provided to derive a

minimum order word-level polynomial representation for a
given complex Boolean circuit description. This method
provides polynomial representations for legacy library
elements without trivial polynomial representations.

2.1 Symbolic algebra and data-path synthesis
Traditional mathematical computation with computers

and calculators is based on arithmetic of fixed-length
integers and fixed-precision floating-point numbers,
otherwise known as numeric computer algebra. In contrast,
modern symbolic computation systems support exact
rational arithmetic, arbitrary-precision floating-point
arithmetic, and algebraic manipulation of expression
containing undetermined values (symbols), such as variable
x in (x+1)*(x-1). Several commercial symbolic computer
algebra systems are available on the market; Maple [13] and
Mathematica [14] are most widely used.

The algebraic object that we are interested to manipulate
symbolically is a multivariate polynomial that represents a
(portion of) data path of our design. Most symbolic
polynomial manipulations that we find interesting in data-
path synthesis are based on Gröbner bases [9-12]. Gröbner
bases and Buchberger’s algorithm generalize the division
and GCD algorithms of univariate polynomials to
multivariate polynomials. Therefore, it is the heart of
symbolic polynomial factorization. Gröbner bases also
solve variable elimination in a set of polynomials and ideal
membership problems, which is the core of simplification
modulo set of polynomials. We will not dive into the details
of Gröbner bases and Buchberger’s algorithm and how they
are applied to symbolic polynomial manipulation. We refer
the reader to the literature available in mathematics [9-12].

In order to show the power of symbolic algebra, namely
the simplification modulo set of polynomials routine, let us
consider a simple example. The built-in function that
implements this routine is called simplify in Maple [13]. In
order to comply with Maple terminology, we call the set of
polynomials the side relations. Consider a data flow
implementing x^2-y^2 and a library that includes add,
multiply subtract and square components. Using Maple
syntax we have:

> a:=x^2-y^2: siderels:={b=x-y, c=x+y}
> simplify(a, siderels,[x,y,b,c]);

b*c

This is equivalent to the implementation shown in Figure
1.a. Note that siderels is a subset of our library. Maple
computes the Gröbner basis G of siderels and uses that
internally to eliminate x and y variables from the polynomial.
The result indicates that:

a:=x^2-y^2:=b*c:=(x-y)*(x+y)

If the side relation set is changed, other possible
solutions for the specification may be found, for example:

> a:=x^2-y^2: siderels:={b=x^2, c=y^2}
> simplify(a, siderels,[x,y,b,c]);

b-c
results in the implementation shown in Figure 1.b.

Choosing the side relation set is a non-trivial task. In
previous work [5], an algorithm was introduced to select the
side relation set such that the implementation is minimal in
term of library component count. In this paper, we describe
an algorithm to exploit the library components such that the
CPD of the data path implementation is minimized.

3. Expression Manipulation Techniques
Previously [5], an algorithm was introduced that maps a

polynomial representation of a (portion of) data flow to
minimal number of complex arithmetic library elements. This
algorithm was implemented in the Symbolic Synthesis tool,
SymSyn. To enhance SymSyn such that it enables critical
path delay minimization, a guideline is necessary for side-
relation selection. Such guideline should facilitate mapping
for maximum parallelism. We have chosen different
symbolic polynomial manipulation techniques as such
guidelines. The intent of this section is to describe the
manipulation techniques through simple examples.

3.1 Tree-height Reduction
Tree-height reduction (THR) was introduced long ago

[6,7] as an optimization method for parallel software
compilers. It is a technique to reduce the height of an
arithmetic expression tree, where the height of the tree is the
number of steps required to compute the expression. In the
best case, it achieves the tree height of O(log n) for an
expression with n operations. Tree-height reduction uses
commutativity, associativity, and distributivity properties of
addition, subtraction and multiplication. In the classical
case, tree-height reduction is achieved at the expense of
adding more resources to obtain maximum parallelism in the
expression. In previous work, THR has been proven useful
in high-level synthesis of data-intensive circuits such as
DSP and multimedia applications [15-17].

