
Min-Area Retiming on Flexible Circuit Structures

Jason Baumgartner
IBM Enterprise Systems Group

Austin, TX 78758

Andreas Kuehlmann
Cadence Berkeley Labs

Berkeley, CA 94704

Abstract

In this paper we present two techniques for improving min-area
retiming that combine the actual register minimization with combi-
national optimization. First, we discuss an on-the-fly retiming ap-
proach based on a sequentialAND/INVERTER/REGISTERgraph.
With this method the circuit structure is sequentially compacted
using a combination of register “dragging” and AND vertex hash-
ing. Second, we present an extension of the classical retiming for-
mulation that allows an optimal sharing of fanin registers ofAND

clusters, similar to traditional fanout register sharing. The combi-
nation of both techniques is capable of minimizing the circuit size
beyond that possible with a standard Leiserson and Saxe retiming
approach on a static netlist structure. Our work is primarily aimed
at optimizing the performance of reachability-based verification
methods. However, the presented techniques are equally applica-
ble to sequential redundancy removal in technology-independent
logic synthesis. A large set of experiments using benchmark and
industrial circuits demonstrate the effectiveness of the described
techniques.

1 Introduction

Retiming is a structural optimization technique that relocates
the registers in a logic circuit with the objective of minimizing
their total count, maximizing the circuit performance, or achiev-
ing both goals simultaneously [1, 2]. Traditionally, retiming is ap-
plied on a fixed circuit graph and repositions the registers without
altering the actual logic structure. When interleaved with combi-
national optimization steps, a repeated application of retiming can
optimize the overall circuit structure significantly.

In this paper we present two specific techniques that extend
the classical formulation and application of retiming by allow-
ing it to operate on a more flexible structure. First, we de-
scribe an on-the-fly retiming approach that is based on a sequential
AND/INVERTER/REGISTERgraph. It merges registers and combi-
national circuit components by structural hashing, which is applied
during graph construction. Similar to inverter removal in com-
binational circuit compaction [3], the proposed approach “drags”
registers through the sequential circuit graph as far as possible. As
a result, many registers and AND vertices can be merged, which
leads to a significant reduction of the circuit size without signifi-
cant computational overhead.

The second technique is based on the idea that, similar to
the sharing of fanout registers, fanin registers of an AND clus-

ter can be optimally shared by adjusting the AND decomposition.
As a result, the number of necessary registers is reduced to its
optimum, which is equal to the maximum number of registers
along any of the incoming cluster edges. We describe a corre-
sponding extension of the retiming formulation. It is based on
the AND/INVERTER/REGISTERgraph and models the sharing of
fanin registers in a similar manner as Leiserson and Saxe modeled
fanout sharing [2]. We further describe an algorithm that optimally
reconstructs an AND tree decomposition based upon the retiming
solution.

The presented technique takes a new view of the retiming for-
mulation by departing from the traditional use of a fixed circuit
structure. The extended formulation provides an exact retiming
model that considers all possible implementations of the AND

clusters of a circuit. To our knowledge, there are only two pre-
vious publications related to our work. In [4], a technique is pre-
sented that simultaneously considers multiple structures for pos-
sible logic implementations using a choice node. This method is
mainly aimed at technology mapping and, despite its recursive ca-
pability, must explicitly generate candidate structures for an AND

cluster decomposition including possible retiming configurations.
In our approach, we defer the actual decomposition step until after
the optimal retiming is computed. The applied modeling guaran-
tees that there exist a decomposition of the AND clusters with the
exact number of registers minimized during retiming. In [5], the
concept of algebraic factorization is extended to sequential expres-
sions, which implicitly intertwines retiming with structural rewrit-
ing. Based on the concept of synchronous division, a set of sequen-
tial transformations is outlined, which can be applied in a general
synthesis scenario. In contrast to our work, this technique is based
on individual, local restructuring steps and does not model the de-
composition flexibility of the expressions for global retiming.

The main focus of our work is to apply the presented retim-
ing techniques for improving reachability-based functional verifi-
cation. Although there is no clear dependency between circuit size
and the complexity of BDD-based [6, 7] or SAT-based [8] reach-
ability analysis, a smaller number of circuit elements generally
correlates to lower computational resources in both techniques. In
particular, with BDD-based state traversal, fewer registers results
in fewer BDD variables, which typically decreases the size of the
BDDs representing the set of states and transitions among them.
SAT-based state exploration can be improved by reducing the total
number of circuit elements as they establish potential points for
case splits. The techniques presented in this paper are aimed at re-
moving sequential redundancy, which effectively reduces register
count and the number of combinational gates.

1

In this context we do not need to preserve the circuit’s in-
put/output behavior as long as the retiming transformation is sound
and complete for proving properties. As shown in [9], retiming
can be generalized for verification by: (1) omitting the need for
equivalent reset states, (2) supporting negative registers, and (3)
eliminating peripheral registers [10]. The presented techniques fo-
cus on these generalizations and their application to verification.
However, we believe that they are equally applicable to logic opti-
mization for removing sequential redundancy during technology-
independent synthesis. For example, the applied peripheral retim-
ing can be viewed as a temporary phase to “hide” or “borrow”
registers from the environment. After optimization, these regis-
ters are moved back to or from the circuit to restore its original
input/output behavior [11]. Similar precaution is needed for pre-
serving initial state equivalence [12, 13].

