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Abstract : Incremental physical CAD is encountered frequently in the so-
called engineering change order (ECO) process in which design changes
are made typically late in the design process in order to correct logical
and/or technological problems in the circuit. As far as routing is con-
cerned, in order to capitalize on the enormous resources and time already
spent on routing the circuit, and to meet time-to-market requirements, it
is desirable to re-route only the ECO-affected portion of the circuit, while
minimizing any routing changes in the much larger unaffected part of
the circuit. Incremental re-routing also needs to be fast and to effectively
use available routing resources. In this paper, we develop a complete in-
cremental routing methodology for FPGAs using a novel approach called
bump and refit (B&R); B&R was initially proposed in [4] in the much
simpler context of extending some nets by a segment (for the purpose of
fault tolerance) for FPGAs with simple i-to-i switchboxes. Here we signif-
icantly extend this concept to global and detailed incremental routing for
FPGAs with complex switchboxes such as those in Lucent’s ORCA and
Xilinx’s Virtex series. We also introduce new concepts such as B&R cost
estimation during global routing, and determination of the optimal sub-
net set to bump for each bumped net, which we obtain using an efficient
dynamic programming formulation. The basic B&R idea in our algo-
rithms is to re-arrange some portions of some existing nets on other tracks
within their current channels to find valid routings for the incrementally
changed circuit without requiring any extra routing resources (i.e., com-
pletely unused tracks), and with little effect on the electrical properties of
existing nets.

We have developed optimal and near-optimal algorithms (called Sub-
sec_B&Rand Subnet _B&R, respectively) to find incremental routing so-
lutions using the B&R paradigm in complex FPGAs. We implemented
these algorithms for Lucent’s ORCA-2C FPGA, and compared our al-
gorithms to two recent incremental routing techniques, St andar d and
Ri p- up&Rer out e, and to Lucent’s A_PAR routing tool. Experimental
results show that our incremental routers perform very well for ECO ap-
plications. Firstly, B&R is 10 to 20 times faster than complete re-routing
using A_PAR. Further, the B&R incremental routers are nearly 27% faster
and the new nets have nearly 10% smaller lengths than in previous in-
cremental techniques. Also, the B&R routers do not change either the
lengths or topologies of existing nets, a significant advantage in ECO ap-
plications, in contrast to Ri p- up&Rer out e which increases the length
of ripped up nets by an average of 8.75% to 13.6%.

1 Introduction

An FPGA is a general-purpose, programmable logic device that is
customized in the package by the end user. It consists of a large num-
ber of programmable logic blocks (PLBs) and programmable routing
which allows the logic blocks to be connected to form a larger cir-
cuit. The logic is implemented by electronically programming the
interconnects, typically by the user instead of the manufacturer.

An SRAM-programmable FPGA is programmed by loading con-
figuration memory cells from an external source. The configuration
memory cells control the logic and interconnect that perform the ap-
plication function of the FPGA. Such FPGAs are reprogrammable,
and can be used to implement different functions at different times.
Such reprogrammability also allows much flexibility for ECO appli-
cations late in the design process.

In this paper we present incremental routing algorithms for com-
plex FPGASs that use a novel bump-and-refit (B&R) approach. This
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approach was initially proposed in [4] in the much simpler context of
extending some nets by a segment (for the purpose of fault tolerance)
for FPGAs with simple i-to-i switchboxes (SBox’s). Here we signif-
icantly develop this concept further to design a complete incremental
routing flow for complex FPGAs. We introduce new concepts like
bumping costs during global routing, and optimal bumping subsets
of nets to realize an efficient incremental routing technique for ECO
applications.

The goals of our work are to develop incremental routing algo-
rithms that: (1) Are orders of magnitude faster than complete re-
routing; (2) Complete the required incremental routing in the avail-
able routing resources if such a solution exists (this will minimize the
need for area- and time-expensive fall-back strategies); (3) Complete
the routing without significantly changing electrical properties (e.g.,
power, delay) of existing nets (this will keep the parasitic extraction
data and timing/power analysis for the unaffected portion of the cir-
cuit valid). Experimental results show that the new B&R incremental
routers have significant advantages over existing incremental routing
methods with respect to the above metrics. We also prove optimality
of a portion of our algorithms.

The rest of the paper is organized as follows. In Sec. 2, we dis-
cuss previous research in incremental routing. Section 3 discusses all
aspects of the new B&R incremental routing method. Experimental
results comparing two versions of the B&R incremental router to the
type of incremental routers proposed in [5, 2] that we have imple-
mented, are given in Sec. 4. We conclude in Sec. 5.

2 Prior Work On Incremental Rerouting

This is a new area and few papers have tackled this problem. One
of these is the incremental rerouting technique developed by Emmert
and Bhatia [5]. In their work the nets connected to faulty/displaced
logic blocks (PLB’s) are partially ripped up and re-routed. Graph
building between the pin of the starting channel (SC) and the pin of
the target channel (TC) is attempted. If this is successful, the path
with the minimum cost is selected. If the router is not successful, the
window size for the router is increased by one unit. Unlike [4], [2]
and our current work, they do not perturb or move the already routed
nets. We term this incremental routing approach as St andar d in the
rest of the paper.

