
A Router for Symmetrical FPGAs
based on Exact Routing Density Evaluation

Nak-Woong Eum
Electronics & Telecom. Research Institute

Taejon KOREA

Taewhan Kim Chong-Min Kyung
Dept. of EECS, KAIST

Taejon KOREA

Abstract

This paper presents a new performance and routability driven rout-
ing algorithm for symmetrical array based field-programmable gate
arrays (FPGAs). A key contribution of our work is to overcome
one essential limitation of the previous routing algorithms: inac-
curate estimations of routing densitywhich were too general for
symmetrical FPGAs. To this end, we derive an exact routing den-
sity calculationthat is based on a precise analysis of the structure
(switch block) of symmetrical FPGAs, and utilize it consistently in
global and detailed routings. With an introduction of the proposed
accurate routing metrics, we design a new routing algorithm called
a cost-effective net-decomposition based routingwhich is fast, and
yet produces remarkable routing results in terms of both routabil-
ity and path/net delays. We performed an extensive experiment to
show the effectiveness of our algorithm based on the proposed cost
metrics.

1 Introduction

Due to the low manufacturing cost and time, the FPGA (field-
programmable gate array) has become the most popular ASIC for
fast system prototyping. The symmetrical array architecture is one
of the most widely used classes of FPGA architectures [1]. The ar-
chitecture consists of two-dimensional (2-D) arrays of configurable
logic blocks (CLBs), rows and columns of routing channels, and
programmable switch blocks. Each CLB has a look-up table (LUT),
which allows to implement any Boolean function constrained by the
number of inputs. Routing channels are predefined wire segments
of variable length. Switching blocks are programmable to make
connections between the wire segments and CLB pins.

Many routing approaches for symmetrical FPGA have been pro-
posed over the past several years. [2] decomposed each net into
a set of two terminal nets, and routed them in minimum distance
paths. The objective is to distribute the wires among the chan-
nels such that the maximum channel density is minimized. [3]
proposed Steiner spanning-tree based routing approach (called a
negative reinforcement method) to overcome the sequential routing
of two-terminal nets. SEGA [4] tried to route critical nets first so
that long connections do not suffer long propagation delay through
multiple programmable switches. GBP [5] formulated the rout-
ing problem into the two-dimensional interval packing problem.
It uses two greedy algorithms iteratively to pack the nets into the
tracks. IKMB [6] modeled interconnection resources as a graph,
and constructed routing trees for the nets by the repeated applica-
tions of a Steiner-tree generation algorithm. [7, 8] proposed a new
routing approach for 2-D FPGA/FPIC in which the main focus is
to minimize the channel density to improve the routability of the
designs. TRACER-fpga [10] and TRACER-fpga PR [11] initially
routed nets sequentially according to their criticalities and routabili-
ties. The nets/paths violating the routing resources are then resolved
iteratively by employing simulated evolution based optimization
technique. The difference between TRACER-fpga and TRACER-

fpga PR is in their cost formulations to be used to serialize the nets
to route. Until now, TRACER-fpga and TRACER-fpga PR have
reported the best routing results in terms of nets/path delays and
routability. However, one of their drawbacks is a very excessive ex-
ecution time, which is mainly because of the full application of the
multiple component growth wave expansion algorithm [9] to find
approximations of the Steiner trees, and the increased complexity
of representing a grid graph in the one-step (i.e., combined global
and detailed) routing strategy.1

In this paper, we present a new performance and routability
driven routing algorithm for symmetrical array based FPGAs. One
key feature of our approach is to overcome one critical limitation of
the previous works, namely, inaccurate routing density estimations.

The existing routing algorithms use the “routing density” as the
measure of the routability in (global) routing. However, the rout-
ing density reflects the degree of net-congestions at the connection
blocks of symmetrical FPGA only, and does not take into account
the net-congestions at the switch blocks properly.2 Consequently,
this leads to routing solutions with a sub-optimal use of routing
resources in the switch blocks. Clearly, maximally utilizing the
routing resources in the switch blocks as well as in the connection
blocks is a key for achieving an optimal routing result in terms of
path/net delay and routability. For this reason, we analyze the inter-
connection structure of symmetrical FPGA and derive highly reli-
able cost metrics which not only take into account net-congestions
at the connection blocks but also at the switch blocks. We then
design a new routing algorithm to utilize the cost metrics more ef-
fectively. Our goal for designing a new routing algorithm is to pro-
duce more efficient routing solutions in terms of net/path delays
and routability while does not spend a long execution time. To this
end, we develop a new routing technique, called a cost-effective
net-decomposition based routing. The basic idea of the technique
is essentially drawn from the concept of divide-and-conquer which
decomposes an n-terminal net into a set of 2-terminal subnets (us-
ing minimum-distance spanning tree), and routes them sequentially,
one at a time. However, we employ a more predictive way of find-
ing a minimum-distance spanning tree by estimating the routing
density of every point-to-point path in a net with a full considera-
tions of the switch resources. We have conducted a series of experi-
ments to demonstrate the strength of the proposed routing algorithm
(will be shown in Sec. 4.).

2 Routing Density for Symmetrical FPGA

2.1 Routing Architecture

Figure 1(a) depicts the architecture of a typical symmetrical FPGA.
It consists of three types of components: configurable logic blocks

1Note that when the number of tracks is W , one-step routing strategy
using a wavefront expansion method requires W2 times more grid points
than that of two-step (global and detailed) routing strategy.

