
Induction-based Gate-level Verification of Multipliers

Ying-Tsai Chang and Kwang-Ting (Tim) Cheng
Department of Electrical and Computer Engineering,
University of California, Santa Barbara, CA 93106

Abstract

We propose a method based on unrolling the inductive defi-
nition of binary number multiplication to verify gate-level imple-
mentations of multipliers. The induction steps successively reduce
the size of the multiplier under verification. Through induction, the
verification of an n-bit multiplier is decomposed into n equivalence
checking problems. The resulting equivalence checking problems
could be significantly sped up by simple structural analysis. This
method could be generalized to the verification of more general
arithmetic circuits and the equivalence checking of complex data-
path.

1. Introduction

Hardware verification has become increasingly important in as-
suring a timely successful design schedule. The complexity of
VLSI design and specifications, the interoperation of design tools
from different vendors, and the often inevitable manual tweak-
ing to meet timing constraints all contribute to the uncertainties
of the design process, and verification technique is crucial for as-
suring the correctness of the resulting design. A sound verification
methodology will play not only the conservative role of increas-
ing confidence in the design but also the more constructive role
of facilitating and encouraging more speculative optimization and
architecture exploration.

Ordered binary decision diagram (BDD) [1] based verification
techniques have been successfully applied to practical designs, es-
pecially in symbolic model checking [2] and equivalence checking
[3, 4]. However, it is incapable of handling some arithmetic cir-
cuits, such as multipliers [5]. The verification of multipliers is
further complicated by the lack of a compact bit-level canonical
representation1 and the existence of many varieties of globally
different architectures. Effective solutions to this problem would
also very likely bring in general schemes that could enhance the
existing methodology.

Among the various attempts to solve this multiplier verifica-
tion problem [6, 7, 8, 9, 10], word level binary moment diagram
(BMD) is one of the more successful ones. However, most ap-
proaches make certain assumptions regarding the multiplier under

1It is unlikely that there exists a canonical boolean function rep-
resentation with polynomial complexity for reading out minterms
that has a compact multiplier representation with polynomial con-
struction time. If it did exist, it could be used to solve the integer
factorization problem.

verification that might not apply to a true gate-level implementa-
tion. For example, the BDD-based approach in [6] requires the
identification of product bitsai ^bi and is unable to handle mul-
tipliers with recoding logic. The direct construction of BMD in
[7] requires that the hardware implementation be specified in a
modular form and that the grouping of adder modules into word
modules be correctly specified. Although this approach is quite
efficient, it is conservative in the sense that not all correct im-
plementations can be proved, and certainly cannot be applied to
a gate-level implementation. The assumptions made in these ap-
proaches amount to inserting internal observation points that cor-
respond to desired intermediate signals in the circuit. A gate-level
netlist has no easily identifiable internal observation point to facil-
itate the verification, a situation reminiscent of testing. The only
true gate-level verification technique with no additional assump-
tion is the backward-substitution-based construction of BMD [8],
which has a polynomial complexity if the backward propagation
of the support does not cut through many underlying adders si-
multaneously [11]. However, it is known that the memory usage
in this construction process could easily blow up at the existence
of any error.

2. The basic idea

The approach proposed in this paper is based on the observa-
tion that most multipliers are implemented as multi-operand ad-
dition trees. Figure 1 (a) shows the multiplication as the sum
of partial products in dot notation that assimilates typical pencil-
and-paper algorithms. This schematic representation also captures
pretty well the actual circuit structure of typical implementations
of multipliers. Typical multiplier architectures are represented
by their different addition trees in Figure 1 (b). Notice also the
operand asymmetry in the implementation of the symmetric mul-
tiplication function, where themultiplicand a is kept intact as a
word in obtaining the partial products, and themultiplier b is de-
composed into bits2. This multiplicand/multiplier asymmetryis
one of the syndromes that plagued the verification of multipliers
in an equivalence-checking setting. If we could decompose a mul-
tiplier circuit into the underlying partial-product addition tree, then
the verification problem could be solved more easily.