Cong and Sarrafzadeh present a rip-up and reroute approach to
incremental physical design in [2]. The first goal of their incremental
routing is to route the new nets without removing any existing nets.
When some nets cannot be routed, a rip-up and reroute procedure is
used to free routing resources and re-do routing for the newly added
nets and ripped up nets. If rip-up and reroute fails to route all the
nets, the floorplan and placement of the design is updated to add more
routing resources. Their technique of rip-up and reroute is in contrast
to our B&R approach wherein we perturb existing nets only within
their current channels, rather than rerouting them. Since the nets are
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Figure 1: (a) Presence of occupying net (O-net) n, prevents a straightforward insertion of an CS. Thus the O-net must be moved to another track,
possibly bumping other nets. (b) Overlap graph representation for the given routing. The track number at an end-point of an edge indicates the
track the corresponding net would move to if this edge is traversed. (c) Final routing of the circuit.

still routed in their original channels, neither their topologies nor their
lengths change. Thus most properties of existing nets are preserved
which is key to an effective incremental design process.

Cong, Fang and Khoo presented efficient techniques for obtaining
a non-uniform routing grid from a given VLSI routing in order to
perform incremental routing for ECO [1].

Another recent work is that of Dutt, Shanmugavel and Trimberger
[4] in which an incremental rerouting algorithm was developed for
fault reconfiguration in FPGAs. In their work they have used seg-
mented FPGAs which uses i —to—i connection, i.e., a net is routed
on only one track throughout. It uses the concept of node cover [6]
, to cover cell (PLB) faults but is different from [6] in the manner in
which net extensions (also called CSinsertions) are made for the pur-
pose of fault reconfiguration. It makes CS insertions only specific to
faults wherever and whenever required in a dynamic manner ([6] uses
a static method to provide CS’s to cover all possible requirements for
the given fault pattern—one fault per row). In Fig. 1a, net ny is an
CS net—a net the needs to be extended by one segment (the cover
segment (CS) in order to connect to the PLB that replaces the original
PLB (for the purpose of fault reconfiguration) that it was connected
to. For each CS, if the required track segment is vacant, the insertion
is accomplished by including this segment as part of the correspond-
ing net. However, if the required wire segment is occupied by another
net, then the CS insertion will cause a displacement or “bumping” of
this net.

As shown in Fig. 1(a), the net occupying the required track seg-
ment is termed the occupying net (O-net). The CS-net has to be ex-
tended by one segment towards the direction of the cover cell, and this
segment is currently occupied by the O-net. Thus the O-net needs to
be moved out of its current track. Let a transition be defined as the
movement of net nj on a track Tj to another track Ty, and denoted by
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n; . This transition may result in net n; bumping into one or more
nets on track Ty. These nets will have to move out of their current
track Ty, giving rise to a transition for each of them. This transition
sequence is shown in Fig. 1b by dark arcs, where net n; initiates a set
of transitions which finally terminate in “spare” nodes, which are va-
cant segments of appropriate total lengths in which a bumped net can
move in without bumping any other net. The set of transitions take
on a directed-acyclic graph (DAG) structure, termed a transition DAG
(T-DAG), with the spares forming the leaf nodes. The CS insertion is
successful if a T-DAG rooted at the corresponding O-net can be found
whose leaves are spare nodes; such a T-DAG is termed a converging
T-DAG.

The concept of an overlap graph (OG), which is a graph represen-
tation of the circuit routing on the FPGA, is introduced in [4] as an
aid to finding a converging T-DAG solution. The OG is an undirected

graph with the circuit nets represented by the nodes of the graph. niTj
is used to denote a net nj on track Tj. There exists an edge between
ni and n;j in the OG iff nets nj and n; share a channel® in the FPGA.
Figure 1(b) shows nets n, and ng having an edge between them in
the OG since in Fig. 1(a) they are routed through a common vertical
channel to the right of cell B3.

The OG can be used to determine if the required T-DAG exists.
Since the OG represents the circuit routing in the FPGA, a T-DAG
is a DAG embedded in the OG (the undirected edges of the OG be-
come directed arcs in the direction of the transitions; see Fig. 1b).
Thus a converging T-DAG rooted at an O-net can be determined by
performing a search for a T-DAG on the OG.

This process is illustrated in Fig. 1 for a small circuit and for a
single new net n1. The corresponding O-net ny transits from Ty to Tz
and bumps into ng. The movement of ny from Ty creates a “dynamic”
spare node (labeled by D_Sp in Fig. 1b) for net ng, which information
is added to the OG. The bumped net ng then transits from T3 to Ty
where it bumps ng and n3. ng then transits to the above dynamically
created spare on Tp, while n3 transits to its spare track segments on
T,. Thus a converging T-DAG is determined in the OG. The transi-
tion arcs are shown dark in Fig. 1b and numbered chronologically in
the order in which they are traversed in the search process. Figure 1c
shows the final routing of the FPGA after the bumping sequence con-
verges.

A depth-first search algorithm for finding a converging T-DAG in
the OG was developed in [4]. This algorithm is optimal in the sense
that it will find a converging T-DAG if one exists. An extended ver-
sion of this algorithm for more complex FPGAs and for ECO appli-
cations is presented later in Fig. 9.