2See Figure 1 for the connection resources in symmetric FPGA.

(CLBs), configurable I/O blocks (IOBs), and interconnection re-
sources. As shown in Figure 1(b), the interconnection resources
consist of wiring segments and switch points which are organized
into vertical and horizontal routing channels. A wire segment (i.e.,
track) is connected between CLB pins and switch points in the con-
nection and switch blocks. Figures 2(a) and (b) show the pro-
grammable switches in the switch points of the connection and
switch blocks, respectively.

According to [12], it is shown empirically that a reasonable flex-
ibility of routing resources is achieved when the connection blocks
are fully flexible (i.e.,Fc =W whereW is the number of tracks per
channel) and the flexibility of switch blocks is three (i.e., Fs = 3).
Consequently, the routing architecture we are considering is the one
shown in Figure 1(b) and Figure 2 in which Fc = W , Fs = 3, and
all wire-segments are single-length segments.

I1 I2
clk

OUT

OE

I3

I4

(a) Chip floorplan

(b) Interconnection structure
CLB

I/O block interconnection resources

switch block

wire segment

switch point

connection block

CLB

Figure 1: The architecture of symmetrical FPGA.

switch point
programmable switch switch point

programmable switch

(a) Switch in a connection block (b) Switches in a switch block

Figure 2: Programmable switches in switch points.

2.2 Classification of Routing Patterns

We classify all possible routing paths around a switch point in a
switch block into four classes of routing patterns shown in Figure 3.
Routing pattern R1 and R2 interconnect two wire segments in hori-
zontal and vertical directions using one (programmable) switch, re-
spectively. Note that R1 and R2 can be implemented with a single
switch point. Each of routing patterns R3, R4, R5 and R6 in Class
2 use only one diagonal switch to interconnect a vertical (or hori-
zontal) wire segment to a horizontal (or vertical) segment. Thus, R3

and R4 can be implemented with the same switch point, and also
R5 and R6 can be implemented with the same switch point. How-
ever, any of routing patterns R7, � � �, R11 in Class 3, each of which
connects three or four wire segments, can share a switch point with
none of the routing patterns in Classes 1, 2 and 3.

Finally, routing patterns R12, R13, R14 and R15 in Class 4 do
not require (programmable) switch at all, but occupy a single wire
segment. The wire segment is used by a net connected to a pin of
logic blocks next to the switch block to route via another switch
blocks. Consequently, the routing patterns in Class 4 can share a
switch point with some of the routing patterns in Classes 1, 2, 3
and 4. For example, R12 can share a switch point with R2, R4,
R6, R10, R13, R14 and R15. Table 1 summarizes such switch point
sharing with respect to the routing patterns in Class 4.

Now, suppose we have a global (intermediate) FPGA routing so-
lution for a design. That is, a set of routing patterns in every switch
block is known. Then, what we want to know (estimate) is the min-
imum number of tracks required for each switch blockto route the
routing patterns, which has not been well studied in the previous
works. The next subsection provide the details on this.

R1

R R RR12 13 14 15

R2

R R R R3 4 5 6

R R R R R7 8 9 10 11

(b) Class 2: types of knock-knee (sharable)

(a) Class 1: types for crossover (sharable) (c) Class 3: type for other routes (non-sharable)

(d) Class 4: type for non-switch routes (sharable)

Figure 3: Classes of routing patterns on a switch point in Fig-
ure 2(b).

switch block sharing patterns
patterns Class 1 Class 2 Class 3 Class 4

R12 R2 R4 , R6 R10 R13 , R14 , R15

R13 R2 R3 , R5 R8 R12 , R14 , R15

R14 R1 R4 , R5 R7 R12 , R13 , R15

R15 R1 R3 , R6 R9 R12 , R13 , R14

Table 1: Switch point sharing patterns withR12,R13, R14 and R15.

2.3 Exact Calculation of Routing Density

In the conventional routers, the term “routing density” refers to the
density at the connection blocks only. Since a track in a connection
block cannot be shared among the nets, the routing density is simply
equal to the number of nets that are in the block.

However, as indicated in Sec. 2.2, the routing density at the
switch block is rather complex. We describe the exact calculation of
routing density in two steps: (1) formulating the density calculation
using the routing patterns in Classes 1, 2 and 3, and (2) complet-
ing the formulation incorporating the routing patterns in Class 4.
Let ri(k) (i=1, � � �,15) be the number of nets (i.e., routing path) of
routing pattern Ri in switch block k.

Loose routing density: This is the case when r12 = r13 = r14 = r15

= 0. We formulate the routing density at switch block k in terms of
the numbers of r1, � � �, and r11. Let ds(k) be the routing density at
switch block k. Then,

ds(k) =

11X

i=1

ri(k)�min track(k): (1)

where min track(k) = min(r1(k); r2(k)) + min(r3(k); r4(k))

+ min(r5(k); r6(k)).
That is, ds(k) is the the number of tracks to be used by the nets

in switch block k when a maximal sharing of tracks among the nets
is assumed.

From the fact that there is no possibility of track sharing among
the nets in the connection blocks, when dc(j) denote the routing
density at connection block j, dc(j) is expressed as

dc(j) = # of nets in connection block j: (2)
Let Dc be the maximum of dc(�) values over all connection

blocks, Ds be the maximum of ds(�) values over all switch blocks,
and let

D = max(Dc; Ds) (3)

D is the maximum value among all the routing densities at the
connection and switch blocks. We refer to D as the maximum den-
sity, which indicates the minimum number of tracks required for all
nets to be routed successfully. Note that for an incremental change
to the global routing, we can update the D value in a constant time.

