
An Assembly–Level Execution–Time Model
for Pipelined Architectures

G. Beltrame†, C. Brandolese§, W. Fornaciari§, F. Salice§, D. Sciuto§, V. Trianni§

§ Politecnico di Milano, Piazza L. da Vinci, 32 - 20133 Milano, Italy
† CEFRIEL, Via R. Fucini, 2 - 20133 Milano, Italy

Abstract

The aim of this work is to provide an elegant and accurate
static execution timing model for 32-bit microprocessor in-
struction sets, covering also inter–instruction effects. Such
effects depend on the processor state and the pipeline be-
havior, and are related to the dynamic execution of assem-
bly code. The paper proposes a mathematical model of the
delays deriving from instruction dependencies and gives a
statistical characterization of such timing overheads. The
model has been validated on a commercial architecture, the
Intel486, by means of timing analysis of a set of benchmarks,
obtaining an error within 5%. This model can be seamlessly
integrated with a static energy consumption model in order
to obtain precise software power and energy estimations.

1 Introduction

The peculiarities of target application fields of embedded
computing (e.g., mobile systems), typically pose stringent
area and energy constraints. The current trend towards high–
levels of integration up to system–on–chip, is exacerbating
the need of taking into account power requirement during
the early stages of the design as well as throughout the en-
tire verification flow. In addition, thepenetrationof soft-
ware within the typical hardware/software architectures used
in embedded systems, is steadily gaining importance but un-
fortunately efficient power aware compiling and estimation
techniques are still a research topic not yet mature for the
EDA arena. Previous approaches [1][2][3] propose a char-
acterization of the power consumption of a given micropro-
cessor based on the measurement of the average current ab-
sorbed by the core during the execution of long sequences of
the same machine instruction. Power figures are then asso-
ciated with assembly instructions, leading to an abstraction
from architectural details of the microprocessor. Such ap-
proaches, though, still suffer a lack of generality since a new
set of measurements is needed when a different processor
is analyzed. A more general approach, proposed in [4], ab-
stracts from the architectural level by determining a set of
functionalitiesand by decomposing the computational activ-
ity of each instruction in terms of these functionalities. Ac-
cording to this model the energy absorbed by each instruc-

tion is computed as the weighted sum of the contributions of
the functionalities. A tuning phase, based on a limited set
of experimental data, allows associating to each functional-
ity an average current absorption per clock cycle. It is worth
noting that the overall energy consumption is strongly depen-
dent on the number of cycles taken for the execution of as-
sembly instructions. In [4] the timing is assumed to coincide
with the nominal value reported in the processor data–sheets.
This timing data, being purely static, are a sound starting
point for a general energy model but disregard the delays
introduced by the interlocks arising from a pipelined execu-
tion of the code. Limitations deriving from a static analysis
have been studied in [5] and a solution, based on the models
proposed in [1][2], has been presented. The extended ap-
proach, though, does not address the problem of the lack of
generality. The aim of this work is to cope with the above
limitations, providing a model capable of describing timing
overheads due to inter–instruction effects in a formal and
general way. The advantages of astaticmodel with respect
to a dynamic, simulation–based, approach are evident. The
proposed strategy is based on a dynamic characterization—
to be performed once and for all—of a given instruction set
aimed at producing statically usable figures. To this purpose
a sound and formally consistent statistical model has been
developed and verified both theoretically and by compari-
son against actual timing measures. The methodology and
related models are being implemented in a co–design flow
that will enable accurate and efficient software power estima-
tion [6]. This paper is organized as follows: Section 2 sug-
gests a possible strategy to extend the framework described
in [4] and details the mathematical model along with its sta-
tistical properties; the tuning and validation methodologies
adopted are described in Section 3, where the experimental
results obtained are reported. Some conclusions are summa-
rized in Section 4.

