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ABSTRACT

As system integration evolves and tighter design constraints must
be met, it becomes necessary to account for the non-ideal behavior
of all the elements in a system. Certain devices common in high-
frequency integrated circuit applications, such as spiral inductors,
SAW filters, etc, are often described and studied in the frequency
domain. Models take the form of frequency domain data obtained
through measurement or through physical simulation. Usually the
available data is sampled, incomplete, noisy, and covers only a finite
range of the spectrum.

In this paper we present a methodology for generating guaran-
teed passive time-domain models of frequency-described subsys-
tems. The methodology presented is based on convex programming
based algorithms for fixed denominator system identification. The
algorithm isguaranteedto produce a passive system model that is
optimal in the sense of having minimum weighted square error in
the frequency band of interest over all models with a prescribed set
of system poles. An incremental-fitting reformulation of the prob-
lem is also introduced that trades optimality for efficiency while
still guaranteeing passivity. Results of the application of the pro-
posed methodologies to the modeling of a variety of subsystems
are presented and discussed.

1 INTRODUCTION

Especially in high-frequency applications, certain devices are usu-
ally described and studied in the frequency domain. Devices such
as coil inductors, SAW filters, non-ideal transmission lines and
high-frequency transistors are commonly described by manufac-
turers and designers by their frequency dependent scattering pa-
rameter or admittance matrices. Frequency domain data is either
obtained through measurement or through physical simulation. In
either case, the available data is sampled, incomplete, noisy, and
covers only a finite range of the spectrum.

It is not trivial to generate accurate circuit-level models for all
the devices in a system. Such models are however necessary for
the time domain simulation of larger designs and to account for the
non-ideal characteristics of the devices. Although harmonic bal-
ance simulators can handle devices described by their frequency
response, they cannot adequately treat highly non-linear designs
such as oscillators and mixers. On the other hand, time-domain

simulators, using state-space model integration, that can deal with
high-order non-linearities, require time-domain models. It is nec-
essary that these models have frequency responses that match the
available data. The models must also possess stability and pas-
sivity properties similar to those of the physical system that they
represent. One approach to time-domain simulation of frequency-
described devices is to synthesize a state space model whose fre-
quency behavior approximates the original device in the frequency
band of interest. Many approaches have been proposed for the re-
lated problems of model generation, rational approximation, and
system identification [19, 14, 13, 5, 12, 15, 16, 17, 18, 10, 8]. The
difficulty is that no single scheme that we are aware of can simulta-
neously satisfy all the constraints on a practical method, particularly
in a design automation environment where engineers who wish to
generate models from measured data are not likely to be experts in
rational approximation.

Previously, we have addressed the robust generation of accurate
stable models [10]. However, such models were not guaranteed to
be passive. Passivity is an important property of certain physical
systems. Networks composed by resistors, capacitors and inductors
are passive, they do not generate energy. Systems that always con-
sume energy are called strictly passive. Brune [7] proved that the
admittance and impedance parameter matrices of passive electri-
cal networks are positive real matrix rational functions. The matrix
transfer function of a linear time-invariant system is positive real
if its state space realization satisfies the Positive Real Lemma [2].
Interconnected passive systems are passive. Stable systems do not
possess this closure property. Incorrectly representing a passive de-
vice by a merely stable model may lead to the instability of the
overall system and to incorrect simulation results.

In this paper, we assume that a stable matrix rational func-
tion model already exists. Such a model can readily be gen-
erated using previously developed rational approximation algo-
rithms [10, 16, 18, 8]. The matrix numerator is then recalculated
such that the Positive Real Lemma is satisfied and the error between
the data set and the model’s frequency response is minimized. This
is accomplished by solving a linear program subject to a set of lin-
ear matrix inequality constraints. Since the objective function and
the constraints are convex functions of the optimization variables,
efficient convex programming algorithms can be applied [6]. Apart
from failure due to convergence or numerical problems, these algo-
rithms are guaranteed to find an optimal solution.

This paper is structured as follows. In the next section, back-



ground information on passive systems and positive realness is pre-
sented. In section 3, model representation is considered. In sec-
tion 4, the positive real constrained multivariable fitting problem is
formulated as a linear problem subject to a set of linear matrix in-
equality constraints. Experimental results regarding computational
complexity are also presented. In section 5, an incremental fitting
strategy that reduces the dependency of the computational cost with
the number of ports is proposed. Certain numerical issues are ad-
dressed in section 6. In section 7, experimental results illustrating
the use of the proposed formulations to generate models for several
real-world examples are presented. Final conclusions are drawn in
section 8.