While an existing converging T-DAG will ultimately be found by
the depth-first algorithm of [4], it will be time-efficient if some suit-
able “cost” measure can be used to determine which transitions are
more likely to be successful so that fewer T-DAGs are searched and
backtracked. A good cost measure will consider both the “magni-
tude” of bumpings (total length of bumped nets) and the likelihood of
convergence of these bumpings.

Two transition cost (TC) (equivalently, bumping cost) measures

1A channel is the set of all track segments between two adjacent SBox’s of
the FPGA.



evaluated are as follows:
(1) sum(ny 17 = Y njcadjk(m)! (n;j), where adj T(n;) are the neigh-

bors of nj in the OG that are on track Ty, and I(n;) is the total length
of n; in terms of the track segments (each of length 1) that it occu-
pies. This cost estimate is reasonable, but only considers the bumping
magnitude. For example, according to it, it is equally costly to bump
a net of length 9 as it is to bump 3 nets each of length 3. However,
the latter case has a higher likelihood of convergence since there is
greater flexibility in moving 3 bumped nets than a single net of the
same total length. This leads to the next cost function.
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Using such TC functions to guide the search results in computa-
tion time reduction by an order of magnitude compared to a “blind”
depth-first search.

The algorithm of [4] is efficient in terms of both track usage and
time. It shows considerable improvement over the static method [6]
in track overheads for tolerating a single PLB fault in each FPGA
row. The static method has a track overhead of 42%, while the depth-
first algorithm of [4] has an average overhead of only 12.8%; a 70%
improvement. Further, average re-routing times per faulty row over
all circuits is about 26.5 secs, which is promising, since complete
re-routing for circuits of these sizes can take an hour or more.

In [4] the affected net (nets connected to displaced PLBSs) are not
rerouted, only net extensions (CS insertions) are made, so [4] cannot
be used for ECO routing in its present framework.

We will use a B&R approach of finding new track assignments for
existing nets in order to make room for new nets that is similar to that
of [4]. However we incorporate the B&R approach within the context
of a complete routing system in which we perform full fledged incre-
mental routing (as opposed to extending some nets by one segment
at their branch or terminal points as done in [4]). This includes per-
forming global as well as detailed routing taking the potential bump-
ing cost into account (besides other cost measures). Further, here we
also extend the B&R approach to FPGAs with complex switching and
routing capabilities such as those available in commercial FPGAS like
Xilinx’s Virtex and Lucent’s ORCA. The SBox’s in these FPGAs al-
low routing a net on different tracks by interconnecting a segment on
track i to another segment on track j. This adds another dimension to
the B&R approach, viz., when a net is bumped in one portion, should
only that portion be moved to a different track or should more than
that portion be bumped (possibly the entire net)? We have developed
a dynamic programming algorithm to optimize metrics like the prob-
ability of successful B&R (as measured by the degree of bumping or
bumping cost), and SBox and track resource usage to determine how
to bump different subnets of a bumped net. All these aspects of our
B&R incremental router are discussed in the next section.

3 Our New Incremental Rerouting Algorithm
We have partitioned our incremental rerouting problem into hier-
archy of two stages. We first perform global routing taking possi-
ble bumping cost and then detailed routing possibly with bumping
existing nets if a set of available interconnectable track segments is
not found to accommodate the net being routed. If existing nets are
bumped by the detailed router, the bump and refit (B&R) algorithm is
used to refit the bumped nets on other track segments in a recursive
B&R manner. The incremental B&R routing flow that we have devel-
oped is shown in the flowchart in Fig. 2 (we have not developed the
incremental channel expansion/placement/floorplanning phase shown
in the rightmost box of Fig. 2). As shown in the flowchart, both the
global and detailed routing phases consider costs that control both net
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Figure 2. An incremental routing flow incorporating B&R.

length and potential bumping cost to obtain a min-cost routing (e.g.,
the global router will prefer to route along channels where the bump-
ing cost, if any, will be potentially minimal as long as a minimal-
length route is obtained).

Before going into the details of our incremental router we define
a few terms. We define a subnet as a maximal portion of a net which
spans at least one horizontal or vertical channel and no part of which
can be independently moved to another track without disconnecting
it from the rest of the subnet; see Fig. 3. A subnet is on one partic-
ular track. We will denote a subnet s; of net nj by nj.s; We define
subsection as a set of one or more subnets of a net.
3.1 Global Routing

In global routing we try to optimize the overall wire length of the
net to be routed, congestion of the channels and possible bumping
cost that may be incurred by the detailed router. The global router
assigns channels (or identically SBox’s) to the net to be routed. The
global routing graph GR-Graph is a weighted connection graph of
SBox’s of the FPGA. Each node in the graph corresponds to a SBox
(SBox) and there exists an edge between two nodes in the graph if
the corresponding SBox’s are adjacent in the layout, i.e., these edges
represent channels between SBox’s . The weight/cost function of
an edge in the graph is discussed in Sec. 3.1. For multipin nets the
global route amounts to finding the approximate Steiner tree connect-
ing these pins also called GTree. In our technique, we solve this prob-
lem by repeated application of Dijkstra’s shortest path algorithm [3],
in a bounding box of nodes. A formal description of this heuristic is
given in Fig. 4

Note that our main goal is to develop an incremental detailed
router using a B&R approach. We, however need a global router that
can also take possible bumping cost into account when making chan-
nel assignments. We thus have used a simple global routing strategy
with a primary goal of providing a bumping cost factor in the global
routing output, so that the detailed router incurs minimal bumping
cost. This in turn means that the B&R algorithm, if invoked by the
detailed router will have a high likelihood of finding a solution.

