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ABSTRACT: This paper deals with area minimization of 
power distribution network for VLSIs. A new algorithm based 
on efficient nonlinear programming techniques is presented to 
solve this problem. The experiment results prove that this 
algorithm has achieved the objects that minimize the area of 
power/ground networks with higher speed. 

1. INTRODUCTION 
Power/Ground (p/g) nets are always very important in 

design of VLSIs because they affect the performance of circuits 
seriously. Since their wire widths are much wider than signal 
nets, p/g nets usually cover a large portion of chip area. So they 
are often given the first priority in routing process. 

There are two basic constraints in design and optimization 
of p/g nets. The first is the undesirable wear-out of metal wiring 
caused by electromigration, and the second is the narrowing 
margins caused by voltage drops[7][8]. Although increasing wire 
width can solve these problems, it would cost too much wiring 
resources. Consequently, it is necessary to minimize the area of 
p/g nets under the two constraints[8]. 

Generally speaking, the design of p/g nets consists of two 
main steps. Firstly, a topology for p/g nets is constructed, and it 
can be trees[4][10] or general graph[1][2][8]. Secondly, wire widths 
of p/g nets are minimized. It is not difficult to minimize wire 
widths of trees’ branches because their current directions are 
fixed. However, to minimize wire widths of a general graph is 
much more difficult because current directions are uncertain 
before branch widths are determined. In most cases, it’s a 
problem of non-linear optimization subject to non-linear 
constraints. Moreover, the number of variables is usually 
tremendous because of large scale of modern VLSIs. 

Several studies on area optimization for p/g nets have been 
published. The algorithm presented by [8] is based on feasible 
direction method[12]. However, feasible direction method may 

bring about the problem of zigzagging[5], which leads to poor 
convergence. 

Augmented Lagrangian function is used by [1]. In order to 
avoid computation of partial differential of currents subject to 
resistance, both currents and resistance are used as variables 
and Kirchoff’s law is regarded as a constraint, which results in 
redundant searching space and increasing the scale of problem. 

In 1999, Xiangdong Tan and C.-J. Richard Shi proposed an 
interesting algorithm[9]. The basic idea is to result a constrained 
nonlinear programming problem into a sequence of linear 
programming. Like [1], voltages and currents are also used as 
variables. 

To solve these problems, we present a new algorithm based 
on penalty method, conjugate gradient method and circuits 
sensitivity analysis. Only conductance is used as variables. As 
a result, this algorithm is able to deal with real designs of IC 
industry. 

2. PROBLEM FORMULATION 
In the latter discussion, we assume that every component 

absorbs its most current, as is so called worst case. [2] has 
proved that if the constraints were not violated in worst cases 
they would be satisfied in other cases. For the similarity of 
power and ground nets, we will only describe the algorithm for 
power nets.During the description of problem formulation and 
solution method, following notations will be used: 

Enode :set of indices of all nodes in p/g net. 
Ebch :set of indices of all branches in p/g net. 
Eleaf :set of indices of all power pins in Enode. 
Evdrop :set of indices of the nodes which violate voltage drop 

constraints in Enode. 
Evemi :set of indices of the branches which violate 

electromigration constraints in Ebch. 
Enei(p) :set of indices of node p’s neighboring nodes in Enode. 
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ρ :sheet resistance. 
lpq, wpq, gpq:length, width and conductance of branch (p, q). 

2.1 The Objective Function 
The objective function is the area of p/g nets. 
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2.2 The Constraints 
1) Voltage drop constraints 

The difference between input voltage vdd and power pins’ 
voltages must be smaller than allowable biggest voltage drop u, 
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2) Current density constraints 
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3) Kirchoff’s law 
Kirchoff’s law can be described by the node voltage 

equations set:
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In this algorithm Kirchoff’s law is satisfied naturally and 
doesn’t emerge explicitly. 
4) Minimal width constraints 

Owing to technological restriction, power branches have to 
be wider than minimal metal line width, which can be regarded 
as a constraint. However, a more simple way is to set the lines 
that do not satisfy this constraint as minimal metal line width, 
which is more efficient and leads to better results. 

3. SOLUTION METHOD 
3.1 Formulation of Penalty Function 

Penalty method is the mainframe of this algorithm and 
penalty function is defined as below, 
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Where a is defined by (2) and w is penalty parameter. 