2 BACKGROUND

Passivity is an important property of certain physical systems. Net-
works composed by resistors, capacitors and inductors are passive,
they do not generate energy. Systems that always consume energy
are called strictly passive. Interconnected (strictly) passive systems
are (strictly) passive. Stable systems do not possess this closure
property. Stable systems loaded by stable, and even passive sys-
tems, may not even constitute an overall stable system. Therefore,
it is important that passive models represent passive systems.

Passive systems can be characterized in the time-domain and in
the frequency domain. Brune [7] proved that the admittance and
impedance parameter matrices of passive electrical networks are
positive real matrix rational functions.

A square matrix functionH(s) is said to be positive real if it
satisfies

H(s) is analytic, for Re[s] > 0: (1)

H(s) = H(s), for Re[s] > 0: (2)

H(s) +H(s)H � 0, for Re[s] > 0: (3)

The matrix transfer function of a linear time-invariant system is
positive real if its state space realization satisfies the Positive Real
Lemma.

Theorem 2.1 (Positive Real Lemma [2])Let H(s) be a matrix
transfer function such that all its poles lie either on the left-half
plane or on the imaginary axis, in which case they are simple. Let
(A;B;C;D) be a minimal realization ofH(s). ThenH(s) is
positive real if and only if there exists a symmetric positive defi-
nite matrixK and matricesW andL such that the following Lur’e
equations hold

A
T
K+KA = �LL

T (4)

KB = C
T
� LW (5)

D+DT = W
T
W (6)

For a proof see [2].

If D + DT > 0, this condition is equivalent to requiring that
there existsK = KT � 0 such that�

�ATK�KA �KB+CT

�BTK+C D+DT

�
� 0 (7)

is satisfied.

If D = 0, it follows from Theorem 2.1 thatH(s) is positive real
if and only if there existsKT = K � 0 such that

A
T
K+KA � 0 (8)

B
T
K = C: (9)

For further references on passivity and the more general concept of
dissipativity see, for example [2, 20, 3, 4, 11].

3 MODEL REPRESENTATION

The methodology we will now describe for generating guaranteed
passive time-domain models of frequency-described subsystems is
based on convex programming based algorithms for fixed denom-
inator system identification. It is therefore assumed that a stable
matrix rational function (i.e. a state-space model with no poles in
the right half of the complex plane) has already been generated,
and that the pole estimates are sufficiently good for the level of
approximation accuracy desired. As mentioned before, any con-
venient rational approximation algorithm can be used to generate
this initial approximation [10, 16, 18, 8]. In previous work [10],
we demonstrated numerically robust algorithms that could gener-
ate high-order models with a reasonable amount of computational
effort. Even though such methods were directly applicable to ei-
ther SISO (single-input, single-output) or MIMO (multiple-input,
multiple-output) systems, we found that in general for MIMO sys-
tems a good compromise between robustness, accuracy and model
size, was to approach them as a set of SIMO systems. This is also
the approach we follow in this work.

In the following, a multivariablen-port system is therefore mod-
eled by the concatenation ofn single-input multiple-output state
space models as illustrated in Eqn. (10).

A =

264 A1;1 � � � 0

...
...

0 � � � An;n

375 B =

264 B1;1 � � � 0

...
...

0 � � � Bn;n

375
C =

264 C1;1 � � � C1;n

...
...

Cn;1 � � � Cn;n

375 D =

264 D1;1 � � � D1;n

...
...

Dn;1 � � � Dn;n

375
(10)

It is assumed that an estimate of the poles of each subsystem is
available. Using this information, a real block diagonal system ma-
trix Ak;k is constructed for eachn by 1 subsystem model. It is
assumed that the poles are associated innb sets. Complex conju-
gate pairs and repeated poles belong to the same set. To each set,
corresponds a block diagonal entry inAk;k. A state space repre-
sentation for thekth subsystem is given by

Ak;k =

2664
A

(1)

k;k � � � 0

...
...