Cost functions for global routing: The cost of the edge between
the two nodes in the GR-Graph represents the measure of congestion
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Algorithm GRout e(n;j)  /* Steiner-tree approx. global routing using re-
peated application of Dijstra’s shortest path based on a “distance™ metric
or cost that includes: a weighted sum of: (1) net length, (2) channel con-
gestion and (3) a measure of bumping probability of existing nets by the

detailed router */
Begin

Sort pins of n; by Manhattan distance to center of BBox;
for(py and p2) [* first and second pins */
Make bounding box, BBox(p1,p2) ;
MinCostPath(p1, p2) ; /* Dijstra’s shortest path algo. in BBox

(p1,p2) */ _
Mark nodes on path as sink (=s) ;

endfor

q < center(p1,p2) ; I* q is the new center of BBox™*/

forp«+ 2to Py I* Py is total number of pins */
Make bounding box,BBox(p,q);  /* From previous center to the cur-
rent pin */
MinCostPath(p,s);  /*from p to one of the sinks(=s) */
Mark all nodes on path as sink (=s) ;
q < center(p,q) ;

endfor

End

Figure 4: Steiner tree heuristic for global routing.

in that channel. Also, each SBox and hence the node has a basecost.
This takes care of the net length, more nodes on the path implies a
longer net and hence higher cost . The congestion in a channel is
captured by the resource usage in the SBox of that channel, which is
basically the number of switches used in the SBox.

We have used two cost functions. gcostl is used for the routing
scheme which includes only global and detailed routing.

gcostl = a - base_cost + B - s_box (@))

where a and 3 are the weighting factors for net length, channel con-
gestion respectively.

The global routing cost for B&R is different from the one given in
Eqn. 1. Here we also estimate possible net bumping cost that may be
incurred later by the detailed router:

geost2 = o -base.cost +B-shox +y- ¥ (netlength) ()

The third term in Eqn. 2 is the total length BP%e net in that SBox,
which captures the global bumping cost—it is easier in general to find
converging T-DAGs by bumping shorter nets than longer ones.

3.2 Detailed Routing

After the global router assigns channels (or SBox’s) to the net to
be routed, detailed routing is done. The objective of the detailed rout-
ing is to do a feasible assignment of tracks and switches for the net,
with minimum utilization of routing resources (tracks in channel and
switches in SBox).

The general SBox model that we use is one in which smaller
switches within a SBox are shareable between various Ty — Tj in-
terconnections (as opposed to being dedicated to specific intercon-
nections) with only one connection being able to use a switch at any
time. Thus a switch resource cost (= the number of switches used) is

Algorithm DRout e(n;)
Begin
1  for each branch Br of GTree /* GTree is the channel Steiner tree
returned by GRoute */
2 if( Br is the first branch of GTree)
3 MinCostPath(pi, pj); /*pi,pj are pin nodes on the first
branch of GTree*/

4 if MinCostPath(p;, pj) bumps existing nets

5 Get bumped subnets in set B;

6 endif

7 else begin

8 Let Br = (px,S), where py is a pin node and S a SBox determined
as the Steiner point for Br by GRoute;

9 Mark all switches in SBox S used by the detailed route created so
far for n; as s /* potential sinks for connection to py */

10 MinCostPath(p,s); /*min. cost path from pin node py to any
switch node s which is marked.*/

11 if Min_Cost_Path bumps existing nets then

12 Get bumped subnets in set B;

13 endelse

14 endfor

15 for each subnet s; € B /* the bumped subnets */

16 B&R(s;) ; /* use the B&R algorithm described in Fig. 9 */

End

Figure 5: Algorithm for detailed routing with possible bumping of
existing nets.

incurred whenever a specific T — Tj connection is made via a SBox.
Just like in track segment assignments, it is also possible to bump into
other nets if a particular T — Tj connection for a net ny uses a switch
currently occupied by another net ny; in such cases besides the switch
resource cost, a bumping cost (see Eqn. 3) below is also incurred.
This bumping of n; also needs to be resolved in a manner similar to
the bumping of a net from a track segment; the integrated bump-and-
refit for both types of net bumping is solved by Algorithm B&R given
later in Fig. 9. The model can also be extended to SBox’s with some
or all dedicated switches used to make only specific T — Tj con-
nections by not having any resource cost associated with the use of
such switches. This SBox model is general enough to capture SBox’s
found in commercial FPGAs such as ORCA, Virtex and Virtex-II;
parameters such as switch resource cost and bumping cost within an
SBox will need to be appropriately instantiated to apply to a specific
FPGA.