2 Proposed Model

This section introduces the extension of the previously de-
veloped model [4], to cover also inter–instruction effects.
For the purpose of producing a widely applicablestatic es-
timation of the timing overheads related to the interaction
between instructions, a taxonomy of a generic instruction



set has been proposed, including all possible hazards in an
architecture–independent manner. This taxonomy is crucial
to reduce the model complexity in order to make the sta-
tistical analysis feasible. Starting from such a taxonomy, a
mathematical model for the estimation of the timing over-
head caused by inter–instruction effects has been developed.

2.1 Problem Definition

As mentioned above, the model proposed in [4] provides
a static estimation of the energy consumption of single in-
structions. According to [4] the energy dissipationes of an
instructions is:

es =
5∑

j=0

es,j =

 5∑
j=0

ifj · as,j

 · Vdd · τ (1)

where ifj is the average current associated with thej-th
functionality,Vdd is the power supply voltage,τ is the clock
period andas,j is a coefficient expressing the execution time
spent by instructions in the j-th functionality. The coeffi-
cientsas,j satisfy the relation:

5∑
j=0

as,j = CPIs,nominal (2)

stating that the time—expressed in clock cycles—spent by
instructions in all the functionalities corresponds to its av-
erage CPI1. It is worth noting that the average CPI used in
this model is the nominal value and thus neglects all inter–
instruction effects. The present work extends this static
model and, in particular, focuses on inter–instruction effects
related to pipelined execution. In pipelined processors in-
structions are executed with partial time overlap in order to
minimize the average CPI. However, this execution scheme
leads to somehazardconditions that have to be suitably man-
aged in order to maintain the semantics of the original pro-
gram. In some cases, it is necessary to stall the pipeline, con-
sequently increasing the nominal CPI. The introduced tem-
poral overhead results in an increase of the energy consump-
tion that cannot be ignored. According to these observations,
equation (1) can be extended by explicitly adding the tempo-
ral overheadohs,j , yielding:

es =

 5∑
j=0

ifj · (as,j + ohs,j)

 · Vdd · τ (3)

The actual execution time of instructions is thus:

CPIs,actual=
5∑

j=0

(as,j + ohs,j) (4)

The aim of the model presented in the following paragraphs
is to derive an accurate estimate for CPIs,actual, while leaving

1Clock–cycle Per Instruction.

to a subsequent analysis the task of splitting the total over-
head on the different functionalities. The porposed model
thus concentrates on the problem of timing estimation at
an abstraction level that ignores finer–grained contributions.
Since inter–instruction effects such as pipeline interlocks and
cache misses are intrinsicallydynamic events, a purely static
analysis would lead to an oversimplification of the problem.
Nevertheless, a static analysis is still viable if a characteri-
zation of the dynamic effects is available. Such information
can be extracted once for each microprocessor considered
and stored in a library. The procedure to derive the statis-
tical dynamic figures is described in section 2.4. The pro-
posed approach is thus based on a dynamic analysis of the
whole instruction set aimed at a statistical characterization
whose results, i.e. the CPIs,actual, can then be statically used
for the estimation process. An hazard is related to a par-
ticular sequence of instructions that flows into the processor
pipeline. Based on this observation, theexecution traceof
a given code portion, i.e. the ordered list of all the instruc-
tions actually executed by the processor, turns out to be a
simple means to dynamically analyze a given architecture
with respect to interlock generation. The key idea behind
the proposed model is thus to neglect the details of the spe-
cific architecture implementation and rather assume the dy-
namic behavior as its abstract representation. Paragraphs 2.2
to 2.4 formally describe the mathematical form of such an
abstract view. The consistency of the model is theoretically
proved and its accuracy is demonstrated against actual mea-
surements in section 3.