Figure 2. Performing THR on (a) produces (b)

In our work, we use THR as an expression tree
manipulation technique. THR will achieve the best

-

+
*

x

y

b

c

a

Figure 1.a. An implementation of x2-y2

^2

^2
-

x

y

b

c

a

Figure 1.b. Another implementation of x2-y2

+

+

*

a + b * c + d

(a)
+

+ *

a + d + b * c

(b)

execution time when using unlimited number of two input
adders, subtracters and multipliers is allowed. Since we are
focusing on libraries that have more complicated blocks,
THR may or may not result in the optimal execution time.
The result is dependant on the library components
available. Figure 2 shows an example of how THR can
reduce the critical path delay. Figure 2 (b) is obtained after
applying THR on Figure 2 (a).

3.2 Factor and Expand
As mentioned previously, traditional tree-height

reduction [6, 7] only uses associativity, commutativity, and
distributivity to transform expressions. Since we have
access to a symbolic manipulation tool in SymSyn, we can
benefit from other transformations as well. One such
transformation is common sub-expression factorization.
Factorization can reduce the number of components used as
well as the tree height of a given expression. An example is
shown in Figure 3.

Figure 3. Factor may reduce number of components and CPD

Another useful symbolic manipulation technique is
expansion. This manipulation technique changes the
polynomial into its sum of products format. Meanwhile, it is
capable of straightforward simplification techniques that
can save both delay and area. A small example of such
simplification is transforming a+a+a to 3*a.

3.3 Horner form
Horner form of a polynomial is a nested normal form with

minimal number of multiplications and additions. Any
polynomial can be rewritten in Horner, or nested, form. The
general univariate case is defined as follows [14]:

axaxaxaxa

axaxaxp

nn

nn
n

+⋅+⋅+⋅+⋅=

+⋅++⋅=

−

−

)))(((

)(

1210

10

LL

L

Assume that xn can be calculated using only log2(n)
multiplications for integer n. For a polynomial of degree n,
the Horner form requires n multiplications and n additions.
The expanded form, however, requires:

)!(log)(log 2
1

2 ni
n

i
=∑

=

multiplications, which is more than twice as expensive for a
polynomial of degree 10. Thus, one advantage of Horner
form is that the work involved in exponentiation is
distributed across addition and multiplication, resulting in
savings of some basic arithmetic operations. Another
advantage is that Horner form is more stable to evaluate
numerically when compared with the expanded form. The

reason for this is that each sum or product involves
quantities which vary on a more evenly distributed scale.
For hardware implementation, Horner form has a distinct
advantage. It effectively maps a univariate polynomial to
cost effective multiplier-accumulators (MAC).

Horner form is generalized for multivariate polynomials
by specifying an ordered list of variables. As a simple
example consider the following polynomial in which the
number of multiplications is reduced from 32 to 13:
› S:=x^3+3*x^2*y+x^2+3*x*y^2+2*x*y+2*x^2*z+

 y^3+y^2+2y^2*z+2*y*z+z^2*x+z^2*y+z^2;
› convert(S, ’horner’, [x,y,z];

z^2+((2+z)*z+(2*z+1+y)*y)*y+((2+z)*z+
(2+4*z+3*y)*y+(2*z+1+3*y+x)*x)*x

3.4 Substitution
Substitution is defined as replacing a subexpression by

a previously computed variable [1]. It reduces complexity of
a function by using an additional variable that was not
previously in its support set. This transformation creates a
new dependency between expressions, but may also
eliminate previous dependencies. Substitution has been
previously used in multi-level combinational logic
optimization [18,19]. Elimination theory [12] based on the
Gröbner basis formalizes substitution and variable
elimination for multivariate polynomials. We refer the
interested reader to the reference [12] for the detailed
mathematical proof. Note that for arithmetic polynomials,
use of a more general decomposition model is necessary as
compared to the algebraic division modeled in
combinational logic synthesis. This is due to the fact the
Boolean idempotence property does not hold in arithmetic
polynomials and exponents are valid. Therefore, there is no
restriction on the support set of the divisor and quotient of
an expression. For example:

 yx
yx
yx +=

−
− 22

 is a legitimate division.