Figure 6 shows a specific type of SBox that is similar to one
used in the ORCA, and which follows the general SBox model. The
switches in the ORCA are not dedicated and can be used to connect
in either the vertical or horizontal direction. Hence there is a cost as-
sociated with their usage. A SBox is modeled as a connection graph
called the detailed routing graph DR-Graph. The switches of a SBox
are nodes in the DR-Graph. Two switches that can be directly con-
nected (electrically), have an edge between them. A track is also
modeled as a node (called segment node) in the DR-Graph which has
an edge to all switches of the SBox on that track. A segment node is
used to enter and leave the the SBox. Also the pins of a PLB have
equivalent pin nodes in the DR-Graph. In Fig. 6(a) switch 1 is a seg-
ment node of the left SBox on track T,. It has an edge to switches 4
and 7, on track T» in the same SBox. If the two SBox’s are connected
in the GR-Graph then the corresponding segment nodes (which is the
same track) are also connected in the DR-Graph. In Fig. 6(a)&(b)
segment nodes 1 and 8 correspond to the same track T,); hence they
are adjacent in the DR-Graph. In Fig. 6(b) node 8 has edges to both
switch nodes 11 and 14, since a net on the track segment correspond-
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Figure 6: (a) Internals of a SBox showing switches. The switch box
is similar to the one in the ORCA FPGA. (b) Connection graph of
switches (DR Graph) used in detailed routing.

ing to node 8 can connect to the track segment to its right via switch
node 14 and bypassing switch node 11; thus another net can use node
11 to make a vertical connection.

In Algorithm DRoute, Detailed routing is performed in the order
in which the corresponding branches were created in the global rout-
ing tree (GTree); see Fig. 5.

Cost function for detailed routing:  The cost of a switch node sw;
in DR-Graph for detailed routing is given by

dcost(sw;) = a - sw_base_cost + 3 - netlength(sw; ) 3

where a and 3 are weighting factors. sw_base_cos is used to mini-
mizes the number of switches and hence optimize the resource usage
in SBox and netlength(sw;) is the length of the net, if any, which is
currently using switch sw;; it thus represents the “bumping cost” for
any new net that needs to use an occupied switch.
3.3 Detailed Routing with Bump and Refit

Figure 5 describes our detailed router DRoute that incorporates
B&R when a non-bumping path does not exist for the net in ques-
tion. If B is made much larger than o in Eqn. 3, it is clear that DRoute
would choose a non-bumping solution if one exists in the channels al-
located by the global router?. The horizontal channel in the it" routing
row is denoted by H; and a vertical channel in the jt routing column
is denoted by V;. Sometimes the routing resources are not available
in those channels to complete a valid route; see Fig. 8(b). In Fig. 8(a)
n; needs to be to be rerouted and connected to PLB C;. The global
router allocates channel H; for the reroute. In Fig. 8(b) net ng occu-
pies track T, in channel Hy from V> to V3. Net ny occupies track Ty
in channels Hy from V4, to V3 and net n3 occupies track Tp in channel
H; from Vj to V4. There are no routing resources available for net ny
to connect from PLB A; to C;. Hence the detailed router fails to find
a valid route. However, if we bump ng4 to track To, track T in channel

2Though this is not necessarily desirable as longer switch routes within
SBox’s (this, however, does not contribute significantly to any net length in-
crease, but increases resource usage and net delays) may be chosen to avoid
bumping, while a bumping solution may be able to rearrange the nets so that
each uses near-minimum switch routes.
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H, is vacated for n;. Hence a valid route from PLB A; to PLB Cy is
created for net ny; see Fig. 8(c).

A Contiguity graph (CG) of a net is the connection graph of sub-
nets. Each subnet is a node in the graph. The subnets which are
adjacent in the layout have an edge between them in CG. The adja-
cent subnets are electrically connected. The concept of overlap graph
is defined similar to definition in Sec. 2 [4] with a subnet being a node
in the graph instead of a net.

Figure 7 shows an example of circuit routing and how the OG
and CG are created. Subnet n;.s; is connected to subnet n;.s, (see
Fig. 7(a)), and hence their corresponding nodes have an edge in the
CG; see Fig. 7(b). Subnet n1.s; and ny.s1 share a channel in the FPGA
(see Fig. 7(a)), and hence their corresponding nodes have an edge in
the OG,; see Fig. 7(c) .

3.4 The B&R Algorithm

The detailed router may not always find a non-bumping path for
the net which needs to be rerouted due to ECO. We call this net an
R-net. The R-net bumps out the the nets occupying routing resources
it needs; these nets are called o-nets. The subnets of the o-nets which
occupy the routing resources of R-net are called o-subnet. The o-
subnets have to make a transition to a different track. The formal
description of the algorithm is give in Fig. 9

We have developed two methodologies for performing B&R:
subnet B&Rand subsec_B&R. In the subnet -B&R methodology
we bump only the O-subnets of the O-net. The cost of bumping a sub-
net s from track Tj to Tj is given by equation 4.

bumpcost (s" i) = length of subnet on Tj bumped by s. ~ (4)

In equation 4 since sis a subnet, it may bump at most one subnet
of another net.
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Figure 8: (a) PLB B, is faulty, net ny needs to be rerouted. (b)
Detailed router is unable to route through the channels allocated by
global router (c) Net ng is bumped to track To and net ny can connect
to Cq.