2.2 Instruction Set Taxonomy

In order to maintain the approach as general as possible, no
specific architecture or set of architectures should be consid-
ered. A simple solution consists in providing some general
classes to be associated with architecture–specific instruc-
tions. Taxonomy classes are defined according to the type of
hazard that an instruction may incur on, so that each instruc-
tion of a given instruction set belongs to the class that best
represents its dynamic behavior. Three hazard types may
arise [7]:structural, dataandcontrol, conventionally named
S-type, D-typeandC-typerespectively in the rest of the pa-
per. Their effect is a stall in the pipeline whose duration
depends on the specific instructions causing the hazard. The
idea of taxonomy is formally introduced by definition 1.

Definition 1 Given an instruction setI, a hazard–based
partition:

IH = {IH,j | j ∈ {0, 1}} ⊂ 2I

distinguishes instructions that may causeH-type withH ∈
{S, D, C} hazards and those that may not. The classesIH,0

andIH,0 are defined as:

IH,0 = {s ∈ I | smay cause an H-type hazard}
IH,1 = {s ∈ I | smay not cause an H-type hazard}



and constitute a partition by construction.

This definition explains the concept that a hazard depends on
an ordered pair of instructions: the former instruction is re-
ferred to as thecauseof the hazard, while the latter isstalled
in order to resolve the interlock situation. In this way, three
different partitions onI can be identified:IS , ID andIC ;
starting from these partitions, a taxonomy of an instruction
set can be defined as:

Definition 2 A taxonomyC ⊂ 2I on the instruction setI is:

C =
{
Ci,j,k ⊆ I |Ci,j,k = IS,i∩ID,j∩IC,k, i, j, k ∈ {0, 1}

}
meaning that eachCi,j,k is the intersection among 3 sets,
each being chosen from a different partition. ThusC contains
all possible combinations of the sets inIS , ID andIC .

By definition, a partition covers the entire instruction setI,
and its subsets are disjoint: in this sense,C is a partition ofI.
For the sake of simplicity, the taxonomy classes are renamed
so that they have a single index. The conversion is made
by assigning an integer index, corresponding to the binary
conversion of the subscriptsijk, e.g. classC0,0,0 is referred
to asc0, C0,1,0 asc2 and so on. According to the shorthand
notation just introduced, the taxonomy can be rewritten as:

C =
{
ch ⊆ I |h ∈ [0, 7]

}
(5)

2.3 Model Definition

The model definition is intended to bring out a statistical
characterization of interlock occurrence: to this purpose, it
is necessary to estimate the probability of finding pairs of
instructions and the probability with which such pairs gen-
erate interlocks. In this way, the underlying architecture can
be neglected, and class–associated measures can be conve-
niently used. Anexecution traceΓ can be seen as an ordered
set of instructions resulting from the execution of some real
programs. Let a traceΓ be:

Γ = {γ1, γ2, . . . , γN}, γk ∈ I, N > 0 (6)

whereN indicates the execution trace size. The estimates
of the probability of finding a taxonomy class pair inΓ are
obtained by means of two operators, introduced by the fol-
lowing definitions.

Definition 3 Thedistancew(γk1 , γk2) between two instruc-
tionsγk1 andγk2 is defined as the differencek2 − k1. The
following notation is used to point out that two instruction
γk1 , γk2 occur at a distancêw:

γk1

ŵ

a γk2 ⇔ ŵ = w(γk1 , γk2)

The execution trace sizeN can always be assumed much
larger thanŵ. In fact, practical distances are usually not
greater than the pipeline depth, since farther instruction are

almost independent in terms of interlock behavior. Consid-
ering thatN is in the order of106-107 for medium–sized
programs, and pipeline depths for embedded processors are
smaller than10, the assumptionN � ŵ holds and does not
cause loss of generality.

