
Internal Design Representations for Embedded Systems
Extended Abstract of Embedded Tutorial

Lothar Thiele

Computer Engineering and Networks Lab (TIK)
Swiss Federal Institute of Technology (ETH)

Zurich, Switzerland

Internal Design Representations

Modern embedded computing systems tend to be heterogeneous as-
semblages of concurrent subsystems, typically described in different
languages and semantics which are well established in the various
application fields. For example, the specification of the functional
and timing behavior necessitates a mixture of different basic models
of computation and communication which come from transforma-
tive or reactive domains. There is little hope that a single language
will replace this heterogeneous set of languages. In fact, experi-
ments with system specification languages show that there is not a
unique universal specification language to support the whole life cy-
cle. A similar problem occurs when reused components shall be
integrated, possibly described in another language and incompletely
documented. Examples would be components of other companies
or ”legacy code”. The lack of coherency of the different languages,
methods and tools is a substantial obstacle on the way to higher de-
sign productivity and design quality. A design process must be able
to bridge the semantic differences for verification and synthesis and
should account for limited knowledge of system properties.

The embedded tutorial will describe approaches which allow for
the common representation of different languages and incomplete
specifications. In particular, recent results on the use of internal de-
sign representations targeted to scheduling and design space explo-
ration will be reviewed. Here, the information useful for methods
like allocation of resources, partitioning the design and scheduling
must be estimated or extracted from the various input languages and
mapped onto internal representations which describe properties of
the subsystems and their coordination. Design methods work on
these internal representations and eventually refine them by adding
components and reducing non-determinism.

As an example, we will describe the internal models SPI (System
Property Intervals) [8] and FunState [7] which

• support abstraction mechanisms as necessary for the design of
complex systems,

• allow global system optimization across the boundaries of dif-
ferent input languages,

• employ behavioral intervals and process modes to allow the
common representation of different languages and incomplete
specifications, and

• provide constructs to model the representation and selection
of function variants of processes and process groups.

Design Space Exploration of Network Processors

As an example, design space exploration and scheduling of network
processors will be discussed. The need for intelligent and network
packet processing at high data rates, required by many emerging ap-
plications, have led to the development of a new class of devices
called network processors (NPs). NPs are highly programmable ded-
icated processors optimized to perform packet processing functions,

and will become critical components of next-generation networking
equipment.

It is expected that the next generation of network processors will
consist of general purpose processing units and dedicated modules
for executing run-time extensive functions. Therefore, the purpose
of a high level exploration is to select appropriate functional units
such that the performance of the processor is maximized under var-
ious conflicting constraints.

We introduce an internal design representation for embedded
systems operating on packet streams, such as network processors.
In particular, the basic internal models described above are extended
by the following concepts.

• To investigate the effect of a scheduling algorithm, we repre-
sent the “scheduling block” in the form of a network consist-
ing of nodes which operate on event streams. In addition, there
are (virtual) resource streams which model the available re-
sources. This way, it is possible to describe and analyze packet
scheduling, task scheduling and hierarchical approaches like
GPS (weighted fair queuing) and fixed priority schemes, see
[5].

• We introduce a calculus meant for reasoning about packet
streams which allows for a unified treatment of several prob-
lems arising in the network packet processing domain such as
packet scheduling, task scheduling and architecture/algorithm
explorations, see [6]. The approach unifies the methods
commonly used in the domain of communication networks,
see [4], with those used in operating systems and real-time
scheduling.

To illustrate the potential, we provide a scheme for design space
exploration of network processors taking into account conflicting
goals such as cost, memory, delay and flow constraints, see also [2].

References

[1] F. Baccelli, G. Cohen, G.J. Olsder, and J.-P. Quadrat.Synchronization and Linear-
ity. John Wiley, Sons, New York, 1992.

[2] T. Blickle, J. Teich, and L. Thiele. System-level synthesis using evolutionary algo-
rithms. Design Automation for Embedded Systems, 3(1):23–58, 1998.

[3] J.Y. Le Boudec. Application of network calculus to guaranteed service networks.
IEEE Trans on Information theory, 44(3), May 1998.

[4] R.L. Cruz. A calculus for network delay. IEEE Trans. Information Theory,
37(1):114–141, 1991.

[5] L. Thiele, S. Chakraborty, M. Gries, A. Maxiaguine, and J. Greutert. Embedded
software in network processors – models and algorithms.Workshop on Software
for Embedded Systems, Lake Tahoe, Lecture Notes in Computer Science, 2001.

[6] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for scheduling hard
real-time systeme. InProc. IEEE Internation Conference on Circuits and Systems,
volume 4, pages 101–104, 2000.

[7] L. Thiele, K. Strehl, D. Ziegenbein, R. Ernst, and J. Teich. Funstate— an inter-
nal design representation for codesign.IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 9(4):524–544, August 2001.

[8] D. Ziegenbein, K. Richter, R. Ernst, J. Teich, and L. Thiele. Representation of
process mode correlation for scheduling. InProceedings International Conference
on ComputerAided Design (ICCAD ’98), San Jose, USA, pages 54–61, 1998.


	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index