For example, Figure 4(a) shows three nets on the routing region.
It is shown that at least three tracks are needed for the nets. Fig-
ure 4(b) shows the calculation of the routing densities by the con-
ventional and proposed metrics. Since the traditional metric uses
the densities at the connection blocks only, the maximum density
(i.e., Dc) becomes 2. On the other hand, because the proposed met-
ric (i.e., D = max(Dc; Ds)) takes into account the densities at
the switch blocks as well, the maximum density becomes 3. This
example indicates that a reliable estimation of routing densities at
the switch blocks as well as at the connection blocks could be es-
sential to achieve routing results with both high routability and fast
performance of the designs.

 D = 2

c s D = max(D , D) = 3
Routing density by the proposed metric:

c D = 2

s D = 3: Switch block

: Connection block

(b)

Routing density by conventional metric:

5

(a)

3

2

 Q

 Q

 Q

Figure 4: An example of the routing density calculation by using
the conventional and proposed metrics.

Exact routing density: We now extend the formulation of ds(k)
to take into account the case when r12, r13, r14 and/or r15

are nonzero. We define �ri (i = 1,� � �,6) as follows: �r1=r1-
min(r1; r2), �r2=r2-min(r1; r2), �r3=r3-min(r3; r4), �r4=r4-
min(r3; r4), �r5=r5-min(r5; r6), and �r6=r6-min(r5; r6). In other
words, �r1 is the number of nets (i.e., routing paths) of routing pat-
tern R1 remained after the maximal sharing of the switch block
with nets of pattern R2. (�r2, � � �, �r6 also have similar meanings.)
Consequently, some of the nets of routing patterns in Class 4 can
be used if �ri is nonzero. Let �r12 be the number of nets of rout-
ing pattern R12 remained after the maximal sharing of tracks with
nets of other routing patterns, which can be expressed as �r12 =
f(r12; (�r2 + �r4 + �r6 + r10) where f(a; b) = a� b if a > b, and 0
otherwise, since each R12 net can share a track with the one corre-
sponding to �r2, �r4, �r6, or r10. (See Figure 3 and Table 1.) Similarly,
�r13 = f(r13; (�r2+ �r3+ �r5+ r8), �r14 = f(r14; (�r1+ �r4+ �r5+ r7),
and �r15 = f(r15; (�r1 + �r3 + �r6 + r9). Then, the density metric of
ds(j) which redefines the one in Eq.1is

ds(k) =

11X

i=1

ri(k)�min track(k) +max(�r12; �r13; �r14; �r15): (4)

3 The Routing Algorithms

Conventional physical design approaches divide the routing prob-
lem into two subproblems: global routingand detailed routing. The
main reason behind such decomposition is to reduce the problem
complexity. However, it is generally true that even solving each
subproblem alone is still a timing-consuming process. The essen-
tial idea of our routing algorithm is to exploit the fact that using an

accurate estimation of routing density helps pruning a significant
portion of the unnecessary search space. This can be done by fully
taking advantage of our cost metrics proposed in Sec. 2. The key is
how to make use of the cost metrics to fit into the context of global
and detailed routings without sacrificing the quality of results.

3.1 Global Routing

In global routing, we need to consider two issues: (1) measuring ac-
curately how much relatively hard (or competing) a net to route, and
(2) constructing an efficient routing tree for a net. The first corre-
sponds to the routing tree cost-estimation problem, based on which
the nets are ordered, and a sequence of routing tree construction is
performed according to that order, while the second corresponds to
the routing tree construction problemfor a net.

Routing tree cost-estimation problem: The problem is, given an
initial (global) routing result for all nets, to measure the degree of
difficulty in reconstructing a routing tree for a particular net. We
determine the measure based on two factors, the value ofD in Eq.3
and the amount of routing resources used. Clearly, it is desirable for
a route to have a small value of D to improve routability. Moreover,
to reduce the net/path delay the router must use as small number of
routing resources as possible, and further, use the routing resources
uniformly over the connection/switch blocks. Note that most of the
conventional global routing approaches try to minimize Dc only,
and/or never have taken into account the minimization of D and
the minimization (and evenly distribution) of routing resources to-
gether.

First, we measure the degree of routing difficulty in a single con-
nection/switch block. Let wc(j) and ws(k) be the measures in con-
nection block i and switch block j, respectively, and defined as

wc(j) = 2bp�L�dc(j)=Dc; ws(k) = 2bp�L�ds(k)=Dc (5)

where p (0 � p � 1) is a user defined control parameter. (L is
defined later.)
wc(j) and ws(k) are nonlinear cost functions. The discontin-

uous property of the function disables the router to be too much
sensitive to a little changes of routing densities. The control param-
eter p used at a connection/switch block controls the relative im-
portance between the degree of net congestion and the utilization of
routing resources in the corresponding block. Thus, by calculating
wc(�) and ws(�) with a fixed value of p for all the connection and
switch blocks, we can tell, among the blocks, which blocks are rel-
atively expensive to use in terms of the (weighted) net congestion
and routing resources. (The large value of p implies a relatively
more emphasis on the evenly distribution of congestion (i.e., the
minimization of D) than on the minimization of routing resources
to be used, and vice versa.)