Definition 4 The membership functionof an instruction
γk ∈ Γ to ci ∈ C is defined as:

〈k, i〉 =
{

1 if γk ∈ ci

0 otherwise

The membership function has the following property:

7∑
i=0

〈k, i〉 = 1 (7)

which is easily proved considering that an instruction must
belong exactly to one class, sinceC is a partition. Previous
definitions are combined to describe the followingevent:

ci

ŵ

a cj ⇔ ∃(k1, k2) :


γk1

ŵ

a γk2

〈k1, i〉 = 1
〈k2, j〉 = 1

(8)

meaning that there exists inΓ two instructionsγk1 ∈ ci,
γk2 ∈ cj , having distancêw. Events described above have
to be characterized in a statistical manner. Given the na-
ture of the system to be modeled a convenient solution is to
adopt the frequency definition of probability, i.e. the ratio of
the number of observation of a particular event and the total
number of observations [8].

Definition 5 The probability of finding classci in the execu-
tion trace is:

P (ci) =
1
N

N∑
k=1

〈k, i〉

whereN is suitably large.

As a consequence,
∑7

i=0 P (ci) = 1, due to the frequency
definition of probability. Definition 5 can be extended to
consider class pairs:

Definition 6 The probability of finding classci and classcj

at distanceŵ in the execution trace is:

P (ci

ŵ

a cj) =
1
N

N∑
k=1

〈k, i〉〈k + ŵ, j〉

whereN is suitably large2.

Definitions 5 and 6 are tightly related, since:

7∑
i=0

P (ci

ŵ

a cj) = P (cj) (9)

7∑
j=0

P (ci

ŵ

a cj) = P (ci) (10)

2Due to the assumption thatN � ŵ, the upper limit of the summation
(the total number of class pairs) can also be approximated asN − ŵ ≈ N .



These equations show that the sum of the probabilities of
finding in the execution trace a pair of instructions starting
(ending) withci (cj) is equal to the probability of finding an
instruction belonging to classi (j).

2.4 Interlock Model

Having obtained a characterization of the frequencies of
class pairs in the execution trace, the next step is considering
the interlocks they generate. Since different pairs of instruc-
tions represented by the same couple of classes, in general,
have different interlock behaviors and latencies, the delay
they possibly introduce in the execution must be accordingly
modeled. To this purpose, it is useful introducing the follow-
ing, non–analytic function:

Definition 7 The instruction pair delay is the delay intro-
duced by the execution of an instruction pairγk, γk+ŵ at a
distanceŵ is given by the functiont(γk, γk+ŵ, ŵ). The situ-
ation t(γk, γk+ŵ, ŵ) = 0 means that no interlock occurs.

Translating this kind of information from specific instruction
pairs in the execution trace to the statistical vision of classes
leads to the introduction ofrandom variables. Given a tax-
onomy class pair at a distancêw, the delay introduced in the
execution is accounted for by a random variable, in order to
consider all possible interlock delays of all instruction pair
that the class pair represents.

Definition 8 Theclass pair delayis the delay introduced by
the execution of a class pair(ci, cj) at a distanceŵ and is
modeled by the stochastic variableDi,j,ŵ. This variable is
characterized by its density function:

fDi,j,ŵ
(d) =

∑N
k=1 δt(γk,γk+ŵ,ŵ)=d〈k, i〉〈k + ŵ, j〉∑N

k=1〈k, i〉〈k + ŵ, j〉

whereN is suitably large andδt(γk,γk+ŵ,ŵ)=d is the Kro-
necker symbol, defined as:

δt(γk,γk+ŵ,ŵ)=d =
{

1 if t(γk, γk+ŵ, ŵ) = d
0 otherwise

Given i, j, ŵ, andd, fDi,j,ŵ
(d) represents the relative fre-

quency ofd-delay interlocks with respect to the class pair
(ci, cj). Interlocks associated with a single class interacting
with any other class preceding it at a given distanceŵ can
also be considered:

Definition 9 Theclass delayis the delay associated with the
execution of a classci paired with any other class at a dis-
tance ŵ, and is modeled by the stochastic variableDj,ŵ.
This variable is characterized by the density function:

fDj,ŵ
(d) =

∑N
k=1 δt(γk,γk+ŵ,ŵ)=d〈k, j〉∑N

k=1〈k, j〉

Definitions 8 and 9 are bound by the following theorem:

Theorem 1 The class delay density functionDj,ŵ equals
the sum of the pair delay density functionsDi,j,ŵ, weighted
by the frequency of the corresponding pair, i.e.:

fDj,ŵ
(d) =

∑7
i=0 fDi,j,ŵ

(d)P (ci

ŵ

a cj)∑7
i=0 P (ci

ŵ

a cj)
(11)

Proof 1 Applying definition 6 to definition 8 yields:

fDi,j,ŵ
(d) =

∑N
k=1 δt(γk,γk+ŵ,ŵ)=d〈k, i〉〈k + ŵ, j〉

N · P (ci

ŵ

a cj)

Applying this result and relation (9) to the second term of

(11) and simplifyingP (ci

ŵ

a cj):

1
P (cj)

·
7∑

i=0

(
1
N

·
N∑

k=1

δt(γk,γk+ŵ,ŵ)=d〈k, i〉〈k + ŵ, j〉

)

By swapping the order of summation:

1
P (cj)

· 1
N

·
N∑

k=1

δt(γk,γk+ŵ,ŵ)=d〈k + ŵ, j〉
7∑

j=0

〈k, i〉


Applying the property of the membership function described
in equation (7) and definition 5:

1
N ·

∑N
k=1 δt(γk,γk+ŵ,ŵ)=d〈k + ŵ, j〉

1
N ·

∑N
k=1〈k + ŵ, j〉

= fDj,ŵ
(d)

and the theorem is proved.

The importance of this theorem is twofold: on one hand, it
proves the correctness of our model as already stated by rela-
tions 9 and 10; on the other hand, it is a means to estimate the
class delays starting from pair delays, thus allowing a static
estimation of dynamic inter–instruction effects. The statistic
characterization ofDi,j,ŵ andDj,ŵ is well represented by
their first and second order moments: the expectation value
and variance. The expected value E[Di,j,ŵ] = µDi,j,ŵ

of the
discrete stochastic variableDi,j,ŵ is:

µDi,j,ŵ
=

+∞∑
d=0

d · fDi,j,ŵ
(d) (12)

which can be transformed using definition 8 in:

µDi,j,ŵ
=
∑N

k=1 t(γk, γk+ŵ, ŵ)〈k, i〉〈k + ŵ, j〉∑N
k=1〈k, i〉〈k + ŵ, j〉

(13)

This result comes from a property of the Kronecker’sδ:

+∞∑
d=0

d · δt(γk,γk+ŵ,ŵ)=d0 = d0



The obtained expectation valueµDi,j,ŵ
corresponds to a

weighted average of the delays introduced by the pairs of in-
structions represented by the class pair(ci, cj). The weights
are the relative frequencies of the class pairs. Proceeding in
a similar way, the variance VAR[Di,j,ŵ] = σD2

i,j,ŵ
of Di,j,ŵ

can also be derived:

σD2
i,j,ŵ

=
∑N

k=1 t2(γk, γk+ŵ)〈k, i〉〈k + ŵ, j〉∑N
k=1〈k, i〉〈k + ŵ, j〉

− µ2
Di,j,ŵ

Similar definitions can be given forDj,ŵ. The following
theorem, whose demonstration is omitted, holds:

Theorem 2 The moments of class pair delays and class de-
lays are bound by the following relations:

µDj,ŵ
=
∑7

i=0 P (ci

ŵ

a cj) · µDi,j,ŵ∑7
i=0 P (ci

ŵ

a cj)

σD2
j,ŵ

=

∑7
i=0 P (ci

ŵ

a cj) · σD2
i,j,ŵ∑7

j=0 P (ci

ŵ

a cj)
− µ2

Dj,ŵ

(14)

This theorem expresses the relations between the moments
of class pair delays and those of class delays.