This bumping cost is similar in concept to the one described in
Sec. 2 [4]. The subnets contiguous to o-subnets remain in their own
track. and maintain electrical connection to o-subnets via switches of
the SBox. This may require some extra switch usage of the SBox.
If the switches are not available then the nets occupying them are
bumped out.

The subsec_B&R methodology was designed to reduce the extra
switch usage in the SBox to maintain electrical connection between
contiguous subnets of o-net. In this methodology we compute the
optimal subsection of the o-net to be perturbed. The optimal subsec-
tion includes the o-subnets and maybe some other subnets of o-net.
To compute the optimal subsection we calculate the minimum cost of
transition of subnets to be perturbed. Cost of transition of subnet s; to
any track Ty is the sum of bumping cost and the cost to connect to all
subnets adjacent to it in its CG.

In Fig. 10 subnet x" is the o-subnet and subnets y'» and z" are
subnets adjacent x in the CG. The computation of minimum cost of
transition (dynamcost(x"=Ti)) for a generic subnet x from track T; to
track Tj is given by:

dynamcost (x = T1) = min [SBoxY (T} — Tq) +dynameost *(y™» = Ta)] -
q
min [SBoX%(Tj — Tk) + dynamcost (2"~ Tk)] 4 bumpcost (x" ~Ti)
k

In the above dynamic programming formulation the subnet@
moves to track T; so the subnets y and z should make a transition
to connect to x on track Tj. If y makes a transition to track Tg, it
incurs a SBox connection cost SBox¥(T; — Tq) since there needs
to be a connection from track T; to Tq in that SBox and a transi-
tion cost from track T, to T (dynamcost*(y™»=Ta) ). In computing

Algorithm B&R(s;)

Begin

1  TranSet = MinCostCalc(sj);  /* cost-ordered transition set of sub-
nets (including s;) of the net n; containing s; */

2 forj<« Otot—1/*tis the total tracks */

I*s; is the bumped subnet */

3 ChildList = GetChildList(TranSet[j]); /* set of subnets occupy-
ing the new tracks of subnets of n, that are chosen for movement in
TranSet[j] */

4 if(ChildList == NULL) [*there is no bumping */

5 DoUpdates(TranSet[j]); * update OG and CG */

6 return success; [*Converging transition set found for s; */

7 endif

8 else begin

9 if any child is an ancestor /* this leads to a cycle */

10 break;  /* take next best transition */

11 DoUpdates(TranSet[j]); /* update OG and CG */

12 numsuccess = 0; /*keep track of number of successful T-DAGs */

13 for each C € ChildList

14 ReturnFlag = B&R(C)

15 if( ReturnFlag == Fail) break;

16 else numsuccess++;

17 endelse

18 if(numsuccess == |ChildList| ) /* converging T-DAG for all children

found */

19 return success;

20 endfor

21 ReturnFlag = Subnet_B&R(s;); /* Subsec_B&R has failed. Use the sim-
pler version Subnet_B&R(s;) that bumps only those subnets of bumped
nets that are bumped by the newly routed net or by other bumped subnets

*
22 return ReturnFlag;
End

Figure 9: Bump and refit algorithm to find a converging transition set.

dynamcost—(y"™»Ta the subnet x which is ancestor of y is not consid-
ered adjacent to y. The dynamcost computation for a node terminates
when all nodes adjacent to it in its CG are its ancestors in the com-
putation tree. SBox¥(T; — Tg) is the minimum cost path within the
SBox computed by function MinCostPath to make the T; — Tq con-
nection (see Fig. 5), where the cost of each node in the SBox is given
by equation 3.

Using the recursive function dynamcost of Eqn. 5, Algorithm
M nCost Cal ¢ (Fig. 11) computes an array of the t best transition
patterns of all subnets of a net n;, given that a particular subnet s of
n; has been bumped.

We next establish the optimality of the M nCost Cal c algorithm.

Theorem 1 Algorithm M nCost Cal c¢ (Fig. 11) for an o-subnet of a
net n;j returns an optimal subsection solution with respect to the cost

Bumped subnet
\

SBox X%

T =T
Switchboxes
Figure 10: Subnet X is bumped which is initially on track T;. Sub-

nets Y and Z are adjacent to X in its CG. SBoxX is the switch box
connecting adjacent channels on which subnet X and subnet Y lie.



Algorithm M nCost Cal c(s;)
Begin

for Tj - Oto t — 1 ;Tj # Teurr
number of tracks */

dynamcost( siTC“"HT" ); I* see Eqn. 5 */

TranSet[j] = dynamcost ( siTc“"HT"; I*store the track-set for a transition in
an array*/

endfor

sort(TranSet) /* sort the TranSet array in increasing order of cost */
return (TranSet)

End

[*Teurr is current track of sj. t is total

Figure 11: Algorithm to calculate the minimum cost subsection of the
bumped net to be perturbed.

metric used in Eqn. 5. Further, the time complexity of M nCost -
Cal ¢ is O(st®logt), where s is the number of subnets of nj and t the
number of tracks in a channel.