The L is defined to be L = log2(Lh + Lv) where Lh and Lv

is the numbers of CLBs on the horizontal and vertical lines of the
corresponding FPGA device, respectively: Since 0 � dc(j)=D �

1 and 0 � ds(k)=D � 1, as dc(j)=D (or ds(k)=D) approaches to
1, the routing passing through the corresponding connection block
j (or switch block k) is very hard, most likely resulting in detouring
the block, in which the worst detouring length is bounded by Lh +
Lv , which is in fact the value of wc(j) (or ws(k)) in Eq.5 when
dc(j)=D = 1 (or ds(k)=D = 1).

Let Rc(ni) and Rs(ni) be the sets of connection and switch
blocks in the rectangular region bounded by the terminals of net ni,
respectively. Then, we use the following quantity as a measure of
the routing difficulty for net ni:

Route Crit(ni) =
X

j2Rc(ni)

wc(j) +
X

k2Rs(ni)

ws(k): (6)

The example in Figure 5 helps understanding how the quantity
of Route Crit(�) with different values of p reflects the trade-off

between the resource usage and the routing congestion. Figure 5(a)
shows a density configuration with the maximum density D=6 in
which a net (vi,vj) is to route. Figures 5(b), (c), and (d) show
the prediction of routing paths according to the relative emphasis
between the resource usage and routing congestion controlled by
the value of parameter p. The number shown in each of the switch
and control blocks represents the value of the corresponding w(�)

in Eq.5. Note that the predicted routing path in Figure 5(a) becomes
Pa, which longer in length (i.e., passing two more blocks) than an
alternative path, Pb. This is because routing the net (vi,vj) through
path Pa is very likely to be less congested than routing it through
Pb.

1 1 1

Pa Pa

3 1

6 1

3

i

j

1

1

Pa

(a) (b)

1 1 1

1

i

j

Pb

(c)

1

2 12

i

j

Pb

(d)

2

1

1

i
P

j

b

1 4 1 8 11

2

Figure 5: An example of illustrating the trade-off between resource
usage and congestion controlled by parameter p in Eq.5. (a) A den-
sity configuration with D = 6, (b) when p = 1=L:

P
w(�)=5

for Pa,
P

w(�)=3 for Pb, (c) when p = 2=L:
P

w(�)=7 for
Pa,
P

w(�)=6 for Pb, (d) when p = 3=L:
P

w(�)=7 for Pa,P
w(�)=10 for Pb.

Routing tree construction problem: Once the net ordering is com-
pleted according to the quantities of Route Crit(�), we now need
to create a routing tree for each net. The commonly used algo-
rithms for routing tree construction are the ones based on the classi-
cal maze routing [13]. Our proposed algorithm is also based on the
maze routing, but there is a fundamental difference in transforming
the original problem into a set of (simple) maze routing problems.

Let us first briefly review the concept of maze routing. In maze
routing, the topology of routing resources in symmetrical FPGA
is modeled as a grid region, in which each of the connection and
switch blocks corresponds to a distinct grid point in the grid region.
The terminals of a net have their physical locations of grid points,
which we call the initial grid points for the net. The initial grid
points are then expanded by adding them one more adjacent grid
point.

One inherent limitation of the maze routing is its high time com-
plexity. (i.e., the time complexity increases rapidly with respect
to both of the number of terminals in the net and the distance be-
tween the grid positions of the terminals.) Consequently, the key is-
sue in designing an efficient routing algorithm is how to determine
“the best” grid point to be included during each expansion. Our
approach (called a net-decomposition based routing algorithm), in
fact, uses the routing density metrics proposed in Sec. 2 effectively
to find out the best grid points to expand, and consists of two steps.

� Step g-1 (Construct a minimum-cost spanning tree): We
construct a complete graph G = (V;E) for a k-terminal net
where V is the set of the initial grid points and E is the set of
edges between the points. Each edge in E is assigned with a
cost (defined later). Then, we find a minimum-cost spanning
tree for G using Prim Algorithm [20]. We formulate the cost
of the edge interconnecting two initial points in a way to re-
flect how much making a route between the two points with
less congestion is easy.

We assign cost e costg(nij) to the edge of points i and j

where nij is a net with two terminals i and j(which is a subnet
of the k-terminal net), and the cost is defined as

e costg(nij) = (BLK(nij)=SIZE(nij)) � l(i; j) (7)

where BLK(nij) =
P

m2Rc(nij)
dc(m) +

P
m2Rs(nij)

ds(m),

SIZE(nij) = jRc(nij) + Rs(nij)j, l(i; j) is the Manhattan dis-
tance (in terms of the number of connection and switch
blocks) between i and j, and Rc(nij) and Rs(nij) are the
sets of connection blocks and switch blocks that are in the
rectangular region bounded by the points i and j, respectively.

The first term in the formulation of e costg(nij) represents
the average routing density in the region currently concerned
for the net to route, and the second term represents the scope
of the region. Clearly, as the value of e costg(nij) increases,
making a route between i and j is more likely to be hard, and
conversely.

� Step g-2 (Apply maze routing to the spanning tree): We ar-
range the edges in the spanning tree obtained in Step g-1 in
decreasing order according to the values of e costg(�), and
apply maze routing to the sorted edges one at a time, with the
most critical (i.e., the most hard to route) one first and the least
critical one last.

Note that our maze route is driven by the routing measures wc(�)

and ws(�) in Eq.5. Empirically, we found that the discretization of
the routing measures have played an important role in reducing the
number of bends on the routing path as illustrated in Figure 6. In
fact, the use of control parameter p and the discontinuous property
of the cost metrics enables our router to explore many alternative
(totally different) routing paths, as will be shown in Figure 13.