0 � � � A
(nb)

k;k

3775 Bk;k =

2664
B

(1)

k;k

...
B
nb
k;k

3775
C:;k =

h
C

(1)

k;k � � � C
(nb)

k;k

i
D:;k =

Pnb
q=1
D

(q)

k;k:

(11)
For simplicity, in the following, the subsystem related notation is
dropped.

The frequency response of the subsystem’s model may be repre-
sented as a sum of strictly propern by 1 vector rational functions



and a constant realn by 1 vector term

H(s) = D+
Pnb

k=1
C(k)

�
Is�A(k)

��1
B(k)

= D+
Pnb

k=1R
(k)(s)

= D+
Pnb

k=1 p
(k)(s)=q(k)(s)

(12)

Let s(k)1 ; : : : ; s
(k)

n(k)
represent thekth set of poles andn(k) the

number of elements it contains. The denominator polynomial

q(k)(s) =
n(k)Y
q=1

(s� s(k)q ) =
n(k)X
q=0

a(k)q sq (13)

has real coefficientsa(k)0 ; : : : ; a
(k)

n(k)
wherea(k)

n(k)
= 1. Each ratio-

nal functionR(k)(s) may be represented as

R
(k) =

p(k)(s)

q(k)(s)
=

Pn(k)�1

q=0
C

(k)
q sqPn(k)

q=0
a
(k)
q sq

; (14)

whereC(k)
q is ann by 1 real vector.

As repeated poles are uncommon, the number of poles in each set
is usually small. The most frequent block size is two, corresponding
to complex conjugate pole pairs. For such small blocks, no numeri-
cal problems arise from the use of the controller canonical represen-
tation. The choice of the controller canonical representation is also
motivated by the fact that the positive real lemma inequality (7) is
affine in the pair(C;K) but nonlinear in the pair(B;K). By using
the controller canonical representation, the numerator coefficients,
which are the problem’s optimization variables, are the elements of
C. We note however that since the algorithm makes no assump-
tions about the specific structure ofA, any other “controller-like”
representation would be a good choice, as long as the elements of
C are chosen as the optimization variables. In particular one could
use one of the orthogonal polynomial forms from [10] which could
perhaps lead to a simplified structure for K.

4 PROBLEM FORMULATION

Assume that we are given admittance or impedance parameter ma-
trices of a systemeH(s) for a set ofN frequency points,s1 through
sN and that a stable matrix rational function model already exists.
The problem at hand is to determineC such that the error function

E =
nX

q=1

nX
p=1

NX
k=1

wk;p;q




Hp;q(sk)� eHp;q(sk)



2
2
; (15)

whereHp;q(s) = Cp;q(Is�Aq;q)
�1Bq;q +Dp;q, is minimized.

Furthermore, it is required that the model have a positive real fre-
quency response.

Generalizations such as the projection of the error on different
spaces may also be considered. In the following, for simplicity, it is
assumed thatwk;p;q = 1 for all values ofk, p andq. In the results
Section 7, other values, such aswk;p;q = 1=j eHp;q(sk)j, are used.

For a scalar rational function, withD > 0, the constrained fitting
problem may be stated as,

minimize
Pn

p=1

Pn

q=1 tp;q

subject to

�
�ATK�KA �KB+CT

�BTK+C D+DT

�
� 0 (16)

K = KT
� 0; (17)

(Fp;qC
T
p;q �Gp;q)

T (Fp;qC
T
p;q �Gp;q) � tp;q(18)

for 1 � p; q � n:

whereFp;q 2 R
2N�n(p) andGp;q 2 R

2N are defined as (for the
kth row),

Fp;q(k; :) =

(
wp;q;kRe[BT

q;q(Isk �A
T
q;q)

�1] k � N

wp;q;k�N Im[BT
q;q(Isk�N �AT

q;q)
�1] k > N

Gp;q(k) =

(
wp;q;kRe[ eHp;q(sk)�Dp;q] k � N

wp;q;k�N Im[ eHp;q(sk�N )�Dp;q] k > N

If D = 0, the inequality (16) should be replaced by

�A
T
K�KA � 0 andKB = CT

: (19)

If D is also considered to be an optimization variable, the additional
constraintD+DT � 0 should be introduced. To avoid having to
present equations forDT+D � 0 andD = 0, it is assumed thatD
has already been estimated and that it is a positive definite matrix.