Set 
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be rewritten as tpaf +=  (10) 

3.2 Penalty method 
At first, penalty parameter w is given an initial value, then w 

is increased and new penalty function is optimized again until 

all constraints are satisfied. In this way, original problem is 
transferred into a sequence of unconstrained minimization 
problems. The solution method can be described as below, 
1. Set penalty parameter w as an initial value, initial 

conductance vector as G(0) and error bound as ε1 > 0. 
2. Solve unconstrained minimization problem, obtain 

current conductance vector G(l). 
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3. If pt < ε1, then stop, else increase w, and go to step 2. 
In algorithm based on penalty function, the key is to find an 

efficient method to solve the unconstrained minimization 
problem. In our algorithm, FR conjugate gradient method is 
applied. Its steps are shown as follows: 

1. Suppose initial conductance vector as G(l) and error 
bound as ε2 > 0, initial descent direction is set as 
negative direction of gradient, )( )()( ll GfP −∇=  (12) 

2. Determine a nonnegative scalar λk which minimize f. 
Let G(k) be the conductance vector at the kth iteration, 
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k
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4. If 2
)1( )( ε<∇ +kGf , then stop; else chose a new descent 

direction P(k+1) which satisfies the condition below, 
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5. Go to step 2. 
3.3 Line Search 

After getting descent direction, we need to determine 
nonnegative scalar λk which minimize object function, that is, 
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k
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This process is what so called line search, which is used to 
reduce objective function along descent direction as much as 
possible. Since derivative of penalty function subject to λk is 
difficult to get, quadratic interpolation method is applied for it 
only requires the value of penalty function. 
3.4 Resize Objective Function and Update penalty 
parameter 

In optimization of p/g nets, the numerical difference 
between objective function and penalty term is very large, 
which would result in over consideration of objective function 
and make the process of optimization difficult to continue. 
Increasing penalty parameter will lead to ill-conditioning 
problem, a better solution is to resize objective function by a 
scalar γ. Define wit as the ratio of penalty terms to objective 
function and make it fixed, γ can be expressed by wit as, 
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In traditional penalty method, w is always updated by timing 
a fixed updating ratio, which may let experiment results rely on 
updating ratio. To solve this problem, we use almost the same 
way which determines γ to update penalty parameter w. Set 
penalty parameter w in last unconstrained optimization is wold, 
the new one wnew can be calculated by the constant wit as below, 
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4. GRADIENT CALCULATION 
It is necessary to calculate the gradient of penalty function to 

get descent direction in conjugate gradient method. The 
following notations will be used in the description. 

N: original network. 
N'(i), N'(p), N'(q): N's adjoint networks used to calculate 

gradient of voltages of nodes i, p and q. 
nnode: nodes number of N or its adjoint networks. 
nbch: branches number of N or its adjoint networks. 
M: coefficient matrix of N or its adjoint networks. 
V'(i), V'(p), V'(q): vectors formed by node voltages of N'(i), 

N'(p) and N'(q) respectively. 
B(i), B(p), B(q): right side of node voltage equation sets 

derived from N'(i), N'(p), N'(q). 
vi, vp, vq: voltages of node i, p and q in N. 
G: conductance vector of N or its adjoint networks. 
gab: conductance of branch (a, b) in N or its adjoint networks, 

(a, b)∈Ebch 
va, vb: the voltages of branch (a, b)'s two end nodes in N. 
va'(i), vb'(i): the voltages corresponding to va and vb in N'(i). 
va'(p), vb'(p): the voltages corresponding to va and vb in N'(p). 
va'(q), vb'(q): the voltages corresponding to va and vb in N'(q). 
Since vp and vq have been known before each iteration, 

absolute value is unnecessary. Suppose vp>vq, (7) and (8) can 

be rewritten as,
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From (10), the partial differential of penalty function f 
subject to conductance gab can be expressed as, 
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With (2), (9) and (18), (19) can be rewritten as, 
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(20) is difficult to calculate for node voltages cannot be 
expressed by conductance in explicit form. To solve this 
problem, we use the method of adjoint network, which is 

presented by Director and Rhorer in 1969[3][8]. Next we will 
describe how to calculate gradient of node i's voltage subject to 
conductance vector.  