2.4

2.4

A
4.4 4.4 2.8 4.4

4.6

2.0

4.4

4.5

2.7 4.4 2.98.2 7.6

9.1

6.6

5.3 8.4

8.2

4.1

8.2

9.4

8.4

9.0

A
4.0 4.0 2.0 4.0

2.0

4.0

4.0 4.0 8.0

8.0

2.0

2.0

4.0 2.0 4.0

4.02.0

4.08.0

8.0 4.0

8.0

8.0

8.0

8.0

(a) A maze routing driven by density metric w(.) (b) A maze routing driven by density metric w (.)
 without discretization of density values: #bends=5. with discretization of density values: #bends=1.

2.4

B

2.0

B

2.0

4.1

2.8

3.7

2.8

2.0

4.0

2.0

Figure 6: The maze routing examples using our cost metrics wc(�)

and ws(�) in Eq.5without and with the discretization of cost values.

Our router starts from an initial routing solution or an estima-
tion of the routing distribution for nets. We use the probabilistical
concept, called net-existence, to estimate the routing distribution.3

Routing based on net-existence is widely used method for estimat-
ing routing distribution [14]; From the information of given termi-
nal positions of each net to be routed, we draw a bounding box that
covers the terminals, and then determine, for a particular block, a
probability that the net is routed passing through the block. By re-
peating this process for every net we obtain a probabilistic measure
of the degree of routing difficulty for each block. We then apply a
net-by-netmaze routing based on the measure to generate an initial
routing solution.

We calculate our basic metrics of routing densities, dc(�) and
ds(�), from which we compute the routing criticality measure
Route Crit(�) (Eq.7) for each net. Then, we reroute nets itera-
tively. We generate the k�1 most routability/performance efficient
edges from the graph corresponding to the net (i.e., Step g-1), and
apply maze routing to the edge one by one (i.e., Step g-2). The
iteration process repeats until there is no reduction on the Cost, in
which Cost used for determining the acceptance of the new route
is defined as

Cost = �1 �D + �2 � (tot:#bends) + �3 � (tot: wire length) (8)

3Also, it is possible to generate an initial routing solution by simply
applying any of greedy/random routing methods.

�1, �2 and �3 are weighting factors, �1 > �2 > �3, and D is the
maximal density defined in Sec. 2.

Once routing trees for nets are determined in the global routing,
a detailed routing which assigns routing resources to the nets in the
corresponding connection/switch blocks will be executed. We per-
form it in a sequence of three steps, as will be presented in Sec. 3.2.
Note that, for a given design, we apply our router iteratively by
changing the value of p in Eq.5 to explore the trade-off between
routability and speed performance. (An empirical results on the
effectiveness of p in our algorithm is shown in Figure 12.)

3.2 Detailed Routing

In this phase, the problem is to assign the nets in a connec-
tion/switch block to the routing resources (i.e, tracks and pro-
grammable switches) in a way to minimize the number of routing
resources used. The resource assignment can be modeled as a graph
coloring problem[5], in which the nodes represent nets and there is
an edge between two nodes if the corresponding nets cannot share
a track. Finding a minimum colors for the graph will determine the
minimum number of tracks to be used by the nets.

We may use any of the conventional detailed routing algorithms
for symmetrical FPGA. However, from the analysis of the route
types at a switch point shown in Figure 3, it is found that we can
utilize tracks more effectively if we can exploit the several pos-
sible ways of implementing (shown in Figure 3(c)) nets of types
R7 � � � ; R11 in Class 3.

The example in Figure 7 shows the effect of selecting the imple-
mentation of a net of type in Class 3 on the minimization of tracks
to be used. Figure 7(a) shows the case that net a, which has type
R8, is routed using a single switch pointwith the first implementa-
tion in Figure 3. On the other hand, Figure 7(b) shows the case that
net a is decomposed into two subnets d and e. This allows the pos-
sibility of using multiple switch pointsfor routing them, in which
their route implementations are determined in a way to minimize
the number of tracks used. Consequently, d is implemented with
type R2 and e is with type R3, which results in saving one track.

R
8

a

a

a
b

b

c

c

b

b

c

c

d/e

e
d

(a) Routing results considering one implementation
a for net with type (#tracks_used = 3)

(b) Routing results by decomposing net a into
two subnets d and e (#tracks_used = 2)

Figure 7: Effect of decomposing net of type R8 on the track utiliza-
tion.

Our proposed detailed routing algorithm will maximally exploit
such flexibility of implementing the nets of types R7 � � � ; R11 in
Class 3, and is composed of three steps.

� Step d-1 Decomposition step: This step is essentially a vari-
ant of the net-decomposition based routingtechnique pre-
sented in Sec. 3.1. It decomposes every k-terminal (k > 2)
net into a set of two-terminal nets. This allows the net to be
routed with any of the several possible implementations of
R1, � � �, R15, which otherwise, an implementation of type in
Class 3 is chosen. Let nij be the subnet that interconnects ter-
minals i and j of the k-terminal net. Then, the decomposition
is based on the following cost.

e costd(nij) = �1 �

X

m2Rs(nij)

�ds(m) + �2 � l(nij) (9)

where �ds(m) is the increment of routing density ds(m) at
the switch block m, and l(nij) is the number of wire segments
on the routing path (given by the global routing in Sec. 3.1)
between i and j. �1 and �2 are weighting factors, and �1 >>
�2.