Figure 4. Substitution with THR can maximize parallelism

Substitution can be combined with THR in order to
select a subexpression that maximizes parallelism. As a

*

+ +

(a + b) * (c + d)

(b)

+

+

*

a * c + a * d + b * c + b * d

(a)
* * *

+

a * b * c + d + e * f a * b * c + d

(b) *
* *

X Y
+

+

+

*
*

d + e * f a * b * c + d

(c) *
* *

X Y
+

+

+

a * b * c + d

(a)

d + e * f

*
* *

X
Y +

+
+

simple example let us consider a basic block which consists
of two arithmetic expressions:

X:= a*b*c+d;
Y:= X+e*f;
It can be seen that Y is dependent on X, therefore Y is

calculated after the value of X is known as shown in Figure
4.a. However, if we re-substitute X in Y, Y:=a*b*c+d+e*f,
Y can be evaluated in parallel with X. Figure 4.b shows the
results of tree-height reduction on both X and Y
expressions. In order to achieve maximum parallelism
between X and Y, we must substitute only subexpression
a*b*c in Y, this is shown in Figure 4.c.

4. Timing Driven Decomposition Algorithm
In this section, we introduce a new polynomial

decomposition algorithm that in conjunction with classical
high-level synthesis algorithms can be used for efficient
algorithmic-level DSP synthesis. The core of this algorithm
is simplification modulo set of polynomials and Gröbner
basis fundamentals described in Section 2.1. After
extracting the CDFG of an algorithmic level DSP model,
Algorithm 4.1 intelligently decomposes the data flow to
library components such that the critical path delay of the
implemented data path is minimized.

 As seen in Section 2.1, different side relation sets result
in different implementations of the data-flow specification.
Therefore, to find the best possible implementation, the side
relation set should be set equal to all subsets of the library.
Since this is exponentially expensive, a guided architectural
exploration is necessary. The algorithm presented in this
section, uses the branch-and-bound method to reduce the
search space. We define the bounding function as the best
critical path delay of implementations seen so far. The
lower bound computed at each decision branch is the
critical path delay of components in the side relation set in
view of data dependencies. If this lower bound is greater
than the best critical path delay of implementations seen so
far, the corresponding decision branch is pruned.

 In general, the branch-and-bound algorithm is
practically applicable to most problems. However,
introducing heuristics that lead quickly to promising
solutions can improve the execution time without hampering
the quality of the solution. We use the expression
manipulation techniques presented in Section 3 as heuristic
guidelines for choosing the side relation set. As all branch-
and-bound algorithms, the worst-case complexity remains
exponential.

Algorithm 4.1 shows the pseudo-code of the proposed
timing-driven algorithm. Let S be the polynomial
representation of the data flow. Our goal is to decompose S
into the elements of the library L such that the critical path
delay of S is minimized. Decomposing S is synonym to
simplifying S modulo elements of the library L as side
relations. In order to decide which library elements should
be used as the side relations, we use a decision tree
(solution_tree) to implement the branch-and-bound

algorithm. The bounding variable is initialized to the critical
path delay of mapping the polynomial solely to adders and
multipliers, the lexicographical mapping.

The simplify results are also saved in the tree data
structure. If a simplification result is identical (or within an
acceptable tolerance) to the polynomial representation of a
library element, a possible solution is found and the
corresponding tree node is marked accordingly. If the
critical path delay of the solution is less than previously
encountered solutions, we set the bounding variable to the
current delay. In case the simplification result stored in a
tree node does not correspond to any library elements, we
recursively apply the same steps to the new tree node.