2 Illustrative Example

We restrict our presentation to bit-level circuits based on edge-
triggered or master/slave flip-flops (registers) with designated ini-
tial states. Extensions to level sensitive flip-flops or multi-bit reg-
isters are largely straight-forward and hence are not discussed in
this paper.

Figure 1 provides an example circuit to demonstrate the two
presented techniques. The original circuit shown in part (a) con-
tains seven registers. On-the-fly retiming is derived from the con-

(a)

(c)

0

0

0

0

1

(b)

0 0

1

0

1

0

1

x3

x2

x1

g1

g3

g4

g2

r1

r2 r4

r3

r7g5

x1 r 0

3r 0

1

r7

y2

y1

x3

x2
g3

g4

x1

r 00

3

r 00

1

y1

y2

x2

x3

g0

4g5

g1=g2

g1=g2

y1r5

r6
y2

g0

3

g5

Figure 1: Example for the application of retiming: (a) original cir-
cuit, (b) circuit after on-the-fly retiming, (c) circuit after retiming
with AND cluster input sharing.

cept of on-the-fly compaction of combinational circuits [14, 3]. In
addition to AND vertex hashing, forward retiming is applied dur-
ing graph construction by “dragging” as many registers through
the vertices as possible. The graph is built starting from the pri-
mary inputs and, for cyclic circuits, from any cuts of the register
loops. Figure 1b shows the result of on-the-fly retiming when the
circuit of (a) is processed from the primary inputs and a cut at
registerr1. As shown, registersfr1; r2; r3; r4g and the two input
inverters of gateg2 have been dragged through that gate. This al-
lowsg2 to merge withg1, as well as the sharing of registersr5 and
r6 with r 01. No further forward retiming is possible because input
x2 does not provide a register that could be shared at the output
of gateg3. Note that this result is identical to an optimal retiming
computed by the standard Leiserson and Saxe min-area retiming
algorithm [2].

Figure 1c shows a functionally equivalent version of the circuit
that uses only two registers. Here the two registersr03 and r7 in
front of the AND clusterg3=g4 have been merged into registerr003.
This structure can be obtained from circuit (b) by applying com-
binational synthesis – i.e., rearranging gatesg3 andg4, followed
by another retiming move. Clearly, in such a two-step approach,
it is not obvious that this combinational optimization will perform
the needed gate rearrangement because it cannot foresee its benefit
in the following retiming step. On the other hand, if the retiming
formulation could take into account all possible decompositions of
the three-input AND clusterg3=g4, the optimal structure depicted
in (c) could be generated in one step.

In Sections 4 and 6 we discuss the details of the on-the-fly re-
timing approach and the new retiming formulation that precisely
models optimal register sharing for AND clusters, respectively.

3 AND/I NVERTER /REGISTER Graph

Let C = (G;E) denote a circuit whereG represents a set of
AND vertices, primary inputs, and primary outputs, andE�G�G
is a set of edges connecting the vertices. Each edge(u;v) 2 E is
associated with a non-negative weightw(u;v)2N representing the
number of registers along this edge, a set of corresponding initial
valuesI1(u;v); : : : Iw(u;v), and an inverter attributei(u;v) 2 f0;1g
wherei = 1 or i = 0 indicates whether the edge function is to be
complemented or not, respectively.

The functions represented by two edges are sequentially equiv-
alent if (though not necessarily “only if”) they have: (1) the
same source vertex, (2) identical inverter attributes, and (3) the
same number of registers with matching initial values. We use
a compact 64-bit word to uniquely represent an edge of the
AND/INVERTER/REGISTERgraph. The word is composed of four
bit fields: an index into the array of graph vertices, the number of
edge registers, an index to a canonical representation of their initial
states, and a single bit to indicate edge complementation. Using
this data structure, a simple comparison of two words can decide
whether two edges are functionally equivalent.

The canonical representation of initial values is based on a tree
structure where the paths correspond to sequences of initial values
of the edges ofC. The tree root is a dummy node, representing
a NULL register. The first level of children represent all possible
initial values of the first registers of the edges. The tree branching
structure corresponds to the different combinations of initial val-

2

ues of all edges. By ensuring uniqueness of the individual paths
and subpaths during tree construction and manipulation, a pointer
to any of the tree nodes provides a representation that is canonical
for that particular set of initial values.

Figure 2a illustrates the AND/INVERTER/REGISTERgraph for
the circuit example of Figure 1a including the corresponding initial
value tree. The graph was built starting from the primary inputs
and a cut at registerr1. Interior vertices represent AND gates.

4 On-the-fly Retiming

On-the-fly retiming is applied to remove sequential redundancy
during the construction of the AND/INVERTER/ REGISTERgraph.
Similar to the use of an AND/INVERTER graph for combinational
circuits [3], this approach can result in a significant compaction
of the circuit representation without notable time or memory over-
head. We canonize edges on-the-fly by dragging inversions past
registers (which inverts their initial values). The on-the-fly retim-
ing step is integrated into an algorithm for constructing an AND

gate, which is given in Figure 3. The graph construction starts at
the primary inputs and an arbitrary set of register cuts of the cyclic
circuitry. For each register that is cut, first a dummy AND vertex is
created and used as a place holder. Once the structure for the next-
state function of a register is built, the placeholder is merged onto
that structure. A repeated forward hashing can then be applied to
possibly further compact the graph structure.