The e costd(nij) is basically similar to the cost formula-
tion of e costg(nij) in Sec. 3.1. The difference is that
e costd(nij) considers the routing density at the switch
blocks only4 while e costg(nij) considers the routing den-
sity at both the switch and connection blocks. In the same
way to find a minimum-cost spanning tree in Step g-1 (using
e costg(nij) cost), we create a complete graph with nodes
representing terminals of the net and costs e costd(�) assigned
to the corresponding edges, and find a minimum-cost span-
ning tree for the graph. Then, the subnets corresponding to
the edges in the tree become the set of two-terminal nets.

However, if a net is timing critical, the net should be decom-
posed with an emphasis on the minimization of interconnec-
tion delay rather than the routability. For example, let us con-
sider a net with three terminals a, b (sink), s (source), and
edge cost e costd(:) between the pairs of terminals in Fig-
ure 8(a). If the net is not timing critical, it is decomposed
into two subnets (s; a) and (a; b), minimizing the total cost of
Eq.9, thereby creating the route shown in Figure 8(b) where
the dotted arrows indicate the delay paths of the net. On the
other hand, if the net is timing critical, it is decomposed in
a way to minimize the net delay for source to every sink,
resulting in the route shown in Figure 8(c). Obviously, the
routing delay from s to b in Figure 8(c) is shorter than that
in Figure 8(b) because the former uses one switch while the
latter uses two switches. In general, given a timing critical
k-terminal net, finding the shortest k-1 subnets whose routes
coincide with the signal flow originating from source to sink
can be done by breadth first search in O(k) time.

bs

a

bs

a

 s->b needs 1 switch.
(c) total_cost = 7, but path

(a) Signal flow of a net.

bs

a
e_cost(a,b)=3,
e_cost(s,a)=3

e_cost(s,b)=4.

 s->b needs 2 switches.
(b) total_cost = 6, but path

Figure 8: Decomposition of a timing critical net.

� Step d-2 Resource assignment step: We assign the subnets
obtained in the decomposition step to routing resources. The
objective is to minimize the number of tracks used at each of
connection/switch block. We use the efficient graph coloring
algorithm proposed in [15].

� Step d-3 Merging step: This step tries to merge the connec-

tions5 in different connection/switch blocks to maximize re-
source sharing. The sharing of tracks will lead to a reduction
in the number of switches used, which would then directly
contribute to the reduction in the routing delay of the net.
The merging process is performed repeatedly for the nets, in
which the most timing-critical net is processed first and the
least timing-critical net last. The possible merging of subnets
is then performed from the subnet containing the source ter-
minal toward the subnets containing the sink terminals.

4Note that the concept of our net-decomposition does affect the opti-
mization of resource sharing at the switch blocks, and is nothing to do with
that at the connection block.

5We call the subnets assigned to tracks connections.

The example in Figure 9 depicts our merging process. Fig-
ure 9(a) shows the result of track assignment for the sub-
nets a1, a2, a3 and a4 of a 5-terminal net where t0 is the
source and t1, t2, t3 and t4 are the sink terminals. (We as-
sume that some of the wire segments have already been as-
signed to other nets.) Consequently, the timing-critical path is
a4 ! a3 ! a2 ! a1. First, merging is processed for the
connections of subnets a4 and a3, and the result is shown in
Figure 9(b). Note that the resulting connection at the switch
block becomes a route of type R9 (denoted by (a3,a4) in the
figure). Connection (a3,a4) is then tried to be merged with
the connection of a2, followed by trying to merge with the
connection of a1.

For each net we model the merging problem using a graph,
called resource sharing graph, in which a node represents a
subnet and an edge exists between two nodes if the corre-
sponding subnets have been connected via dogleg. We can
now simplify the graph by merging the nodes in a way to max-
imize the resource sharing. This in trun leads to a reduction of
the routing delay without any degradation in routability. For
example, Figure 10 shows the resource sharing graphs for the
subnets in Figure 9 in which the resources to be merged are
specified on the edges of the graphs.

4aa 3(a) Resource assignment

a
a

a

t

tt

source

t 34 2

t1

0

4

3
2a

1

: programmable switch

a
(a ,a)

t tt4

t

3 2

0

t1
2a

1
3 4

(b) Merging subnets and

Figure 9: Merging two subnets from the result of an initial resource
assignment.

a1

a3,4

a

a

a2

3

4

track: 1, 2

track: 2, 3

track: 1, 3

source

merging

track: 1, 3

(a) Before merging two nodes

a2a1

track: 1, 3

(b) After merging two nodes

track: 2, 3

Figure 10: Resource sharing
graphs for the subnets in Fig-
ure 9.

Input netlist

Routed netlist

Yes

No

Global routing

satisfied ?

increase p

set p = 1

Routability & speed-
performance analysis

Detailed routing

Figure 11: The overall imple-
mentation scheme for the pro-
posed routing flow.

4 Experimental Results

We have implemented the proposed routing algorithm in the C pro-
gramming language on a SUN Sparc 10 workstation. We have
tested our algorithm on a set of benchmarks reported in SEGA
[4]. We explore the trade-offs between the performance and routing
density results using parameter p in Eq.5 as indicated in the overall
implementation scheme for the proposed routing flow in Figure 11.