Proof: Let x be an o-subnet of net nj and y € adj(x) in nj’s CG. For
each transition Tj of x, where Tj # current track of x, dynamcost re-
cursively computes the min-cost transition for each y which includes
the SBox connection cost to x'i. Since a net route is a tree (it has no
cycles), the transition costs of each y is independent of the transition
of its parent x in the dynamic programming computation tree, i.e., in
Eqn. 5, dynamcost=*(y™»—Ta), for e.g., is independent of the track T;
to which x transits. Thus the transition costs of the y’s to different
tracks Tq can be computed once and then added to the appropriate
SBox¥(T; — Tg) to compute the minimum cost subnet to track as-
signments of y and all its “children” subnets in the computation tree
to remain connected to x, when X transits to Tj.

The minimum transition cost of xTi is then the sum of minimum
transition cost of all y’s plus the bumpcost(xTi) (again, the transi-
tions of each y and their children subnets in the computation tree are
independent of the other y’s and their children subnets). This is ex-
actly the cost computed in dynamcost(xi~Ti) in Eqn. 5. M nCost -
Cal ¢ then orders by increasing cost all the t — 1 dynamcost(x"i=Ti)
transition costs of the o-subnet x; it thus returns an optimal solution
as the first cost in the returned cost array.

Since there are O(t) switches and connections in a SBox (and
thus in its DGraph), each SBox¥(T; — Tq) cost can be computed
in ©(tlogt) time, using Dijstra’s shortest path algorithm [3] and
thus the minyr, [SBox¥(T; — Tq) + dynamcost™(y'»~Ta)] computa-
tion takes ©(t2logt) plus the time to compute dynamcost % (y™»=Ta).,
Since there are a constant number of subnets y € adj(x), the
computation of Eqn. 5 takes ©(t?logt) plus the time to compute
dynamcost%(y™=Ta) over all y € adj(x).

Further, over all possible t — 1 transitions of x it takes
M nCost Cal a time of O(t3logt) plus the time to compute
dynamcost—%(y"™Ta) over all y’s; note that the dynamcost = (y"»—Ta)
computation needs to be done only once irrespective if the transitions
of x. At a leaf subnet u in the computation tree, it takes ©(t) time to
compute the bumpcost of this subnet to t — 1 possible tracks, and this
is the only computation involved in dynamcost ™ (u'»=Ta) over all Tg,
where v is u’s parent in the computation tree. If there are k subnets
among ayand all its children, then in the worst case (when the subtree
rooted at y is a path), it will take O(t + (k— 1)t3logt = O(kt3logt)
time to compute dynamcost—*(y'»—Ta) over all Tg. Since the sum of
all such k’s over all y’s, y € adj(x), is s— 1, M nCost Cal ¢ has a
complexity of O(st3logt). O

InFig. 12 ny.s; is the o-subnet which needs to move out from track
T, in order to route n, to connect to pin p; of PLB C1 via the switch
being currently occupied by n;.s,. If n;.s, alone moves to track Ty
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Figure 12: Net ny needs to be reouted and connect to pin py of PLB
Cy; subnet ny.sp occupies the track and switch required by net ny. (b)
The final routing.

it will bump n3.sl in order to connect to ny.s; (T1 — T connection)
via the switches used by n3.sl; this incurs a high SBox cost. If n1.s,
moves to track Ty it will also similarly incur a high SBox to connect
track Tg to T,. If both ny.s, and nq.s; are moved to track Tp, then
they do not bump into any other net either on Tp or on any switches
needed maintain connection between them; hence a low SBox cost is
realized. We also see from Fig. 12(a) that if ny.s3 makes a transition
to track T, or Tp it bumps into net ng or ns, respectively, resulting in
a high bumping cost. If n;.s3 remains at its current track, it neither
bumps into any net nor incurs a high switching cost to maintain con-
nection to ny.s; if the latter moves to Tp; see Fig. 12(b). Hence n1.s,
and np.s; is the optimal subsection to bump, and is returned as the
min-cost transition by MinCostCal (Fig. 11).

4 Experimental Results

Our B&R incremental routers were tested on Lucent’s ORCA-2C
FPGA, which has a 10 x 10 PLB array. In our current implementa-
tions we only use track segments of unit length. The input to our soft-
ware are placed and routed circuits created using Lucent’s graphical
tools. Nets spanning the range from local to global were created—
within the 10 x 10 PLB array, net lengths ranged from two (local) to
23 (global) spanned PLBs, with the average net length being 7 across
all circuits. The experiments were performed on 550MHz Pentium-
Il Linux and 167 MHz Sun Ultra 1 Solaris machines. Our initial
simulations on B&R, A PARand Ri p- up&Rer out e where done on
the Ultra 1 machine. We then migrated to Pentium-I11 machine for
later versions of B&R ; A_PAR, however, does not run on Linux, and
so based on the B&R and Ri p- up&Rer out e run times on the two
machines, we obtained the speed ratio and scaled the A_PARrun time
to the Pentium-I11 equivalent time. In Table 1 we report the CPU time
for the Pentium-111 machine (among other parameters). To simulate
ECO, we randomly removed 5%, 10% and 15% of the original nets,
and added the same percentage of new nets with the same number
of pins but with random pin positions. The metrics of interest for



Circuit PLBs Nets || A_PAR % New Nets Standard Rip-up& Reroute Subnet B&R Subsec_B& R
time Avg. time Avg. time Ripped-Up Avg. time Avg. time
(msec.) len (msec.) len (msec) % Alength len. (msec) len (msec.)