As shown, first the algorithm performs constant folding similar
to methods applied in combinational circuit compaction [3]. Next,

(b)

(a)

0

1

0

0

0

1

1

x3

x1

x2

x3

x1

x2

y1

y2

g4

g3

g1=g2

y1

y2

g2

g4

g3

w= 2 w= 1

w= 1

w= 1

w= 2

g1

w= 2

complemented edge
reference to init values

set ofw registers
w

w= 1

w= 1

w= 1

g5

g5

Figure 2: AND/INVERTER/REGISTER graph example: (a) graph
for the original circuit of Figure 1a, (b) graph after on-the-fly re-
timing, which results in the circuit of Figure 1b.

/* Create_And takes two operand edges e1 and
e2, and returns a vertex representing the
AND of e1 and e2 */

Algorithm Create_And (e1;e2) f
if (e1 == const0) return const0;
if (e2 == const0) return const0;
if (e1 == const1) return e2;
if (e2 == const1) return e1;
if (e1 == e2) return e1;
if (e1 == e2) return const0;

/* Truncate as many registers as possible
from both edges and store them in I i */

wmin = Min (w(e1);w(e2));
e0

1; I1 = Truncate_Registers (e1;wmin);
e0

2; I2 = Truncate_Registers (e2;wmin);
/* Merge the initial states by AND */
I = And_Initial_States (I1; I2);

/* Apply ranking to catch commutativity */
if (Rank(e0

1) > Rank(e0

2)) Swap(e0

1;e
0

2);
/* Hash lookup for vertex with e0

1 and e0

2 */
e = Hash_Lookup (e0

1;e
0

2);
if (e == NULL) f
/* Allocate new vertex if lookup failed

and add to hash table */
e = Create_And_Vertex (e0

1;e
0

2);
g
/* Add back AND of stripped registers */
return e+ I ;

g

Figure 3: Pseudo-code for constructing an AND vertex for the
AND/INVERTER/REGISTERgraph.

the registers of both edges are truncated by “dragging” as many
registers as possible through the AND vertex. The initial states
of the retimed registers are computed by a pairwise AND of the
initial states of the original edge registers. Note that for comple-
mented input edges, the initial values must be inverted before they
can be combined. After truncation, the edges are hashed. If the
hash lookup finds a pre-existing isomorphic vertex, it is reused;
otherwise a new vertex is constructed. The “dragged” set of reg-
isters is added back before the edge is returned. The resulting
AND/INVERTER/REGISTER graph for the example of Figure 1b
is shown in Figure 2b. The graph was constructed from the origi-
nal circuit shown in Figure 1 starting from the inputs and a cut at
registerr1.

The application of the on-the-fly retiming step can be combined
with structural rewriting techniques, methods to detect function-
ally identical vertices such as BDD sweeping, and circuit-based
SAT [15]. The integrated retiming functionality would extend the
equivalence checking capability of these algorithms beyond com-
binational verification and cover a significant class of practical
problems to verify retimed circuits [16].

5 Min-Area Retiming

A retiming ofC is defined as a gate labelingr : G 7! Z, where
r(u) is the lag of gateu denoting the number of registers that are
moved backward through it. The new set of arc weightswr of the
retimed circuitCr are computed as follows:

wr(u;v) = w(u;v)+ r(v)� r(u): (1)

3

For min-area retiming, we are interested in minimizing the total
number of registers ofCr , which comprises an integer linear pro-
gram (ILP):

∑
8(u;v)2E

jwr(u;v)j !min: (2)

Note that in this formulation we explicitly omit the host vertex [2]
resulting in a retiming which effectively removes all peripheral
registers from the primary inputs and outputs. For synthesis ap-
plications, these registers are considered temporarily “hidden” or
“borrowed” and must be added back after optimization [11]. Pe-
ripheral retiming can be disabled by simply adding a host vertex to
the graph, which is connected to all input and output vertices [2].
Further, the optimal solution of formula (2) may include negative
registers if there are no non-negativity constraints uponwr . In
reachability analysis, negative registers may be simply handled as
an inverse constraint between time frames [9]. For synthesis, these
registers are considered temporary, and again must be eliminated
after optimization. In the following we limit our presentation and
experiments to peripheral retiming using only non-negative regis-
ters.

6 Optimal Sharing of Fanin Registers

The retiming formulation given in formulas (1) and (2) does not
consider the fact that the registers of edges fanning out from the
same vertex can be shared. For example, if three fanout edgese1=
(u;v);e2 = (u;v0) and e3 = (u;v00) are assigned positive register
weightswr(e1);wr(e2) andwr(e3), formula (2) accounts for their
sumwr(e1)+wr(e2)+wr(e3) during minimization. However, in a
circuit implementation, onlywmax= max(wr(e1);wr(e2);wr(e3))
registers are needed for the edge with the maximum count. The
other two edges can share their registers with this edge.