Algorithm 4.1 Decompose S into elements of library L
function GuidedDecomposition(exp_tree, max_CPD){

initialize a solution tree
solution_tree ← tree(exp_tree);
depth ← 0
bound ← max_CPD
for all n ∈ in tree with depth depth do{

if depth ==0 then
choose all sr ∈ L that preserve the expression tree structure

else for all sr ∈ L do{
if cost of sr + cost of node n < bound then {

result = simplify(n, sr);
make result a child of node n
addchild(n, result);
add cost of sr to cost of result;
depth ← depth +1
if result ∈ L then {

solution is found
bound = cost of node result; }}}}

return the best solution in solution_tree
end

int function CalcMaxCPD(expression_tree){
CPD = the critical path delay of expression_tree assuming
 the expression is mapped to adders and multipliers only.
return(CPD)

end

procedure main(S, L)
Given a polynomial representation of the spec S
and a set of polynomials L as component library,
decompose S into elements of library L such that
the critical path delay (CPD) of S is minimized.
perform expression manipulation techniques
exp_tree[1..NumberOfManipulations]=AllManipulations(S);
for i= 1 to NumberOfManipulations do{

maxCPD[i]=CalcMaxCPD(exp_tree[i]);
solution[i]=GuidedDecomposition(exp_tree[i], maxCPD[i]);

}
report the best solution in solutions[i]

end

In order to reduce the execution time, we introduce
heuristics to select the initial side relation. The heuristics
used are based on the symbolic polynomial manipulations
described in Section 3. Initially, we apply tree-height
reduction, factorization, expansion, and Horner-based
transform on S. As a result, we have several polynomials
(exp_tree) representing the same data flow. Each of these
representations can result in the desirable implementation
based on the available library elements. Starting with the

primary inputs, we try covering the expression tree with the
library elements. We choose all library elements that cover
the primary inputs and a portion of the expression tree as a
side relation. If the result of simplify modulo side relation is
not a library element, we decompose the result without
further guidance from the expression tree. Algorithm 4.1 in
conjunction with substitution and tree-height reduction can
be generalized to several polynomials in basic block or
across basic blocks.

As an example, consider a data-flow segment of a Gabor
filter with the following polynomial representation:

8

24

162

6

144

4

126

6

18

24

16

6

1

42

2

124

2

16

6

14

2

14

2

122221

bbababaab

babaabababaS

+++++−

−−−+++−−=

Assume we would like to map S to a library consisting of
functions implementing add, multiply, MAC, square, exp.
After factorization S will be converted to:

1)64424212423

228212243446()22(
24

1

++−++

+−++−+=

bbbba

baabaaabaS

The factored form of S guides us to use c=a^2+b^2 as
an initial side relation and sets an initial bound by mapping
the factored form lexicographically to adders and multiplier.
SymSyn makes a call to Maple and requests result of the
following simplify operation.

> siderel := {c=a^2+b^2};

> result:=simplify(S, siderel, [a,b,c]);

result=1-c+1/2*c^2-1/6*c^3+1/24*c^4

The last line is the result reported to SymSyn by Maple.
As it can be seen, the result is a Taylor series expansion of
exp(c). Therefore, the data flow can be implemented using
two square blocks, an adder, and an exp block, as shown in
Figure 5. The bounding function is now changed to the
new implementation found. By exploring the other branches
of the decision tree (solution tree).

Figure 5. Mapping S to 4 components

Now, assume that there is no exp block in our library. In
order to show the power of other polynomial
transformations, we perform Horner transform on the result
polynomial, we obtain:

ccccresult ⋅⋅⋅⋅+−++−+=)))
24
1

6
1(

2
1(1(1

The formula given above can be implemented using a chain
of 4 MACs, or one MAC in 4 cycles. Figure 6 demonstrates
one possible implementation.