The basic idea of induction-based verification of multipliers
can be explained using the following equation:

2By convention, the termmultiplier is used to denote both a mul-
tiplication unit and the decomposed operand in such a unit. The
exact meaning could always be inferred from the context without
confusion.



x

Addstep CSA tree Radix-4BoothWallace Tree

CPA or CLA

CSA

Recode Logic

2’s compl’ signed

a
b

(a) (b)

Figure 1. Schematic representations of various multiplier architectures.

(an�1an�2:::a0)� (0::0
|{z}

i

bn�1�i ::b0)

= (an�1an�2:::a0)� (0::0
|{z}

i+1

bn�2�i ::b0)

+bn�1�i � (an�1an�2::a0 0::0
|{z}

n�1�i

) (1)

wherea andb are then-bit operands of the multiplication func-
tion � with a being the multiplicand andb being the multiplier.
The subscripts denote the bit number from the least significant bit
(LSB), e.g. ai is the i-th bit of the operanda anda0 is the LSB.
This equation, interpreted as a pure mathematical formula, serves
as an inductive definition of binary number multiplication with the
induction on the size of the multiplier. If the above equation could
be proved for an implementation of a multiplier for alli from 0
to n�1, then the multiplier would be successfully verified. This
scheme is most easily understood by comparing this equation with
Figure 1 (a). This equation shows that the partial product addition
tree can be successively reduced to shorter ones by proving that a
suitable portion of the circuit does indeed implement another par-
tial product addition. The inductive steps could be proved through
the use ofn equivalence checking procedures. The pseudocode for
the verification of a multiplier is the following:

verify_multiplier(netlist,n){
circuit2=netlist;
for (i=n-1;i >= 0;--i){

circuit1=circuit2;
circuit2=set_ith_input_to_zero(circuit1,i);
circuit_add=add_adder(circuit2,i);
check_equivalence(circuit1,circuit_add);

}
}

wherecircuit1 implements the left hand side of the equa-
tion (1), andcircuit add implements the right hand side.The
most important reason this approach works well is that both cir-
cuits are derived from the same multiplier circuit, i.e. the gate-
level multiplier under verification. Therefore, they have signifi-
cant structural similarity that could be utilized during equivalence
checking. However, an efficient solution to the resulting equiv-
alence checking problems requires additional structural informa-
tion, as will be discussed in the following section.

3. Using structural information to speed up
equivalence checking subproblems

State-of-art equivalence checkers utilize an incremental ap-
proach to explore the internal structural similarities between the
circuits being compared. Starting from the equivalence of the
primary inputs, candidate equivalent signal pairs are checked for
equivalence, and the equivalent signals are merged. In the local
BDD-based approach, merged equivalent signals form the support
for building local BDDs of other candidate equivalent signal pairs,
obviating the need for building a complete BDD for a huge portion
of the circuit. Hence, the equivalence checking problem could be
solved most efficiently if the compared circuits have similar struc-
tures. Since the equality of local BDDs is only a sufficient but not
a necessary condition for the equivalence of the compared signals,
false negatives might occur, i.e. differentiating patterns at the in-
ternal support are found even though the signals are equivalent.
Moving the support backward is necessary to eliminate the sig-
nal dependency that causes these false negatives. The equivalence
checking subproblems mentioned in the previous section could be
solved much more efficiently by incorporating the following two
crucial pieces of structural information:

1. Identifying the multiplier. The first structural information
needed is to decide which operand, when decomposed, will
lead to simpler equivalence checking problems, i.e. the two
circuits under comparison have greater structural similarity.
In other words, which operand should be used as the multi-
plier? The multiplier can be found by examining the number
of gates/ signals in the fanout cone of the most significant bit
(MSB) of the operands. An example in Figure 2 shows an
8-bit addstep multiplier with the inputs of the adder modules
given by the product bits as arranged in Figure 1 (a). About
1/2 of the circuit gates/signals (left triangle) lie in the fanout
cone ofa7, and about 1=7 of the circuit gates/signals (low-
est row of the addition tree) in the fanout cone ofb7. This
difference is a consequence of the multiplicand/multiplier
asymmetry discussed above. Clearly, decomposing the one
whose MSB has the smaller fanout cone will result in sim-
pler equivalence-checking problems. Using this criterion,
the equivalence checking could proceed efficiently by first
merging the isomorphic portions of two circuits under com-
parison from the primary inputs toward the primary outputs.
This would result in difference portions of only about the
size of 1=n of then-bit multiplier circuit.

2. Judicious selection of local support.Existing equivalence
checking techniques will still be inadequate for these sub-
problems due to the strategy used in handling false nega-
tives. The source of false negatives in an addition tree could
be understood from an implementation of a full adder as
shown in Figure 3. If the local support cuts through a full



HA

HA

HA

HA

HA

HA

HAFAFAFAFAFAFAFA

FA

FA

FA

FA FA FA FA FA FA FA

FA FA FA FA FA FA FA

FA FA FA FA FA FA

FA FA FA FA FA FA FA

FA FA FA FA FA FA

FA FA FA FA FA FA

1
2

fanout cone of a’s MSB

fanout cone of b’s MSB

Figure 2. An implementation of an addstep
multiplier to demonstrate employed struc-
tural analysis.

adder as shown by the dashed line in Figure 3, this sup-
port ignores the one hot property of the outputs of the upper
half adder. From another perspective, the XOR gate in this
design could be replaced by an OR gate to implement an
equivalent full adder. When faced with negatives (true or
false), present practice is to move the support backward one
to several logic levels. However, such moving of support
could continue to include a set of signals with strong cor-
relations and could eventually reach all primary inputs in
our setting, thus losing the advantage of using any internal
structure similarity. We could avoid the undesired false neg-
atives by carefully selecting the next support by some spe-
cial structural information. We can use the adjacent adder in
the merged part of the two circuits to push the support back-
ward. This amounts to using the boundary of the fanout cone
of the one less significant bit as the next backward support.
This process is illustrated in Figure 2, showing an equiva-
lence checking step used to reduce the multiplier size from
7 bits to 6 bits. Suppose the current support using the bound-
ary of the merged isomorphic circuit (shown as dashed line
1) produces false negatives. The false negatives could be
eliminated by using the boundary of the fanout cone ofb6 as
the support (shown as dashed line 2); this effectively moves
the support backward with significantly lower probability
of false negatives. Since the multiplier has an exponential
BDD size, the support could not be pushed backward indef-
initely. In practice, we find that using only one adjacent bit
suffices to eliminate all false negatives in any designs we
encountered. The existence of such special local supports
seems to be characteristic of arithmetic circuits.

HA

HA

a b cin

cout s

Figure 3. The appearance of a false negative
when the support cuts through a full adder.

width addstep csatree cla booth*
(#bits) time size time size time size time size

16 0.97 0.49 2.28 0.64 1.11 0.49 2.99 0.56
32 12 0.59 24 1.18 14 0.60 40 0.72
48 60 0.70 84 2.35 70 0.70 189 1.02
64 184 0.80 292 4.28 213 0.92 677 2.04
80 436 0.89 825 6.28 505 0.99 2223 2.90
96 937 1.37 1296 8.93 1045 1.95

112 4213 3.05 3384 19.97 4440 3.05
128 7450 3.39 10761 114.13 7014 4.59

Table 1. Experimental results of induction-
based verification of multipliers using local
BDD-based equivalence checking procedure.

Another source of false negatives is the dependence among
signals within the local support by shallow logic. This prob-
lem could be easily solved by learning the logical depen-
dence of local support signals by one logic level backwards.

By employing these two pieces of structural information based
on fanout cone analysis, we can significantly speed up the resulting
equivalence checking.