In [2], a solution is proposed that is based on a modified retim-
ing graph structure. Figure 4a shows the general scheme to alter
the retiming graph for fanout register sharing. The idea is to add
a dummy vertexv for each regular vertexu with a fanout degree

...

...
(a)

(b)

Dummy vertex for fanout register sharing

Dummy vertex for fanin register sharing

AND, input, or output vertex

w2
n

wn
n

w1
n

wmax�wn
n

wmax�w1
n

wmax�w2
n

wmax�w1
n

wn
n

w1
n

w2
n

wmax�wn
n

wmax�w2
n

Figure 4: Sharing of fanout and fanin registers: (a) original idea of
fanout register sharing [2], (b) extension to fanin register sharing.

...

...

...

(b)(a)

m

k

nn+m

n+m

k+n+m

k+n+m

0

m
m

Figure 5: Optimal decomposition of an AND vertex: (a) vertex
with incoming edges sorted by weight, (b) resulting AND tree.

greater than two, and to connect edges from the fanout vertices of
u to v. Edge weights are modified as shown: each original weight
wi is divided by the number of fanout edgesn, and the new edges
to the dummy vertex are assigned a weight equal to the differ-
ence betweenw

max

n and the modified weight of the corresponding
fanout edge. This division is realized by associating a “cost per
unit weight” β(u;v) = 1=n with each edge, and minimizing a total
weighted cost in (2). Note that the sum of all edge weights in each
“sharing subcircuit” is equal towmax and that the retiming formu-
lation accounts forwmax

r in the overall minimization problem. This
exactly models the described sharing of fanout registers.

A similar idea is applicable to fanin register sharing. If the
vertices represent identical Boolean functions that are totally sym-
metric, all possible tree configurations establish a valid decompo-
sition of their function. Examples of such symmetric functions are
AND, OR, and XOR vertices. In the following, we use multi-input
AND vertices as a base system for fanin sharing. However, the pre-
sented concepts are equally applicable to other totally symmetric
functions.

Figure 4b shows how the concept of fanout register sharing is
adapted to fanin register sharing. Similar to the previous case,
a dummy vertex for fanin register sharing is created and edge
weights are modified. With this configuration, the retiming opti-
mization problem will minimize the maximum number of registers
at any of the fanin edges. Once a min-area retiming is computed,
the AND vertex can always be decomposed in a tree structure such
that a maximum number of registers are shared.

The scheme for flexible tree decomposition that requires only
wmax

r registers is illustrated in Figure 5. The algorithm first sorts
the incoming edges of the AND vertex by weight. Next, an AND

tree is built using the structure of Figure 5b. For each set of in-
puts with identical register counts, a balanced AND subtree is con-
structed. The individual subtrees are then connected by registers
in a linear sequence. The number of registers assigned to the edges
between the subtrees is equal to the difference of their weights.

For maximum fanin sharing, the AND/INVERTER/REGISTER

graph produced by the on-the-fly retiming algorithm is first re-
structured to form maximum AND vertices. Next a retiming graph
with the dummy vertices for fanin and fanout sharing is passed to
the ILP solver. Note that for simultaneous modeling of fanin and
fanout sharing, a splitting vertex must be introduced between two
adjacent AND vertices. After computing the optimal retiming, an
optimal two-input AND graph is rebuilt using the procedure de-
scribed above.

Figure 6 shows the retiming graph for the example of Figure 1.
Part (a) shows the edge weights for the original problem derived

4

(a)

(b)

Splitting vertex between fanin and fanout sharing subgraphs

g5

y1

y2

2
3

1
3

1
3

g3=g4

2
3

0
3

0
3

0
3

1
3

0
3

0
3

g1=g2

x1

x3

1
3 x2 1

3

0

0

0

0

g5

y1

y21
3

1
3

1
3

1
3

g3=g4

0
3 1

3

0
3

1
3

0
3

0
3

g1=g2

x1

x3

0
3

x2 1
3

0

0

0

0

Figure 6: Retiming graph for the circuit of Figure 1b: (a) graph
with original weight of 3 registers, (b) optimal solution with 2 reg-
isters for the circuit of Figure 1c.

from the on-the-fly retimed circuit of Figure 2b. The top portion of
the graph shows the dummy vertex modeling the possible sharing
of fanout registers of vertexg1=g2. The bottom portion models
the possible sharing of fanin registers of vertexg3=g4. Note that
we arbitrarily assigned the two registers between gatesg1=g2 and
g3=g4 to the input portion of gateg3=g4. An assignment to the
output portion of gateg1=g2 would yield identical results. Part (b)
shows the resulting weights from the ILP solver, which correspond
to the optimal circuit of Figure 1c.

7 Experiments

In this section we provide a set of experimental results for re-
timing using the presented techniques. All experiments were run
on an IBM ThinkPad Model T21, with an 800MHz PIII and 256-
Megabyte main memory, running RedHat Linux 6.2. We imple-
mented a retiming engine, utilizing the data structure and algo-
rithms described earlier in this paper. As ILP solver we applied
the primal network simplex algorithm from IBM’s Optimization
Solutions Library (OSL) [17].