5. Implementation and Experimental Results
We have implemented Algorithm 4.1 described in this

paper in C programming language with calls to Maple V [13]
for the symbolic manipulations in the SymSyn framework.
The program input is the data flow of a high level
description of the design and a database of polynomial
representations of library elements. Output reported is
components used in the data-path implementation and their
interconnection such that the critical path delay is
minimized.

Table 1. SymSyn results for some examples

Lexicographical
Mapping

SymSyn Output
Data flow
Examples #of

comps CPD
#of

comps CPD

a2-b2 3 2.35 3 2.05

b3+ba2c 9 5.05 2 4.69
IDCT 9 3.7 2 3.34

1/2tanh(a-1)+
1/2tanh(a+1)

12 8.75 3 5.63

PSK 33 7.75 2 7

Geometric-
transform

12 11.45 5 7.92

Gabor-
transform

79 13.8 6 9.4

We have tested the efficiency of SymSyn with a number
of data-path examples. The results are shown in Table I. In
this table, the critical path delay reported is normalized by
the critical path delay of an adder. For example, the critical
path delay of an adder is 1 and critical path delay of a
multiplier is 1.35. This number is calculated from the critical
path delay reported by DC for a 16-bit multiplier divided by
the critical path delay reported by DC for a 16-bit adder.
The normalized critical path delay calculation is done for all
library components available in the DesignWare arithmetic
component library [2].

In the first set of results, we assume that the polynomial
representation is mapped only to multipliers and adders.
This is same as lexicographical component inference that is
typical in commercial behavioral synthesis tools. The
number of components refers to the numbers of adders and
multipliers in the data-path polynomial. The critical path
delay (CDP) reported is an accumulative delay of
components on the critical path. The second set of results
is derived by SymSyn. The cost is sum of cost of the
components used in data path to implement the polynomial

c=a2+b2
-1/6 1/2 -1 1

a b

MAC
c

1/24

result
Figure 6. A possible implementation for ec

clk DFF

^2

^2
+ exp

a

b

S

representation as recommended by SymSyn. The library
used for the examples is the DesignWare library [2] plus the
tanh(x) and exp(x) operations.

 The first two data flows in Table I are simple benchmark
polynomials. The third polynomial is a basic block in a one-
dimensional inverse discrete cosine transform (IDCT).
IDCT is widely used in audio and video compression
standards such as JPEG, MPEG, and MP3. The fourth
example comes from the digital communication field. It
performs phase shift keying (PSK) modulation. The fifth
example used in graphics for image rotation. And the last
example is a data flow segment of the Gabor transform used
in neural systems.
Table 2. Reported by Design Compiler using tsmc.35 library

DC Results
without SymSyn

DC Results
with SymSyn Data flow

Examples
Timing Area Timing Area

a2-b2 11.21 66760 9.42 54815

b3+ba2c 29.09 285926 25.44 166303
IDCT 29.29 323185 20.52 130753

With the intention of achieving more precise
measurement of the critical path delay of the set of
examples, we used Behavioral Compiler (BC) and Design
Compiler (DC) to produce the set of results shown in Table
2. Due to the limitation of library components available and
DC, this experiment was restricted to the first three
examples. The first set of results is the output of DC on the
standard behavioral synthesis flow. The second set of
results is the output of DC when mapping directives
suggested by SymSyn are incorporated in the HDL input to
BC. It can be observed that actual performance
improvements in these examples are inline and better than
estimated by SymSyn in Table 1.

In summary, the results show that we can achieve an
average performance improvement of 17.6 percent over
commercial behavioral synthesis flow. It is also shown that
even though we are aiming for performance improvement,
we also achieve significant area improvement by using less
number of components than lexicographical mapping.

6. Conclusion
In this paper we have introduced a timing driven

architectural decomposition algorithm in order to map data
flow to a set of complex arithmetic library components. This
algorithm fits seamlessly in the high-level synthesis flow
and enhances the quality of result of data intensive circuit
synthesis. Our method takes advantage of previously
developed concepts; polynomial representation of library
blocks, symbolic computer algebra, and transformations
previously used in the fields of multi-level combinational
logic minimization and parallel computing.