3 Experimental Results

The mathematical model described in section 2 allows the es-
timation of the delay introduced by each instruction class due
to inter–instruction effects. The model has to be tuned on real
data and then validated in order to prove its effectiveness:
this section describes the tuning and validation methodolo-
gies. The model tuning is based on the choice of a represen-
tative set of benchmarks on which to compute the distribu-
tions of the random variables used to build the static repre-
sentation of dynamic effects. A number of execution traces
have been generated, leading to an overall number of assem-
bly code lines in the order of107-108. It is worth noting
that execution traces have been generated from real programs
running on real data: this guarantees that they represent the
effective dynamic behavior of a processor under real–life
stimuli. However, an execution trace only describes the flow
of instructions into the pipeline: any other dynamic infor-
mation must be explicitly extracted from the trace. For the
sake of generality, this task is performed in an architecture–
independent manner. In particular, since hazards are specific
dynamic events, a number of generalevent modelshave been
developed, which altogether represent the dynamic behavior
of a given architecture. A dynamic event is thus identified
as a hazard when it matches one of the models characteriz-
ing the architecture. A tool has been implemented for the
purpose of tuning the proposed model. Such tool fetches in
a description of a given architecture, i.e. a library contain-
ing the instruction set taxonomy—obtained as described in

section 2.2—the dynamic behavior representation—in terms
of hazard models—and some other architecture–dependent
data such as the pipeline depth and the branch prediction
scheme. This data is used to build an internal representa-
tion of the processor under analysis. As a second step, one
or more execution traces are parsed to derive the delay in-
troduced by each taxonomy class pair. This phase leads to
an estimate of the frequency of class pairs and a set of den-
sity functions characterizing the random variables used to
statistically describe the interlock delays. Using the rela-
tion proved in theorem 1, these random variables are com-
bined to obtain delay models associated to single classes
which eventually allow the static analysis process. Once the
statistical models of all classes have obtained, a validation
phase is necessary. Validation is performed on the timing
level by comparing the estimated execution times of a num-
ber of benchmarks with the corresponding actual timings,
derived by reading—via assembly programs developed on
purpose—the value of some hardware counters available on
the target architecture. The validation consists of four main
steps:

1. estimation of interlock–free timings;

2. estimation of the temporal overhead introduced by
inter–instruction effects;

3. measurements of actual timings;

4. computation of the relative error between the estimated
and actual timings.

This procedure has been applied on the five benchmarks de-
scribed below3, fed with five different data set:

crc16 A 16-bit CRC on random 256-character strings;

qsort Quicksort of a vector of 100 integers;

rle RL encoding of random 128-characters strings;

genprime generates a prime number 3 digits long;

md5 Message digest of 500-characters random strings.

These benchmarks cover a wide range of operations and are
all processor–bound4, and are thus suited for validation. The
actual timings of these programs have been obtained on a
Intel 486DX4 with a clock frequency of 100 MHz, running
a minimal version of the RedHat7 Linux distribution. The
results obtained are shown in table 3 which reports the av-
erage error and standard deviation for each benchmark for
interlock–free and interlock–aware estimates with respect to
the actual timings. The last row shows the overall average
values. The interlock–free analysis results in a large under-
estimation of the execution timings, errors that are generally

3These benchmarks have not been used for model tuning.
4The size of data processed is such that the number of cache misses is

reduced at a minimum.



