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1 Introduction

One of the most critical bottlenecks in many novel multi-media applications is their very dynamic
concurrent behaviour. This is especially true because of the quality-of-service (QoS) aspects of these
applications. Prominent examples of this can be found in the recent MPEG4 and JPEG2000 standards
and especially the new MPEG21 standard. In order to deal with these dynamic issues where tasks and
complex data types are created and deleted at run-time based on non-deterministic events, a novel system
design paradigm is required. Because of the high computation and communicating requirement from
these kind of applications, multi-processor SoC (system on chip) is more and more accepted as a solution
(eg., TriMedia), which is also promised by the advance of the processing technology. It is different
from traditional general-purpose computers because it is application specific and it is an embedded
system, which means costs like energy consumption are of major concern. The task scheduling on such
a multiprocessor, embedded multi-media systems forms a real challenge.

This part of the tutorial will focus on the new requirements in system-level synthesis. In particular a
”task concurrency management” problem formulation will be proposed, with special focus on the formal
definition of the most crucial optimization problems. The concept of Pareto curve based exploration is
crucial in these formulations.

2 Novel Task Scheduling Methods

The current real-time operating systems (RTOS) actually provide limited support for task scheduling.
Only some simple scheduling algorithms, such as round robin, time slice and fixed priority preemptive
scheduling are widely implemented, and at most only the performance is considered. In other words,
they only consider how to meet real-time constraints, not the energy consumption, QoS or some other
features emerged in the novel, dynamic applications.

When the concern is the system energy or power consumption, decreasing the supply voltage is
lucrative to a low power design for a CMOS digital circuit, because the energy consumption of CMOS
digital circuits is approximately proportional to the square of the supply voltage (for power it is the cube),
though it will slow down the cycle speed as well. Observations on the dynamic multimedia applications
show that there is a big variation of the system computation load. The average system load can be quite
low compared to the more less frequently highest demand. To meet the highest computation demand, the
system must be fast and more energy greedy, but it can be slow down whenever the demand is at a less
level to save energy, which provides the good reason for dynamic voltage scheduling (DVS). More and
more researchers have been attracted to this area and many papers and algorithms have been published.
A good overview can be found in [6]. Off-line scheduling algorithms for non-preemptive hard real-
time tasks are discussed in [1, 3]. In [2, 3, 4], more general variable voltage processor models are used
assuming that processor voltage can not change instantaneously or continuously. The more practical
processor models make the problem much harder to solve. Several techniques have been developed
recently to handle also QoS issues [5]. These techniques however do not yet consider any dependencies
between the tasks.
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3 Task concurrency management approach and optimisation prob-
lems

The purpose of the task-concurrency management approach at IMEC [7, 8] to determine a cost-
optimal, constraint-driven scheduling, allocation, and assignment of a given set of tasks to a set of
processors. It also includes system-level code transformations to improve the initial starting point from
the concurrency point of view (see figure 1 for the complete flow). Different processors execute the same
thread node at different speeds and different costs (energy consumption). These differences also make
it possible to explore a cost-performance trade-off at the system level. Hence the techniques should not
produce just one design point but the entire Pareto-optimal trade-off curve.
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Figure 1: The task concurrency management flow.

The task scheduling problem is attacked hierarchically with two phase in the Task Concurrency
Management (TCM) project[7]. First, a design-time task scheduling is performed to some small pieces
of a complete task (bounded by deterministic boundaries)[9]. It includes the assignment of the voltage
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of the processors on which a small piece of code is running, so in that respect it belongs to the DVS
class, but with a discrete set of voltages. Different from a normal ”static” task scheduler, this technique
generate not only one but all possible working points (Pareto curve) that dominate the other feasible
solutions in the performance-cost trade-off space. A complete problem formulation that can be used as
basis for optimisation techniques is provided in [8]. That paper also contains one possible heuristic to
solve the problem under certain assumptions.

Next, a run-time scheduling step [10] selects an optimal design-time scheduling option (working
point) and combine them to get the complete task scheduling. Given the Pareto curves, this decision
can be dynamically updated in a global way, depending on the overall run-time behaviour of the system.
So both the current system status and the available resources are continuously incorporated to obtain a
optimized system scheduling. A problem formulation that can again be used as basis for optimisation
techniques is provided in [11]. That paper also contains experiments demonstrating the possible impact
of the global approach.

We separate task scheduling into two phases for three reasons. First, this scheme better optimizes the
embedded software design. Second, it gives the entire system more runtime flexibility. Third, it reduces
runtime computation complexity.

This can be explained with the following example. First of all, we would like to explain the termi-
nology we use in this tutorial.

non-determinism a state in which behaviors (such as latency or execution time) can vary even with the
same system input. Interrupts and events can cause nondeterminism

Pareto curve a set of Pareto-optimal points. Each point represents an optimal solution in at least one
trade-off direction when all other directions are fixed.

thread a group of thread frames; an independent piece of code that performs a specific function.

thread frame a group of thread nodes. By definition, nondeterministic behaviors can occur only at the
boundary of thread frames. The design-time scheduler works inside each thread frame, whereas
the runtime scheduler treats a thread frame as an atomic scheduling unit.

thread node the atomic scheduling unit of our design-time scheduler; consists of control-dataflow
graph (CDFG) nodes and arcs.

Fig. 2 illustrates the two-phase scheduling scheme. In this figure, thread frame one consists of three

Figure 2: A two phase scheduling method.

thread nodes, 1, 2 and 3. At design time, different scheduling and assignment combinations will be tried.
For example, in the first solution, thread node 3 is scheduled before thread node 2, while after node 2 in
the second solution. Given a thread frame, the design-time scheduler explores these combinations and
generates a Pareto curve for the performance-cost trade-off. Every point in the curve is better than any
other solution in at least one way. That is, it consumes the lest energy under a given time constraint or
it finishes earliest under a given energy consumption constraint. Design-time scheduling takes place at
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compile time, so the design-time scheduler can exert as much computation effort as necessary – provided
that it produces a better result, thus reducing the computation effort of runtime scheduling later. The
same scheduling and assignment variations can also be explored for thread frame 2. At run time, the
runtime scheduler will choose one solution from each thread frame (solution 1 for thread frame one) and
combine them to derive the system scheduling.

The runtime scheduler works at thread frame granularity. When new thread frames come into being,
the runtime scheduler tries to satisfy their time constraints and minimize system energy consumption as
well. The details inside a thread frame, such as execution time or each thread node’s data dependency,
remain invisible to the runtime scheduler, reducing the thread frame’s complexity substantially. The
design-time scheduler passes only a few useful Pareto curve features to the runtime scheduler, which
uses them to find a reasonable cycle budget distribution for all the running thread frames. Thus, the
runtime scheduler is not a traditional dynamic scheduler because it must choose from available options
in addition to scheduling them.
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