Polynomial representation is used to represent the
functionality of library components and the data flow
segment of the chip under design. Symbolic computer

algebra is used to decompose the data flow into a set of
library components. From a practical standpoint, the
contribution of this paper is to make performance
constrained arithmetic library binding an automated
process, and eliminate the need for synthesis directives.

Symbolic computer algebra is a powerful set of
algorithms not previously used in the field of synthesis.
We believe these algorithms open a new set of
opportunities in algorithmic-level synthesis research. Even
though algebraic manipulations are best suited for
combinational arithmetic designs, scheduling, resource
sharing, and retiming algorithms can be applied to the data-
path output to achieve optimized/pipelined designs.

7. Acknowledgments
This research is supported by ARPA/MARCO Gigascale

Research Center and Synopsys Inc. We would like to thank
both organizations for their support.

8. References
[1] G. De Micheli, “Synthesis and Optimization of Digital

Circuits”, Mc Graw Hill, Hightstown, NJ, 1994.
[2] DesignWare Library, http://www.synopsys.com/, 1994.
[3] J. Smith and G. De Micheli, “Polynomial Methods for

Component Matching and Verification”, Proceedings of the
International Conference on Computer Aided Design, 1998.

[4] J. Smith and G. De Micheli, “Polynomial Methods for
Allocating Complex Components”, Proceedings of the
Design, Automation, and Test in Europe Conference, 1999.

[5] A. Peymandoust and G. De Micheli, “Using Symbolic
Algebra in Algorithmic Level DSP Synthesis”, Proceedings of
the Design Automation Conference, pp. 277-282, 2001.

[6] D. J. Kuck, “The Structure of Computers and Computations.
Vol. I”, John Wiley and Sons, New York, NY, 1978.

[7] D. J. Kuck, Y. Muraoka, and S. C. Chen, “On the Number of
Operations Simultaneously Executable in Fortran-like
Programs and Their Resulting Speedup”, IEEE Trans. On
Computers, C-21, 12, December 1972.

[8] J. F. Hart et al., “Computer Approximations”, New York:
Wiley, 1968.

[9] B. Buchberger, “Some Properties of Gröbner Bases for
Polynomial Ideals”, ACM SIG-SAM Bulletin, 1976.

[10] K. Geddes, S. Czapor, and G. Labahn, Algorithms for
Computer Algebra, Kluwer Academic Publishers, 1992.

[11] T. Becker and V. Weispfenning, Gröbner Bases, Springer-
Verlag, New York, NY, 1993.

[12] D. Cox, J. Little, and D. O’shea, “Ideals, Varieties, and
algorithms”, Springer-Verlag, New York, NY, 1997.

[13] Maple, Waterloo Maple Inc., www.maplesoft.com, 1988.
[14] Mathematica, Wolfram Research Inc., www.wri.com, 1987.
[15] A. Nicolau and R. Potasman, “Incremental Tree Height

Reduction for High Level Synthesis”, Proceedings of the
Design Automation Conference, pp. 770-774, 1991.

[16] D. Kolson, A. Nicolau, and N. Dutt, “Integrating Program
Transformations in the Memory-Based Synthesis of Image
and Video Algorithms”, Proceedings of the International
Conference on Computer Aided Design, November 1994.

[17] H. Wang, A. Nicolau, and K. Siu, “The Strict Time Lower
Bound and Optimal Schedules for Parallel Prefix with
Resource Constraints”, IEEE Trans. On Computers,
November 1996.

[18] R. Brayton and C. McMullen, “The Decomposition and
Factorization of Logic Synthesis”, IEEE Int. Symp. Circuits
Syst., May 1982.

[19] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli and A.
Wang, “MIS: A Multiple-level Logic Optimization and the
Rectangular Covering Problem”, Proceedings of the
International Conference on Computer Aided Design, 1987.

	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index