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

p

N
or

m
al

iz
ed

 a
xi

s Sum of the total wire length

Sum of the num. of bends

Sum of the maximum density

Figure 12: Curve showing the ef-
fect of p in Eq. 5.

The number of tracks required

8 9 10 11 12 13

T
he

 lo
ng

es
t p

at
h

de
la

y

200

250

300

350

400

450

500

SEGA

TRACER-fpga_PR

Our best when p = 0.82

Figure 13: Solution space ex-
ploration for too large.

In all experiments, we set �1=1000, �2=10, �3=1 (Eq.8 in
global routing), and �1=100, �2=1 (Eq.9 in detailed routing). Em-
pirically, we found that p is much more effective in controlling the
trade-offs between the performance and routing density rather than
the values of � and �. In addition, we set Fc=W and Fs=3 (as in
[4, 11]). We performed our experiments in four respects: (1) check-
ing the design space exploration, (2) checking the routing density
(3) checking the performance, and (4) checking the degree of the
trade-offs between the routing density and performance.

Design space exploration: Figure 12 shows a summary of empir-
ical results on how the trade-offs between the speed-performance
and routability are explored by using the control parameter p. The
speed-performance is measured by taking into account the delay of
the bends (i.e., programmable switches) and the delay of the wire-
segments used, and the routability is measured by the minimum
number of tracks required like most routing algorithms in the lit-
erature. The three curves in Figure 12 corresponds to the results
of the ten benchmark examples in the first column of Table 2. The
shape of the curves clearly reveals an empirical evidence that p is
well fitted into our routing algorithm for an extensive exploration
of the trade-off between routability and performance, and suggests
that we can find a routing solution that satisfies the performance
requirement within a few iterations of the router while minimizing
the routing density.

Figure 13 depicts the exploration result for circuit too large.
Within the full range of p, there exists eight different values of
p which produce the minimal T , i.e., 9. Even with the minimal
T , the longest path delay is widely ranged from 252 to 391. This
mainly comes from the capability of our global router to form di-
verse routing trees under different values of p. Figure 13 also shows
the results produced by TRACER-fpga PR [11] and SEGA [4]. The
comparison shows that most of the longest path delays produced by
our router are shorter than those by TRACER-fpga PR and SEGA,
indicating an effective exploration of solution space.

Routability (routing density): Table 2 summarizes the maxi-
mum required routing density of designs generated by SEGA [4],
GBP [5], FPR [16], OGC [17], IKMB [6], TRACER-fpga [10],
TRACER-fpga PR [11], VPR [18, 19] and our algorithm. Note that
some of the routers have not reported routing solutions for circuit
z03D4, which was mainly due to the memory overflow problem.
Thus, for a fair comparison we exclude the data of z03D4 in the
parentheses from total of the table. The comparison of the results
indicates that ours uses much less number of tracks than those by
the existing routers except VPR [19]. However, note that VPR con-
siders only the minimization of routing density and never takes into
account the minimization of net/path delay. The results clearly indi-
cate that the proposed algorithm based on the exact routing density
measures is very effective.

Performance (net/path delay): Table 3 shows the results of the
longest path and net delays of designs produced by SEGA [4],
TRACER-fpga [10], TRACER-fpga PR [11] and ours. In sum-
mary, our algorithm reduces the longest path and net delays by 30%
and 23% (on average), respectively. The last column of the table

circuits [4]/[5]/[16]/[17]/[6]/[10]/[11]/[18]/[19] Ours

9symml 10/9/9/9/8/7/6/7/6 6
alu2 11/11/10/9/9/9/9/8/8 7
alu4 15/14/13/12/11/11/11/10/9 10

apex7 13/11/9/10/10/8/8/10/8 8
example2 17/13/13/12/11/10/10/10/9 10

k2 17/17/17/16/15/14/14/14/12 13
term1 10/10/8/9/8/8/7/8/7 7

too large 12/12/11/11/10/10/9/10/8 9
vda 13/13/13/11/12/11/11/12/10 10

z03D4 (14)/-/-/-/-/(11)/-/-/- (10)

total 118/110/103/99/94/88/85/89/77 80

Table 2: Comparison of the required number of tracks per channel.

shows the comparison of the run time. The results indicate that our
algorithm outperforms the best known algorithms, TRACER-fpga
[10, 11] and SEGA [4] even with much less execution time. This
clearly confirms that the cost metrics used in our algorithm is quite
reliable and accurate.

path delay net delay CPU (sec)
circuits [4]/[11]/Ours [4]/[10]/Ours [11]/Ours

9symml 320/313/226 57/88/50 56/1.8
alu2 947/714/612 110/354/75 66/4.6
alu4 1392/1037/870 163/458/129 207/18.4

apex7 339/299/137 78/147/59 30/4.6
example2 417/296/213 122/145/64 51/8.7

k2 1278/1483/777 229/745/182 349/44.5
term1 129/136/94 70/113/37 16/1.8

too large 390/476/252 114/291/90 75/8.6
vda 693/743/662 170/628/122 98/11.4

z03D4 -/-/(2348) 191/642/196 -/(56.9)

total 5905/5497/3843 1304/3611/1004 948/104.4

Table 3: Comparison of the longest path and net delays.