In all experiments we used peripheral retiming [10]. We focus
here on reduction of the size of the core circuit structure, hence
we do not present any results on generating retimed initial values.
The structure to produce the initial values of the retimed circuit
is referred to as theretiming stump[9]. The retiming stump is
generally small and does not constitute a bottleneck in the overall

verification scheme. This is mainly due to the fact that even for
multi-frame initialization structures, large portions may be elimi-
nated by constant propagation.

Table 1 provides results for various retiming options for the
ISCAS89 benchmarks. The results are based on the described
AND/INVERTER/REGISTER graph representation of the circuit
and report the number of 2-input AND vertices and registers.
Columns 1 and 2 list the name of the circuits and their initial, un-
retimed sizes, respectively. Column 3 provides the circuit sizes
for retiming without the application of on-the-fly retiming or fanin
register sharing. This option is identical to classical peripheral
retiming as per [2]. In column 4 we report the result for fanin-
register sharing without on-the-fly retiming, whereas for the fol-
lowing column we enabled both.

Columns 6 through 8 provide the results for an iterated applica-
tion of retiming interleaved with combinational restructuring. For
the latter we utilized a combinational simplification engine as de-
scribed in [15]. We iterated between both engines until no further
improvement was gained and reported the best results. Column 6
shows these results using plain retiming (as in column 3), whereas
column 7 reports the results of the best option of the techniques
used in column 4 or 5. Column 8 indicates the required comput-
ing resources for the best run between columns 6 and 7, preferring
minimum registers to minimum AND vertices – these two objec-
tives are not always complementary (see below). In column 9 we
provide previously published results. As shown, our technique al-
most always yields lower register counts. Despite detailed analy-
sis, we could not reproduce the results reported in [10] for circuits
S344 and S349.

Table 2 provides the data of a set of identical experiments for
various IBM Gigahertz Processor (GP) circuits. There are several
noteworthy trends in both tables. First, plain retiming decreases
register count by an average of 16:8% on the ISCAS circuits, and
by 50:1% on the GP circuits. Fanin register sharing allows an
additional reduction of the register count by an average of 0:9%
and 4:7% for the ISCAS and GP circuits. In addition, the AND

count is significantly decreased, by 9:8% for ISCAS and 20:7%
for GP.

The additional application of on-the-fly retiming has a varying
effect upon size. Our experiments show that on average it hurts
both register count and AND count. However, in individual cases,
it can provide a substantial benefit. For example, for seven of the
42 ISCAS circuits and eleven of the 28 GP circuits, on-the-fly re-
timing further reduced the overall AND count. In addition, for
three GP circuits the number of registers is decreased. Also, as
illustrated in Figure 1, on-the-fly retiming alone may result in reg-
ister reduction without even solving the retiming problem. For
example, the GP circuit LFLUSH is a reconvergent feed-forward
pipeline. Before using the ILP solver to calculate an optimal re-
timing, the options used in columns 4 and 5 reduce the register
count to 78 and 38, respectively. Nevertheless, often on-the-fly re-
timing temporarily hurts register count, which then gets rectified
during the global retiming phase.

We briefly discuss how combinational simplification and on-
the-fly retiming can in some cases hurt register count. As an exam-
ple, assumeu andv are two functionally identical yet distinct ver-
tices. Suppose that all outgoing edges fromu have a weight of one,
and those ofv have a weight of zero. It may be that by backwards-

5

Design Original Plain Retiming On-the-Fly Iteration of interleaved Previous
circuit retiming with retiming retiming and combinational restructuring results

[2] fanin with fanin (iterated until no further improvements) [10]/[18]
sharing sharing Plain Best result of CPU time (sec) (Number of