123.ncl 80 83 1200 5 8.8 74 8.8 70 - 8.8 38 8.8 51
10 9.5 110 9.18 90 +12.75 9.8 60 9.05 80

15 9.2 160 8.95 131 +15.75 9.3 110 9.1 120
Eco-Bist2 66 42 550 5 8.1 20 8.1 20 8.1 20 8.1 20
10 9.4 45 8.87 48 - 9.1 37 8.7 39
15 8.28 59 8.25 67 -3.1 8.22 52 8.15 57
Eco-Big 79 66 1230 5 8.7 50 8.6 48 - 8.6 49 8.6 43
10 8.6 108 8.2 110 +4 85 98 8.4 96

15 9.4 146 8.71 142 +11 8.8 120 8.69 129
Eco-Bist4 67 47 770 5 7.8 57 7.8 54 - 7.8 51 7.8 51
10 10.1 90 9.7 83 +7 9.67 30 9.97 27
15 10.8 101 8.9 98 +30 9.36 42 9.06 46
Eco-Big2 80 84 1380 5 8.6 58 8.4 57 - 8.4 37 85 41
10 9.7 108 9.41 101 +20 9.45 54 8.97 63

15 10.6 145 8.93 131 +14.5 9.31 88 8.14 108

Average 5 8.4 51.8 8.34 49.8 - 8.34 39 8.36 41.2
10 9.46 92.2 9.07 86.4 +8.75 9.3 55.8 9.01 61
15 9.65 122.2 8.75 113 +13.6 9.0 82.4 8.74 92

Table 1: ECO routing was simulated for 20 runs in each case. A_PAR is the time taken by ORCA’s auto-place and route tool to do complete
routing. The Avg.length is the average length of the net to be rerouted. Ripped-Up %Alength is the change in the length of bumped nets in

Ri p- up&Rerout e

incremental rerouting for ECO applications are run time, length and
delay of rerouted nets and change in the electrical properties (like
power and delay) of the circuit. The aim of any incremental router
should be to have minimal effect on the rest of the nets and hence
minimally affect the electrical properties of the non-ECO portion of
the circuit. We compared the two versions of the B&R algorithm to
the two prior techniques St andar d [5]and Ri p-up & Reroute
[2] implemented by us. All the incremental routing techniques that
we experimented with have global and detailed routing phases. In
St andar d, if the detailed router is unsuccessful, the bounding box
for the global router is increased. In the Ri p- up&Rer out e, if
the detailed router is unsuccessful, the existing nets occupying the
needed routing resources are ripped up and rerouted using global and
detailed routing. The nets ripped up are exactly those that the de-
tailed router bumps; we use a similar detailed router as in the B&R
approach. This provides very specific information on which nets to
Ri p- up&Rer out e which is an advantage to it.
From Table 1 we can summarize the following results:

e The Subnet B&R methodology is the fastest. It is nearly
30% faster than St andar d and nearly 27% faster than Ri p-
up&Rer out e for the 15% new net case. The Subsec _B&R
method is nearly 25% faster than St andar d and nearly 18%
faster than Ri p- up&Rer out e for the above case.

e The Subsec_B&R methodology produces the best solution
quality. The average length of the new nets is nearly 12%
smaller than St andar d for the 15% new net case.

e The average length of the new nets is almost same for the
Subsec_B&R and Ri p- up&Rer out e. However, in Ri p-
up&Rer out e. the average length of the ripped-up (bumped)
nets increased by 13% for the 15% new net case and and by
8% for the 10% new net case. In both the B&R techniques, the
length of the existing bumped nets do not change, a very signif-
icant advantage.

e As expected, the Subnet B&R is on the average 10% faster
than Subsec_B&R , but the length of the rerouted nets
in Subsec_B&R is nearly 3% smaller than that of Sub-
net _B&R.

e Our incremental routers are nearly 10 to 20 times faster than
Lucents auto-place and route A_PAR when used in complete re-
routing framework.

5 Conclusions and Future Work

The B&R approach of [4] proposed in the context of simple net
extensions for fault tolerance was significantly extended and new con-
cepts like bumping costs during global routing, and optimal bumping
subsets of nets were developed in this paper to realize a novel in-
cremental routing technique for ECO applications in FPGAs. Our
incremental routers are nearly 27% faster and nearly 10% shorter in
terms of net length than other proposed incremental routing methods.
Further, our incremental routers do not change the lengths or topolo-
gies of non-ECO nets, and hence has minimal effect on the electrical
properties of the non-ECO parts of the circuit. Our new B&R routers
thus offer significant advantages in almost all metrics of interest to
incremental routing. Our experiments also establish the importance
of incremental rerouting over complete rerouting.

In future work we will incorporate all types of track segments and
incorporate timing-driven aspects in the B&R process. We will also
extend this work to regular VLSI chips.
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