TRACER-fpga PR [11] Ours
circuits best-route/best-speed best-route/best-speed

#track,delay/#track,delay #track,delay/#track,delay

9symml 6, 313 / 10, 239 6, 226 / 7, 210
alu2 9, 714 / 11, 707 7, 612 / 8, 604
alu4 11, 1037 / 15, 1096 10, 870 / 11, 852

apex7 8, 299 / 13, 258 8, 137 / 8, 137
example2 10, 296 / 17, 202 10, 213 / 11, 208

k2 14, 1483 / 17, 1059 13, 777 / 14, 767
term1 7, 136 / 10, 103 7, 94 / 8, 91

too large 9, 476 / 12, 282 9, 252 / 10, 250
vda 11, 743 / 14, 541 10, 662 / 11, 524

z03D4 -,- / -,- (10, 2348) / (10, 2348)

total 85, 5497 / 119, 4487 80, 3843 / 88, 3643

Table 4: Trade-offs between performance (path delay) and routabil-
ity.

Routability/Performance trade-offs: Finally, the results in Ta-
ble 4 reveals how much the longest path delay can be reduced at the
expense of the routing density. Overall, our algorithm reduces the
delay up to 5.2% with 10% more tracks while TRACER-fpga PR
reduces the delay up to 18.4% with 40% more tracks. This implies
that the results produced by our algorithm is much close to an op-
timal solution in terms of both the routability and performance of
design.

5 Conclusions

We have presented a new performance and routability driven rout-
ing algorithm for symmetrical array based FPGAs. The key contri-

butions of our work is the formulations of much reliable and accu-
rate cost metrics which are derived from the careful analysis of the
interconnection structure of the switch block. This then leaded us
to develop a new efficient routing technique called a cost-effective
net-decomposition based routing which is well suited to exploit our
cost metrics more effectively. Extensive experimental data showed
that the proposed routing algorithm is very effective in improving
the overall performance of the design as well as the routability. In
summary, compared to the results produced by TRACER-fpga PR
and TRACER-fpga for the benchmark circuits, our algorithm re-
duced the delay of the longest path by 30% (on average) and the
delay of the longest net by 23% even with about 9 times less exe-
cution time.

Acknowledgement: We would like to thank Prof. S. Brown at
the Univ. of Toronto, Canada, for providing us with the source
of SEGA and benchmark examples. This work was partially sup-
ported by a grant from Ministry of Information and Communica-
tions of Korea, and Taewhan Kim was supported by the Korea Sci-
ence and Engineering Foundation (KOREF) through the Advanced
Information Technology Research Center (AITrc).

References
[1] The Programmable Gate Array Data Book, Xilinx Inc., San Jose, CA, 1992.

[2] S. Brown, J. Rose, and Z. G. Vranesic, “A detailed router for field-programmable
gate arrays,” IEEE TCAD, May 1992.

[3] F. D. Lewis and W. C.-C Pong, “A negative reinforcement method for PGA rout-
ing,” Proc. of DAC, 1993.

[4] G. G. Lemieux and S. D. Brown, “A detailed routing algorithm for allocating
wire segments in field-programmable gate arrays,” ACM Physical Design Work-
shop, 1993.

[5] Y.-L. Wu and M. Marek-Sadowska, “An efficient router for 2-D field-
programmable gate arrays,” Proc. of EDAC, 1994.

[6] M. J. Alexander and G. Robins, “New performance-driven FPGA routing algo-
rithms”, Proc. of DAC, 1995.

[7] Y. Sun and C. L. Liu, “Routing in a new 2-dimensional FPGA/FPIC routing
architecture,” Proc. of DAC, 1994.

[8] Y. Sun, T.-C. Wang, C. K. Wang, and C. L. Liu, “Routing for symmetric FPGA’s
and FPIC’s,” Proc. of ICCAD, 1993.

[9] T. Ohtsuki, “Maze-running and line-search algorithm,” Layout and Design Veri-
fication, North-Holland, 1985.

[10] C.-D. Chen et al, “TRACER-fpga: A router for RAM-based FPGA’s,” IEEE
TCAD, March 1995.

[11] Y.-S. Lee and A. C.-H. Wu, “A performance and routability-driven router for
FPGA’s considering path delays,” IEEE TCAD, Feb. 1997.

[12] J. Rose and S. Brown, “Flexibility of interconnection structures for field-
programmable gate arrays,” IEEE J. of Solid-State Circuits, Vol.26, 1991.

[13] C. Y. Lee, “An algorithm for path connections and its application,” IRE Trans.
Electronic Comput., Sept. 1961.

[14] T. Sadakane, H. Shirota, K. Takahashi, M. Terai, and K. Okazaki, “A congestion-
driven placement improvement algorithm for large scale sea-of-gates arrays”,
Prod. of CICC, 1997.

[15] M. Kubale and B. Jackowski, “A generalized implicit enumeration algorithm for
graph coloring,” Communication of the ACM, April 1985.

[16] M. J. Alexander, J. P. Cohoon, J. L. Ganley, and G. Robins, “Performance-
oriented placement and routing for field-programmable gate array”, Proc. of
EDAC, 1995.

[17] Y.-L. Wu and M. Marek-Sadowska, “Orthogonal greedy coupling - A new opti-
mization approach to 2-D FPGA routing,” Proc. of DAC, 1995.

[18] G. Lemieux, S. Brown, D. Vranesic, “On two-step routing for FPGAs,” Proc. of
ISPD, 1997.

[19] V. Betz and J. Rose, “VPR: A new packing, placement and routing tool for FPGA
research,” International Workshop on Field-Programmable Logic, 1997.

[20] Sara Baase, Computer Algorithms - Introduction to Design and Analysis, Addi-
son Wesley, 1988.

	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index