retiming columns 4 or 5 Memory (MB) Registers)
PROLOG 853 / 136 853 / 45 676 / 45 672 / 46 709 / 45 644 / 45 1.0 / 14.9 - / -
S1196 480 / 18 480 / 16 475 / 16 475 / 16 463 / 16 456 / 16 0.4 / 4.4 16 / -
S1238 533 / 18 533 / 16 532 / 16 532 / 16 518 / 16 513 / 16 0.5 / 6.5 17 / -
S1269 478 / 37 478 / 36 462 / 36 463 / 36 459 / 36 450 / 36 0.3 / 4.4 - / -
S132071 3205 / 638 3205 / 389 2604 / 390 2593 / 407 1295 / 266 1221 / 267 3.6 / 31.3 - / -
S1423 507 / 74 507 / 72 458 / 72 458 / 72 461 / 72 455 / 72 0.4 / 5.5 72 / 74
S1488 734 / 6 734 / 6 618 / 6 632 / 6 659 / 6 610 / 6 0.7 / 12.7 - / -
S1494 746 / 6 746 / 6 629 / 6 644 / 6 668 / 6 622 / 6 0.4 / 6.5 - / -
S1512 484 / 57 484 / 57 455 / 57 455 / 57 470 / 57 455 / 57 0.3 / 2.4 - / 57
S158501 3852 / 534 3852 / 495 3457 / 498 3465 / 498 3283 / 490 3112 / 475 9.3 / 34.5 - / -
S2081 77 / 8 77 / 8 70 / 8 71 / 8 70 / 8 70 / 8 0.2 / 2.2 - / -
S27 8 / 3 8 / 3 8 / 3 8 / 3 8 / 3 8 / 3 0.1 / 2.3 - / -
S298 125 / 14 125 / 14 97 / 14 97 / 14 100 / 14 91 / 14 0.2 / 6.3 - / -
S3271 1125 / 116 1125 / 110 1091 / 110 1093 / 110 1082 / 110 1067 / 110 1.0 / 8.7 - / 116
S3330 820 / 132 820 / 45 657 / 45 654 / 46 692 / 45 624 / 45 0.7 / 9.7 - / -
S3384 1070 / 183 1070 / 72 1070 / 72 1070 / 72 1064 / 72 1062 / 72 0.9 / 6.7 - / 147
S344 109 / 15 109 / 15 102 / 15 102 / 15 101 / 15 98 / 15 0.2 / 2.3 7 / -
S349 112 / 15 112 / 15 104 / 15 104 / 15 101 / 15 98 / 15 0.2 / 2.3 7 / -
S35932 12204 / 1728 12204 / 1728 11948 / 1728 11948 / 1728 11660 / 1728 11660 / 1728 14.3 / 38.5 - / -
S382 148 / 21 148 / 15 134 / 15 136 / 15 140 / 15 134 / 15 0.2 / 2.3 15 / -
S385841 13479 / 1426 13479 / 1416 11769 / 1375 11811 / 1415 11794 / 1374 11464 / 1373 86.6 / 239.9 - / -
S386 188 / 6 188 / 6 126 / 6 133 / 6 166 / 6 125 / 6 0.2 / 4.3 - / -
S400 158 / 21 158 / 15 141 / 15 143 / 15 148 / 15 141 / 15 0.2 / 2.3 15 / -
S4201 165 / 16 165 / 16 156 / 16 159 / 16 156 / 16 156 / 16 0.2 / 2.3 - / -
S444 169 / 21 169 / 15 150 / 15 153 / 15 155 / 15 149 / 15 0.2 / 2.3 15 / -
S4863 1750 / 104 1750 / 72 1537 / 37 1537 / 37 1376 / 37 1326 / 37 2.4 / 17.3 - / 96
S499 187 / 22 187 / 22 199 / 22 199 / 22 187 / 22 190 / 20 0.3 / 4.4 - / -
S510 213 / 6 213 / 6 213 / 6 213 / 6 211 / 6 206 / 6 0.3 / 6.4 - / -
S526N 251 / 21 251 / 21 191 / 21 191 / 21 202 / 21 183 / 21 0.3 / 6.4 - / -
S5378 1422 / 179 1422 / 115 1346 / 114 1321 / 124 1260 / 112 1242 / 113 1.4 / 15.0 - / 144
S635 190 / 32 190 / 32 190 / 32 190 / 32 161 / 32 161 / 32 0.2 / 2.3 - / -
S641 160 / 19 160 / 15 132 / 15 132 / 15 146 / 15 131 / 15 0.2 / 3.3 18 / -
S6669 2263 / 239 2263 / 92 2199 / 92 2199 / 92 2238 / 77 2174 / 76 1.1 / 5.8 - / -
S713 174 / 19 174 / 15 137 / 15 137 / 15 149 / 15 130 / 15 0.2 / 5.4 - / -
S820 468 / 5 468 / 5 325 / 5 335 / 5 345 / 5 317 / 5 0.5 / 12.6 - / -
S832 482 / 5 482 / 5 335 / 5 344 / 5 355 / 5 324 / 5 0.4 / 8.5 - / -
S8381 341 / 32 341 / 32 328 / 32 335 / 32 328 / 32 328 / 32 0.2 / 2.3 - / -
S92341 2346 / 211 2346 / 172 1896 / 172 1891 / 174 1437 / 145 1377 / 146 1.8 / 14.3 - / -
S938 341 / 32 341 / 32 328 / 32 335 / 32 328 / 32 328 / 32 0.2 / 2.3 - / -
S953 348 / 29 348 / 6 356 / 6 343 / 6 340 / 6 332 / 6 0.3 / 4.4 - / -
S967 369 / 29 369 / 6 386 / 6 370 / 6 357 / 6 355 / 6 0.3 / 4.4 - / -
S991 299 / 19 299 / 19 297 / 19 297 / 19 297 / 19 297 / 19 0.2 / 2.3 - / -

% Reduction 0.0 / 0.0 0.0 / 16.8 9.8 / 17.7 9.5 / 17.4 10.8 / 18.7 14.3 / 18.9

Table 1: Retiming results for the ISCAS89 benchmarks (number of two-input AND vertices/number of registers).

retimingu, we can share the retimed registers with registers in the
fanin cone ofu, decreasing total weight by one. However, if we
mergeu andv together, we can no longer backwards-retime the
new vertex due to the zero-weight outgoing edges, thereby hurting
the retiming results.

Iteration of combinational simplification and retiming can pro-
vide dramatic reductions. Compared to the single application,
an additional average reduction of 4:5% and 1:2% on the IS-
CAS benchmarks, and 18:6% and 6:3% on the GP circuits, was
achieved for the number of AND vertices and registers, respec-
tively. Up to six iterations were applied during these runs, with an
average number of 2:6 for ISCAS and 4:6 for GP. The reported re-
sults in column 7 utilized on-the-fly retiming on eight of the 42 IS-
CAS circuits and on six of the 28 GP circuits. One particularly in-
teresting result is that an iterated application of the presented tech-
niques with combinational restructuring significantly outperforms
an interleaved classical retiming approach. This demonstrates the
overall potential of the presented approaches for functional verifi-
cation and technology-independent logic synthesis.