Relative error (%)
Test case interlock–free interlock–aware

crc16 −22.1± 2.30 +0.3± 3.30
qsort −22.1± 0.51 −3.7± 0.71
rle −17.9± 0.04 +2.7± 0.05
genprime −32.1± 2.13 −9.4± 2.70
md5 −26.5± 0.94 +2.5± 1.21
Overall −24.1± 5.15 −1.5± 5.06

Table 1: Interlock–free and interlock–aware errors

eliminated adding the inter–instruction overhead estimated
by the proposed model. Even where the error remains high,
the improvement is noticeable. It is worth noting that the
proposed model still lacks of a comprehensive analysis of all
the inter–instruction effect related to memory access, such
as those due to cache misses. For the purpose of analyzing
the cache miss impact, themd5benchmark has been run on
larger strings, which cannot reside in the limited cache of
the Intel 486DX4 processor. The resulting average errors,
reported against the string length in table 2, confirm that the
cause of the underestimates produced by the proposed model
for large–sized strings is to be found in the missing contribu-
tion related to memory–dependent inter–instruction effects.
These values, compared with those reported in table 3 con-

Relative error (%)
String size interlock–free interlock–aware

500 −26.5± 0.9 +2.5± 1.2
100,000 −31.1± 2.5 −3.8± 3.5
300,000 −37.7± 1.0 −13.0± 1.4

Table 2: Cache miss impact on estimation accuracy formd5

firm that the proposed model is much more accurate with
respect to the interlock–free analysis, but it still has to be re-
fined in order to adequately consider cache misses and other
memory effects.

4 Conclusions

The present paper proposed a general, processor–independet
model for the estimation of the temporal overhead related to
pipelined execution of assembly code. The model abstracts
from the architectural details of specific processors and con-
centrates on the functional behavior of assembly instructions
with respect to the interlocks they may cause. The valida-
tion presented in Section 3 concentrates on the effects deriv-
ing from data–path resource constraints. This is achieved by
building a suitable set of testbenches that minimize the im-
pact of the memory hierarchy on the actual execution time.
In practice this means that the program code and the data it
manipulates should be small enough to be contained in the
cache memory of the considered processor. The accuracy

provided by the model is more than satisfactory, leading to
average estimation errors below 5%. Furthermore, the esti-
mation process proved to be fast enough—tens of seconds to
few minutes—to enable effective design space exploration.
It is worth noting that the proposed approach can be used in
conjunction with a separate model oriented at the character-
ization of the memory–related dynamic effects. Memory–
dependent effects are currently under investigation and the
preliminary results obtained suggest that their contribution
to the total overhead can be accounted for independently. As
a different alternative, an extension of the presented model
can also be envisioned. Such an extension should incorporate
memory–related effects into the mathematical framework al-
ready developed. This last approach is also currently under
investigation.

References

[1] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of
embedded software: a first step towards software power
minimization. IEEE Transactions on VLSI Systems,
2(4):437–445, December 1994.

[2] V. Tiwari, S. Malik, and A. Wolfe. Power Analysis of the
Intel 486DX2. Computer Engineering Technical Report
No. CE-M94-5, Princeton University, June 1994.

[3] J. Russell and M.F. Jacome. Software power estimation
and optimization for high performance, 32-bit embed-
ded processors. InProceedings of ICCD’98, Interna-
tional Conference on Computer Design, pages 328–333,
Austin, TX, October 1998.

[4] C. Brandolese, W. Fornaciari, F. Salice, and D. Sci-
uto. An instruction-level functionality-based energy es-
timation model for 32-bits microprocessors. InPro-
ceedings of 37th IEEE-Design Automation Conference,
pages 346–351, Los Angeles, CA, June 2000.

[5] R. Sridhar and S. Kris. Instruction level power model
and its application to general purpose processors.IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, pages 753–756, 1998.

[6] PEOPLE. (Power Estimation for Fast Exploration of
Embedded Systems). Technical Report D3.3.1, ESPRIT-
ESD project n.26769, 1998.

[7] J.L. Hennessy and D. A. Patterson.Computer Archi-
tecture - A Quantitative Approach. Morgan Kaufmann
Publishers, San Mateo, II edition, 1996.

[8] A. Papoulis. Probability, Random Variables and
Stochastic Processes. McGraw-Hill, New York, NY,
1984.


	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index