Since both the objective function and the constraints are convex
functions oft, K andC, it is possible to find a global minimum
by using convex optimization algorithms. The next steps transform
each quadratic inequality (18), in a well conditioned linear matrix
inequality (LMI). A LMI is condition on the eigenvalues of a Her-
mitian matrix that is an affine function of the optimization variables.
It has recently been proved that these problems can be efficiently
solved in polynomial time (see [6] for references).

In a first step, eachFp;q is QR factored such thatFp;q =
Qp;qRp;q whereQT

p;qQp;q = I andRp;q is upper triangular. TheneC = CRT is defined. The product (18), is then carried out andC
is replaced byeCR�T , resulting ineCp;q

eCT
p;q � 2GT

p;qQp;q
eCT
p;q +G

T
p;qGp;q < tp;q: (20)

By using the Schur complement1 the equivalent linear matrix in-
equality"

t+ 2GT
p;qQp;q

eCT
p;q �G

T
p;qGp;q

eCp;qeCT
p;q I

#
� 0; (22)

is obtained.
The formulation of the multi-port constrained fitting problem as

a linear optimization problem subject to a set of linear matrix in-
equalities, and positive definiteD, becomes

minimize
Pn

p=1

Pn

q=1
tp;q

subject to

"
�ATK�KA �KB+R�1 eCT

�BTK+ eCR�1 D+DT

#
� 0

K = KT � 0"
tp;q + 2GT

p;qQq;q
eCp;q �G

T
p;qGp;q

eCp;qeCT
p;q I

#
8p; q

� 0:

(23)
1 SupposeQ andR are symmetric. The condition�

Q S

ST R

�
� 0 (21)

is equivalent toR � 0, Q � SRyST � 0 andS(I � RRy) = 0.
WhereRy is the Moore-Penrose inverse ofR. We will assume thatR�1

exists therefore the linear matrix inequality is equivalent toR � 0 and
Q� SR�1ST � 0.



Note that linear matrix inequality solvers can take advantage of the
structure of (10). Also, the passivity constraint may be replaced
by a, more general, dissipativity constraint by adding�2I� to the
DT +D term [6].

4.1 Experimental Computational Cost

Extensive numerical simulations were conducted to estimate the ex-
perimental computational complexity associated with the solution
of the constrained fitting problem [9]. Results regarding several
scalar problems and two multiport problems are presented in Fig-
ure 4.1. In this figure, the multiport model order was considered to
benm wherem is the order of each of itsn by 1 SIMO subsys-
tems. These results were obtained by formulating the problem in
lmitool and solving it with the SDP package [1], similar results
were obtained with the other packages inlmitool .
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Figure 1: Number of floating point operations associated with solv-
ing (23) with the SDPPack package [1].

According to the results in Figure 4.1, the number of floating
point operations grows with(nm)� with � 2 [4:5; 5:5]. Dur-
ing the course of these numerical experiments it was made clear
that, although the problem formulation is quite straightforward, and
the LMI problem solving algorithms have a theoretical polynomial
worst case upper bound behavior, the direct use of (23), is limited
to relatively small problems. The scalability issue, caused by the
almost explosive growth of the computational cost with model or-
der, is due to the quadratic growth of the number of unknowns that
are the entries ofK.

5 INCREMENTAL FITTING STRATEGY

In this section, a modified fitting algorithm that reduces the
quadratic increase of the number of variables with the number of
ports is presented. It is proposed that the fitting of a multi-port
system be split in a series of smaller problems. This divide and
conquer strategy does not prove to be optimal but it is believed that
the tradeoff between computational cost and model quality may be
advantageous in some situations.

The algorithm is based on the premise that, if a matrix function
is positive real its minors are also positive real matrix functions. It
is proposed that the fitting process start by approximating all the
diagonal elements of the rational function matrix. The resulting
numerators,Cp;p, andKp;p matrices are then used to determine
the first super and sub-diagonal elements by solving (23) for each
order two minor on the diagonal. The algorithm then proceeds to
determine the second super and sub diagonals by solving (23) for
each order three minor on the diagonal. The order of the minors
is increased until all the numerators in the matrix rational function
are determined. After then scalar fits of the diagonal elements,
each of the remainingn(n� 1)=2 fitting problems determines two
numerator vectors and oneKp;q matrix.