In [9], the impact of the presented techniques upon symbolic
reachability analysis is discussed. In brief summary: for all cir-
cuits for which completion of reachability was at all possible, CPU

time is decreased by our techniques by an average of 53.1% for IS-
CAS and 64.0% for GP circuits, respectively. The corresponding
memory reductions are 17.2% and 12.3%, respectively. The cu-
mulative run time speedup is 55.7% for the ISCAS benchmarks
and 83.5% for the GP circuits.

8 Conclusions and Future Work

In this paper we have presented two enhancements to min-
area retiming that are capable of significantly reducing regis-
ter count and size of the combinational circuitry by depart-
ing from the traditional application of retiming on static cir-
cuit graphs. We discussed two techniques that work on an
AND/INVERTER/REGISTERgraph. On-the-fly retiming provides
an algorithm that applies forward retiming during graph construc-
tion and can identify sequentially redundant subcircuits without
significant computing overhead. The concept of fanin register
sharing defers the decomposition of clusters of symmetric func-
tions until after retiming. A modified formulation of the retim-
ing problem considers all possible decompositions of such clus-
ters and ensures that an overall minimum number of registers is
achieved.

6

Design Original Plain Retiming On-the-Fly Iteration of interleaved
circuit retiming with retiming retiming and combinational restructuring

[2] fanin with fanin (iterated until no further improvements)
sharing sharing Plain Best result of CPU time (sec)

retiming columns 4 or 5 Memory (MB)
CHIP RAS 2686 / 660 2686 / 585 2103 / 492 2159 / 492 2148 / 489 2039 / 489 4.9 / 32.4
CORE RAS 2297 / 431 2297 / 379 2200 / 378 2209 / 387 1735 / 341 1873 / 348 2.0 / 14.5
D DASA 1223 / 115 1223 / 100 967 / 100 968 / 100 844 / 100 815 / 100 0.8 / 8.9
D DCLA 10916 / 1137 10916 / 771 10483 / 771 10506 / 771 7853 / 750 7443 / 750 23.9 / 94.1
D DUDD 1295 / 129 1295 / 100 1143 / 100 1146 / 100 1119 / 100 1084 / 100 1.1 / 12.9
I IBBC 389 / 195 389 / 43 228 / 41 217 / 41 207 / 43 196 / 37 0.5 / 9.7
I IFAR 1202 / 413 1202 / 147 1031 / 142 1033 / 143 997 / 139 929 / 137 1.7 / 18.5
I IFEC 334 / 182 334 / 46 302 / 45 309 / 45 308 / 46 287 / 45 0.7 / 15.0
I IFPF 5896 / 1546 5896 / 705 5273 / 679 4715 / 612 2812 / 350 2768 / 355 43.9 / 78.0
L EMQ 981 / 220 981 / 88 737 / 87 745 / 88 920 / 86 632 / 74 1.2 / 16.3
L EXEC 1618 / 535 1618 / 168 1191 / 163 1193 / 197 1178 / 144 974 / 138 2.2 / 19.0
L FLUSH 893 / 159 893 / 5 495 / 1 409 / 1 358 / 1 338 / 1 0.6 / 8.7
L LMQ 14074 / 1876 14074 / 1196 12921 / 1190 12983 / 1190 5793 / 432 5363 / 428 41.5 / 91.9
L LRU 581 / 237 581 / 94 524 / 94 518 / 94 469 / 94 439 / 94 1.0 / 13.1
L PNTR 1453 / 541 1453 / 245 1351 / 245 1349 / 245 1387 / 245 1325 / 245 1.2 / 8.2
L TBWK 1160 / 307 1160 / 125 829 / 124 829 / 124 279 / 40 267 / 40 0.8 / 11.0
M CIU 4550 / 777 4550 / 459 3262 / 415 3244 / 415 2929 / 381 2757 / 379 4.8 / 35.8
S SCU1 1520 / 373 1520 / 212 1296 / 204 1346 / 207 1308 / 201 1160 / 192 2.8 / 20.2
S SCU2 8560 / 1368 8560 / 640 6632 / 566 5990 / 564 3928 / 432 4119 / 425 34.6 / 58.9
V CACH 753 / 173 753 / 103 652 / 105 649 / 110 424 / 95 393 / 97 0.8 / 14.9
V DIR 554 / 178 554 / 87 491 / 87 285 / 50 160 / 45 152 / 43 0.5 / 10.7
V L2FB 120 / 75 120 / 26 103 / 26 103 / 26 107 / 26 95 / 26 0.3 / 4.4
V SCR1 826 / 150 826 / 95 418 / 52 618 / 94 341 / 49 325 / 48 0.6 / 10.6
V SCR2 2563 / 551 2563 / 458 1157 / 86 2343 / 460 524 / 82 510 / 82 1.4 / 14.3
V SNPC 78 / 93 78 / 21 68 / 21 68 / 21 67 / 21 62 / 21 0.3 / 5.4
V SNPM 2421 / 1421 2421 / 241 1843 / 237 1814 / 241 1800 / 232 1221 / 180 33.8 / 116.8
W GAR 2107 / 242 2107 / 93 1775 / 91 1769 / 91 1896 / 91 1590 / 75 3.3 / 16.8
W SFA 471 / 64 471 / 42 329 / 42 329 / 42 324 / 41 300 / 41 0.6 / 12.7

% Reduction 0.0 / 0.0 0.0 / 50.1 20.7 / 54.8 20.3 / 51.8 33.6 / 60.3 39.3 / 61.1

Table 2: Retiming results for selected IBM Gigahertz Processor (GP) circuits.