The first step is to build adjoint network N'(i), which has the 
same topology and conductance vector with N. However, all 
absorbing current of N'(i)’s leaf nodes are set as 0 except node i, 
which absorbing current is set as 1A. Besides, all input voltages 
are set as 0. The second step is to form node voltage equations 
set for N'(i). Since N and N'(i) have the same topology and 
conductance vector, they share the same coefficient matrixes. 
Their difference only resides in the right side: all elements of 
right side of N'(i)’s node voltage equations set are zero except 
the element corresponding to node i is –1, that is, 
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With (21), (20) can be rewritten as, 
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Thus, the gradient of penalty function f subject to 
conductance vector G can be expressed as follow, 
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(22) shows that we may have to solve an original network 
and many adjoint networks in each iteration to get )(Gf∇ , 
which will cost too much CPU time. Fortunately, we find a way 
to avoid solving each adjoint networks respectively, 

V'(i) can be got by solving node voltage equations set 
)()(' iBiMV = , va'(i) and vb'(i) are two elements of V'(i), let vector 

[ ]0,,0,1,0,,0,0 LL=aC  and [ ]0,,0,1,0,,0,0 LL=bC  where 1 appears at 
index a and b respectively, we have, 
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solving the following linear equation respectively, 
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Use X to replace the vector on the left side of (25) and Bnew to 
replace the vector on the right side of (25), (25) is rewritten as, 

newBMX = (26) 
Then, we express (22) as 
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To obtain the gradient of penalty function subject to G, we 
should merge adjoint networks by forming a new right side 
according to (25), then solve (26), and finally use (27) to get 

)(Gf∇ . Thus the gradient of penalty function subject to 
conductance vector can be obtained at one time. Since the 
coefficient matrix derived from node voltage equations set is 
symmetric and positive definite, Incomplete Cholesky 
Decomposition Conjugate Gradient (ICCG)[6][11] is used to 
solve node voltage equations set.  

In ICCG, computing pre-conditioned matrixes will costs 
most time. As the coefficient matrixes of original and adjoint 
network are the same, they can share the same pre-conditioned 
matrix. Besides, most p/g nets have very special topology; we 
can use the equivalent circuit technique to accelerate p/g net 
solver’s speed. 

5. Analysis of Time Complexity 
To discuss time complexity, we have such notations: 
Niter :Number of iteration. 
Nline(i) :Number of line searching in iteration i. 
Tline(i, j) :Time of solving a network during line searching j 

in iteration i. 
Tpre(i) :Time of computing pre-conditioned matrix for 

ICCG in iteration i. 

Tso(i) :Time of solving original network with 
pre-conditioned matrix in iteration i. 

Tsa(i) :Time of solving (26) with pre-conditioned matrix 
in iteration i. 

In each iteration we need solve original network and (26) to 
get new searching direction, then do line searching. So time 
complexity can be expressed as below, 
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According to (28), the algorithm’s efficiency depends on the 
speed of p/g net solver. Generally speaking, the complexity of 
solving a linear equations by iteration method is O(#iter ×N2), 
where N is the range of coefficient matrix. However, the 
coefficient matrix of node voltage equations set is symmetric, 
positive definite and very sparse. So ICCG can solve it much 
faster. Besides, most p/g nets have a very special topology 
described in section 4, which can accelerate p/g net solver’s 
speed. So it is difficult to get the exact complexity of solving a 
p/g network. Instead, we present several examples to illustrate 
empirical trend of our p/g nets solver's efficiency as table 1 
shows,  

 
Table 1. Examples to illustrate p/g net solver’s efficiency 

circuit name node number time(s) 
test1 1309 0.01 
test2 3741 0.07 
test3 7492 0.14 
test4 32112 0.30 
test5 48168 0.53 
test6 112392 0.84 
test7 160560 1.08 
test8 321120 2.08 
test9 1618026 7.85 

 
Table 2. Comparison of our algorithm against Tan-Shi algorithm 

our algorithm Tan-Shi algorithm 
circuit 
name 

node 
number 

branch 
number time (s) 

area 
reduced 

(%) 
time (s) 

area 
reduced 

(%) 

speed 
up 

p4x4 17 23 2.34 99.853 0.43 95.1 0.18 
p3x500 1502 1505 3.67 49.5234 37.6 47.8 10.2 

g300x10 3002 3599 57.34 99.353 609.9 93.7 10.6 
p100x100 10002 10199 87.43 98.749 1325.6 80.7 15.2 

Table 3. The experiment results of larger circuits 

area(µm2) circuits 
name 

node 
number 

straps 
number 

trunks 
number branch-and-bo

und method our algorithm 
time(s) 

test1 1309 30 3 8971.80 6733.41 3.55 
test2 3741 61 5 21540.48 17477.02 15.07 
test3 7492 87 9 72380.88 70035.05 58.43 
test4 32112 186 8 76789.44 64417.61 88.78 
test5 48168 228 5 38599.68 24279.34 101.41 
test6 112392 348 6 58936.22 51869.75 184.92 
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test7 160560 417 2 35228.16 24051.18 257.71 
test8 321120 688 6 152662.73 84971.14 2206.62 
test9 1618026 1577 5 383351.25 358620.66 6392.67 

6. EXPERIMENT RESULTS 
This algorithm has been developed on sun ultra_sparc 

250M workstation with language C and C++. For comparison, 
we have used the test cases which [9] presented. The results of 
comparison are shown as table 2. 