Algorithm 1 Incremental Matrix Fitting Algorithm
for q = 1 to n do

determineCq;q andKq;q using (23).
end for
for l = 1 ton do

for q = 1 to n� l do
determineCq;q+l,Cq+l;q andKq;q+l = K

T
q+l;q by apply-

ing (23) to the minor(q : q+ l; q : q+ l) while considering
the, already calculated,Ci;j andKi;j constant.

end for
end for

In the previous section, it was determined that the computational
cost of solving (23) is given by a polynomial function of the model
ordernm. Since the number of unknowns depends quadratically on
the model ordernunknowns = n2(m(m+1)=2 +m); the compu-
tational cost of solving (23) is a polynomial function ofnunknowns.
Moreover, if the computational cost associated with solving (23) is
asymptotically proportional to(nm)� with � 2 [4:5; 5:5], it is also
asymptotically proportional ton��2unknowns.

Using the proposed scheme, fitting an orderm system withn
costs�1n(m2 + m)� + 0:5�2n(n � 1)(m2 + m)�, where�1
and�2 are positive constant terms to account for the different cost
between the scalar problem and the 2 by 2 restricted problem. It
is clear that, asymptotically, for� > 1, the proposed scheme is a
suboptimal, less expensive, alternative to solving (23).

Numerical experimentations were conducted to determine the ef-
fect of the incremental calculation strategy on the computational
cost and the error function value. The experiments were carried out
for a set of 2-port systems, an almost constant gain in performance
by a factor of 5 was observed. For systems with a larger number of
ports, this ratio increases and Algorithm 1 becomes more competi-
tive.

It is expected that the incremental fitting algorithm should pro-
vide a more accurate fit for the diagonal elements of the admittance
matrix. It is also expected that solving the full multivariable prob-
lem should result in a better fit of the off-diagonal elements of the
admittance matrix.

6 NUMERICAL ISSUES

It was noticed that the positive real lemma linear matrix inequality
constraint in (23), was sometimes violated by the existence of very
small negative eigenvalues. These numerical error related eigen-



t11 t12 flops order

H45C-682-i 1:56�100 1:10�100 3:26�108 2�9

H45C-682-f 1:56�100 1:10�100 1:86�109 2�9

coil-i 1:69�100 4:78�100 1:33�109 2�12

coil-f 2:50�100 3:58�100 2:49�1010 2�12

SAW-i 9:37�10�3 8:40�10�5 6:95�109 2�20

SAW-f 9:37�10�3 8:40�10�5 3:68�1010 2�20

Table 1: Incremental (x-i) and full (x-f) matrix approximation re-
sults.

values depend on the semidefinite programming algorithm and its
settings.

To eliminate these negative eigenvalues, the following eigen-
value shifted positive real linear matrix inequality was proposed�

�ATK�KA �KB+CT

�BTK+C D+DT

�
� �I � 0: (24)

In (24), � is chosen to be a small positive real number greater
than the modulus of the most negative eigenvalue. If no negative
eigenvalues occur,� may be chosen to be zero. Otherwise it should
be increased until a satisfactory solution is obtained. In most cases,
if no convergence problems occur, the eigenvalue shift of the affine
matrix inequality solves the negative eigenvalue problem without
significantly affecting the generated model.

In some cases, the eigenvalue shift, even with a small� has a
negative impact on the convergence of the optimization algorithms.
In Algorithm 1, the eigenvalue shift� must be smaller than the
smallest eigenvalue of�Aq;qKq;q �Kq;qAq;q for all q. If this
condition is not satisfied, the problem is not feasible.

If the eigenvalue shift method fails, a positive real model may
be obtained by settingeD = D + Ie�. The value ofe�, can be in-
creased until the model transfer function is positive real. Since this
obviously increases the modeling error,e� should be chosen to be as
small as possible. Fortunately, in many cases,e� is very small.