The main focus of this research is to enhance reachability-
based verification [9], for which min-area retiming is the single ob-
jective. However, these techniques are equally applicable to logic
synthesis to remove sequential redundancy in the technology-
independent phase. Our results indicate that the presented retim-
ing can achieve significant reductions of the circuit size in terms
of register count and number of combinational gates. In particu-
lar, we demonstrated that comparable results are not achievable by
classical retiming on static circuit structures applied in an inter-
leaved manner with combinational optimization.

Future work in this area includes improvements of the
combined modeling of retiming and combinational optimiza-
tion. Further, we wish to investigate the application of the
AND/INVERTER/REGISTER graph for sequential equivalence
checking.

References

[1] C. Leiserson and J. Saxe, “Optimizing synchronous systems,”Journal of VLSI
and Computer Systems, vol. 1, pp. 41–67, January 1983.

[2] C. Leiserson and J. Saxe, “Retiming synchronous circuitry,”Algorithmica,
vol. 6, pp. 5–35, 1991.

[3] M. K. Ganai and A. Kuehlmann, “On-the-fly compression of logical circuits,”
in International Workshop on Logic Synthesis, May 2000.

[4] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness, “Logic decomposition
during technology mapping,”IEEE Transactions on Computer-Aided Design,
vol. 16, pp. 313–334, August 1997.

[5] G. D. Micheli, “Synchronous logic synthesis: Algorithms for cycle-time mini-
mization,” IEEE Transactions on Computer-Aided Design, vol. 10, pp. 63–73,
January 1991.

[6] O. Coudert, C. Berthet, and J. C. Madre, “Verification of synchronous sequen-
tial machines based on symbolic execution,” inInternational Workshop on
Automatic Verification Methods for Finite State Systems, (Grenoble, France),
Springer-Verlag, June 1989.

[7] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang, “Sym-
bolic model checking: 1020 states and beyond,” inIEEE Symposium on Logic
in Computer Science, (Philadelphia), pp. 428–439, IEEE, June 1990.

[8] T. Niermann and J. H. Patel, “HITEC: A test generation package for sequential
circuits,” in Proceedings of The European Conference on Design Automation,
pp. 214–218, IEEE, February 1991.

[9] A. Kuehlmann and J. Baumgartner, “Transformation-based verification us-
ing generalized retiming,” inComputer Aided Verification (CAV’01), (Paris,
France), pp. 104–117, July 2001.

[10] A. Gupta, P. Ashar, and S. Malik, “Exploiting retiming in a guided simulation
based validation methodology,” inCorrect Hardware Design and Verification
Methods (CHARME’99), (Bad Herrenalb, Germany), pp. 350–353, Springer-
Verlag, September 1999.

[11] S. Malik, E. M. Sentovich, R. K. Brayton, and A. Sangiovanni-Vincentelli, “Re-
timing and resynthesis: Optimizing sequential networks with combinational
techniques,”IEEE Transactions on Computer-Aided Design, vol. 10, pp. 74–
84, January 1991.

[12] H. J. Touati and R. K. Brayton, “Computing the initial states of retimed cir-
cuits,” IEEE Transactions on Computer-Aided Design, vol. 12, pp. 157–162,
January 1993.

[13] G. Even, I. Y. Spillinger, and L. Stok, “Retiming revisited and reversed,”IEEE
Transactions on Computer-Aided Design, vol. 15, pp. 348–357, March 1996.

[14] H. Hulgaard, P. Williams, and H. Andersen, “Equivalence checking of com-
binational circuits using Boolean expression diagrams,”IEEE Transactions on
Computer-Aided Design, vol. 18, July 1999.

[15] A. Kuehlmann, M. K. Ganai, and V. Paruthi, “Circuit-based Boolean reason-
ing,” in Proceedings of the 38th ACM/IEEE Design Automation Conference,
(Las Vegas, Nevada), pp. 232–237, ACM/IEEE, June 2001.

[16] G. P. Bischoff, K. S. Brace, S. Jain, and R. Razdan, “Formal implementa-
tion verification of the bus interface unit for the Alpha 21264 microproces-
sor,” in Proceedings of the IEEE International Conference on Computer De-
sign, pp. 16–24, IEEE, October 1997.

[17] M. S. Hung, W. O. Rom, and A. D. Waren,Optimization with IBM OSL. Sci-
entific Press, 1993.

[18] G. Cabodi, S. Quer, and F. Somenzi, “Optimizing sequential verification by
retiming transformations,” inProceedings of the 37th ACM/IEEE Design Au-
tomation Conference, (Los Angeles), pp. 601–606, ACM/IEEE, June 2000.

7

	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index