In table 2, the column of area reduced(%) is reduced wiring 
area of original area in percentage, which shows that all p/g 
nets optimized by our algorithm occupy smaller area than [9]. 
The column of speed up says that to large circuits like 
p100x100 our algorithm is much faster than Tan-Shi algorithm. 

There are two reasons for area improvement. Firstly, only 
conductance is looked as the variables, which avoids redundant 
searching space. Secondly, there is no any assumption such as 
fixing currents or voltages like Tan-Shi algorithm.  

We have also tested this algorithm with much larger circuits 
from IC industry. To compare with this algorithm, we have also 
developed an algorithm based on branch-and-bound method to 
optimize p/g nets area. Table 3 lists the results. 

Comparing with other algorithm, our algorithm is able to 
deal with large circuits. There are 1,618,026 components in our 
largest test circuit. The running time is 6392.67 second. From 
table 3, we can see that area obtained by the algorithm 
proposed in this paper is much smaller than that derived from 
branch-and-bound method. 

Figure 1 shows how the number of the nodes, which violate the 
voltage drop and the electromigration constraints, decreases with 
iteration (take circuit test1 as example). The convergence 
characteristic of this algorithm is also described by figure 1. The 
vertical lines say that penalty parameter is updated and a new 
unconstrained optimization begins. At these times the number of 
violating nodes decreases more sharply and at last it converges to zero.  

Fig. 1. Violating nodes reduction with
the number of iterations
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7. CONCLUSION AND FUTURE WORK 

In this paper we present a new algorithm based on penalty method, 
conjugate gradient method, circuits sensitivity analysis and merge of 

adjoint networks to minimize the area of p/g nets while satisfying the 
constraints. The experiment results show that this program is very 
robust with high speed and low wiring resource consumption. Further 
more, it has the capability of optimizing large-scale circuits. 

REFERENCE 
[1] S. Chowdhury and M. A. Breuer, “Minimal area design of 

power/ground nets having graph topologies,” IEEE Trans. on 
Circuits and Systems, pp.1441~1451, December. 1987. 

[2] S. Chowdhry and M. A. Breuer, “Optimization Design of 
Reliable IC Power Networks Having General Graph 
Topologies,” Proc. 26th DA Conf., pp. 787~790, 1989. 

[3] S. W. Director and R. A. Roher, “A Generalized Adjoint 
Network and Network Sensitivities,” IEEE Trans. on Circuits 
and Systems, Vol. CT-16, pp. 318~323, August. 1969. 

[4] K-H. Erhard, F. M. Johannes and R. Dachauer. “Topology 
Optimization Techniques for Power/Ground Networks in 
VLSI,” Proc. European Design Automation Conference, pp. 
362~367, 1992. 

[5] R. Fletcher, “Practical Method of Optimization,” Vol.2, New 
York: Wiley, 1981. 

[6] Gene H. Golub and Charles F. Van Loan, “Matrix 
Computations,” Johns Hopkins University Press, 1983 

[7] F. M. D’Heurle, “Electromigration and failure in electronics: An 
introduction,” Proc. IEEE, vol. 59, pp. 1409~1418, Oct. 1971. 

[8] Mitsuhashi T. & Kuh E. S, “Power and Ground Network 
Topology Optimization for Cell Based VLSIs”, proceedings of 
29th ACM/IEEE Design Automation Conference, pp. 524~529, 
1992. 

[9] Xiang-Dong Tan, C.-J. Richard Shi, Dragos Lungeanu, 
Jyh-Chwen Lee and Li-Pen Yuan, “Reliability-Constrained Area 
Optimization of VLSI Power/Ground Networks Via Sequence 
of Linear Programmings”, DAC 99 New Orleans, Louisiana, pp. 
78-83, 1999. 

[10] WU Xiao-hai, QIAO Chang-ge, YIN Li, HONG Xian-long  
Design and Optimization of Power/Ground Network for 

BBL-Based VLSIs  August 2000, Acta Electronica Sinica. 
[11] Xiaohai Wu, Li Yin, Xianlong Hong, “A Power and Ground 

Network Solver with the Method of Incomplete Cholesky 
decomposition Conjugate Gradien”, March 2000, Chinese 
Journal of Semiconductors. 

[12] G. Zoutendijk, “Methods of Feasible Directions,” Amsterdam, 
The Netherlands: Elsevier, 1960. 


	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index