7 RESULTS

In this section, models for three multivariable two-port passive sys-
tems are generated. The pole estimates, required by the proposed
algorithms, were obtained by applying the multivariable iterative
scaling algorithm to the2 by 1 admittance vectors that correspond
to the SIMO subsystem entries of theY parameter matrix. To
avoid having some of the entries of the transfer matrix dominat-
ing the minimization process, the weights in (15) were chosen to be
wk;p;q = 1=j eHp;q(sk)j: Quadratic error values,t1;1 andt1;2, and
floating point operation count are presented in Table 1. The cost
of fitting the scalar diagonal entries of the admittance matrix is in-
cluded in the cost of Algorithm 1. Due to space restrictions, the full
admittance matrices were not displayed. For each example, bode
magnitude and phase plots for a port admittance entry (left) and a
transfer function (right) entry will be shown. For more results and
a detailed description, please see [9].

In the first example, a model for the admittance matrix of a
H45C-682 3 port filter from TDK is generated. A9th order model
for each of the columns of the admittance matrix was generated
using the multivariable iterative scaling algorithm. A model for
each of the scalar diagonal entries of the admittance matrix was

generated by solving (23) using an eigenvalue shift of10�10. The
off-diagonal entries,y1;2 andy2;1, were then approximated by us-
ing Algorithm 1. A second model for the admittance matrix was
obtained by solving (23). Both multivariable models exhibited
very small negative eigenvalues. Due to convergence problems,
the eigenvalue shift method did not succeed in eliminating these
spurious negative eigenvalues. However, positive real models were
obtained by settingeD to 10�16I. This perturbation does not affect
the fit. The frequency response of the generated models and the
original data are illustrated in Figure 2.

In the next example, a model for the admittance matrix of a coil
inductor is generated. A12th order model for each of the columns
of the admittance matrix was generated using the multivariable it-
erative scaling algorithm. A model for each of the scalar diagonal
entries of the admittance matrix was generated by solving (23). The
off-diagonal entries,y1;2 andy2;1, were then approximated by us-
ing Algorithm 1. A second model for the admittance matrix was
obtained by solving (23) using an eigenvalue shift of10�10. The
frequency response of the models and the original data are illus-
trated in Figure 3.

In our final example, a model for the admittance matrix of a SAW
filter is generated. A20th order model for each of the columns of
the admittance matrix was generated using the multivariable itera-
tive scaling algorithm. TheDmatrix was arbitrated to beI�10�5.
A model for each of the scalar diagonal entries of the admittance
matrix was generated by solving (23). The off-diagonal entries,
y1;2 andy2;1, were then approximated by using Algorithm 1. A
second model for the admittance matrix was obtained by solving
(23). In all cases, the weighting coefficients were chosen to be
wk;p;q = 1=jHp;q(sk)j for all p, q and k. No eigenvalue shift
was necessary. The resulting models satisfy (16). The frequency
response of the models and the original data are illustrated in Fig-
ure 4.

8 CONCLUSIONS

In this paper, the fixed denominator positive real constrained ra-
tional approximation problem was formulated as a linear program
with linear matrix inequality constraints. Since this is a convex op-
timization problem, a globally optimal solution may be found using
interior point methods such as those proposed by Nesterov and Ne-
mirosvskii [6].

The direct use of the positive real lemma and an adequate repre-
sentation of the optimization variables allowed for a straightforward
problem formulation for both scalar and multivariable systems. Un-
fortunately, it also introduces a large amount of redundancy which
severely limits the scalability of the proposed problem formulation.
In order to reduce the cost of modeling multivariable systems, an
incremental fitting strategy was proposed and tested.

It was noticed that, in certain cases, the algorithms used to solve
the proposed optimization problems failed either by violating the
positive definiteness of the matrix inequalities or by failing to con-
verge. To correct the positive definiteness violations, an eigenvalue
shifted problem formulation was proposed.
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Figure 2: Multivariable passive constrained fit of the admittance matrix of a H45C-682 3-port filter from TDK.

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

−100

−50

0

50

100

Normalized frequency (rad s−1)

Ph
as

e 
(d

eg
re

es
)

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Normalized frequency (rad s−1)

M
ag

ni
tu

de
 (d

B 20
)

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

−400

−300

−200

−100

0

100

200

300

Normalized frequency (rad s−1)

Ph
as

e 
(d

eg
re

es
)

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

−120

−100

−80

−60

−40

−20

0

Normalized frequency (rad s−1)

M
ag

ni
tu

de
 (d

B 20
)

Figure 3: Multivariable passive constrained fit of the admittance matrix of a coil inductor.
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Figure 4: Multivariable passive constrained fit of the admittance matrix of a SAW filter.
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