Another crucial ingredient in the local BDD-based approach
is variable reordering. The fact that BDDs are built upon a sub-
stantial local support for all primary outputs indicates that initial
variable ordering and subsequent reordering are very important. In
fact, variable reordering is the major limiting factor of this BDD-
based approach. Experimental results show that variable ordering
starting from the variable closest to the most significant bit of the
output makes a good initial ordering and the sifting algorithm has
the best performance.

One benefit of this approach is that it also greatly simplifies
error diagnosis. Since the n-bit multiplier circuit is effectively de-
composed inton portions with roughly equal sizes, the source of
the error is limited to a small portion of the circuit in the case of in-
equivalence. The pseudocode in Section 2 is presented to proceed
from the full circuit to the smaller subcircuits for clarity. In prac-
tice, for easier error diagnosis, the order of equivalence checking
subproblems should proceed in the other direction, i.e. from null
subcircuits to the full circuit. This order will result in the discovery
of errors at simpler equivalence checking subproblems.

4. Experimental results

The experimental results are summarized in the following table
with the verification time given in seconds and the peak memory
usage given in Mb. The results are obtained on a Pentium III 733
Mhz computer with 256Mb memory running Linux OS. The ver-
ification of the C6288 netlist as a multiplier takes only 4.67 secs
and uses 0.94Mb memory. In this table, the verifier is given imple-
mentations from four different architectures as illustrated in Figure
1 with operands of 16 to 128 bits, but the architecture information
is not used during verification.

The results show that the verification of a gate-level multiplier
is no longer bounded by memory limitations with this method.
Due to the large number of variables in the local support, most
of the execution time is spent on variable reordering. Notice the
results for booth multipliers apply only to the verification of the
nonzero bits. The leading zeros in the resulting equivalence check-



ing problems turn out to contain false negatives that could not be
easily removed by the proposed heuristics. It seems to be a conse-
quence of the characteristics of booth recoding, which has signif-
icant signal dependence on lower significant bits. The result for a
Wallace tree multiplier is not available because we do not yet have
a reasonable execution time at a specified width stated in the table.
The Wallace tree architecture has a much larger local support vari-
able size with its multiple-connected addition tree structure, so the
time spent in reordering significantly degrades the result.

5. Generalizations to arithmetic circuits

Similar approaches to the verification of arithmetic circuits us-
ing functional equations have been proposed before. For example,
the functional equation(x+1)�y= x�y+y is employed in [9] to
verify multipliers. However, this approach requires inserting cir-
cuits close to the primary inputs, making the resulting equivalence-
checking problem much harder and more difficult to control than
the approach described here. The idea of decomposing multipli-
ers into roughly equal parts has also appeared in [10], where the
circuit is decomposed according to the fanin cone of the primary
outputs. Our research shows that the decomposition based on the
fanout cone of the inputs is more efficient. However, the approach
in [10] is capable of handling the Wallace tree architecture up to
32 bits, due to the smaller support variable size in that decompo-
sition. Efforts to combine these two types of decompositions are
currently under investigation.

The proposed method of induction-based multiplier verifica-
tion can be extended to more general arithmetic circuits. The ba-
sic idea is to prove incrementally that the circuit corresponding to
an operand does indeed implement the desired function and can
remove the corresponding part of the circuit (operand) to simplify
the verification problem. The operand to be removed at each step is
the one closest to the primary output of the circuit, or the one with
the smallest fanout cone, so that the resulting equivalence check-
ing problem is the simplest. Thisprove-and-removeapproach uti-
lizes the locality of signals corresponding to the operands and in-
crementally reduces the circuit into simpler ones. Arithmetic cir-
cuits involving+;�, and� operations could be verified if the
operands could be successively removed from the neighborhood
of the primary outputs. At this point, the division operation could
not be verified directly using this method due to the lack of ob-
servability of the intermediate remainders. The pseudocode of this
scheme for general arithmetic circuits is the following:

arith_verify(netlist,expression,width,#operands){
order=find_operand_order(netlist);
circuit2=netlist;
for (i=0; i < #operands;++i){

circuit1=circuit2;
circuit2=set_next_operand_zero(circuit1,order,i);
switch(Op of the removed operand)

case +:
circuit_add=add_adder(circuit2,i);
check_eq(circuit1,circuit_add);

case -:
circuit_sub=add_subtractor(circuit2,i);
check_eq(circuit1,circuit_sub);

case *:
verify_multiplier(circuit1,width,i);

simplify(expression,op,operand[i]);
}

}

The verification of an arithmetic circuit withm n-bit operands
with l multiplications could then be reduced to at most(m� l)+

n� l equivalence checking problems. One benefit of this prove-
and-remove methodology is the capability of verifying resched-
uled arithmetic circuits. Datapath rescheduling based on arith-
metic properties is a technique commonly employed in commer-
cial synthesis tools. Due to the global nature of datapath reschedul-
ing, typical equivalence-checking-based verification technique can-
not verify the correctness of circuits under such transformation.
For example, ifa� b+ c� b is implemented as(a+ b)� c, the
methodology proposed could be used to verify this circuit without
thea priori knowledge of the underlying implementation.

6. Conclusion

We propose an induction-based technique that could success-
fully verify gate-level implementations of multipliers with differ-
ent architectures. In implementing this scheme, we observe the
need of different strategies for choosing local supports for random
logic and datapath in the presence of false negatives in the equiv-
alence checking problems. The proposed scheme could also be
generalized to the more general arithmetic circuits. This method
could also be integrated into RTL to gate-level equivalence check-
ing tools for more efficient datapath verification.

AcknowledgmentThe authors would like to thank K. -C. Chen
for suggesting the practical importance of this problem. This work
was supported in part by SRC Task 835.001 and NSF International
Research Center for SoC.

References

[1] R. E. Bryant, Graph-based algorithm for Boolean function
manipulation, IEEE Transactions on Computers, Vol C-35, No.
8, pp. 677-691, 1986.

[2] K. L. McMillan, Symbolic Model Checking, Kluwer Aca-
demic Publishers, 1993.

[3] D. Brand, Verification of large synthesized designs, Proc. of
International Conference on Computer Aided Design (ICCAD),
p 534-537, 1993.

[4] S. Y. Huang and K. T. Cheng,Formal Equivalence Checking
and Design Debugging, Kluwer Academic Publishers, 1998.

[5] R. E. Bryant,On the complexity of VLSI implementations and
graph representations of Boolean functions with application to
integer multiplication, IEEE Transactions on Computers, Vol
40, No. 2, pp. 205-213, 1991.

[6] J. Burch,Using BDDs to verify multipliers, Proc. of ACM/
IEEE Design Automation Conference (DAC), pp. 408-412,
1991.

[7] R. E. Bryant and Y. A. Chen,Verification of arithmetic circuits
with binary moment diagrams, Proc. of the 32nd ACM/IEEE
Design Automation Conference, pp. 535-541, 1995.

[8] K. Hamaguchi, A. Morita, and S. Yajma,Efficient construc-
tion of binary moment diagrams for verifying arithmetic cir-
cuits, International Conference on CAD, 1995.

[9] M. Fujita, Verification of arithmetic circuits by comparing two
similar circuits, Proc. of the 8th International Conference on
Computer Aided Verification (CAV), pp. 159-168, 1996.

[10] T. Stanion, Implicit verification of structually dissimilar
arithmetic circuits, Proc. 1999 IEEE International Conference
on Computer Design (ICCD), pp. 46-50, 1999.

[11] M. Keim, M. Martin, B. Becker, R. Drechsler, and P. Molitor,
Polynomial formal verification of multiplier, IEEE VLSI Test
Symposium, pp. 150-155, 1997.


	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index




