
Abstract
In this paper, we utilize Rent’s rule as an empirical measure for efficient
clustering and placement of circuits on hierarchical FPGAs. We show
that careful matching of design complexity and architecture resources
of hierarchical FPGAs can have a positive impact on the overall device
area. We propose a circuit placement algorithm based on Rent’s param-
eter and show that our clustering and placement techniques can improve
the overall device routing area by as much as 21% for the same array
size, when compared to a state-of-art FPGA placement and routing tool.

1. Introduction
Field Programmable Gate Arrays (FPGAs) have gained rapid com-

mercial acceptance because their user-programmability offers instant
manufacturing turnaround and low costs. However, FPGAs are con-
stantly hard pressed to keep up with the requirements of the more com-
plex and larger scale circuits which are being targeted for them. Most
FPGA vendors are using the advances in DSM technologies to ship
devices that can implement million gate designs. Such high logic den-
sity comes at an enormous interconnect cost since most of the device
area is usually devoted to interconnects. A goal to achieve close to
100% logic utilization in these million gate devices proves extremely
expensive in terms of area and power.

Speed and area-efficiency of an FPGA are directly related to the
granularity of its logic block. For a device consisting of very fine
grained logic blocks, many connections must be routed between the dif-
ferent blocks. This results in complicated routing and long routing
delays. Coarse-grained blocks, on the other hand, are very area-ineffi-
cient and have long delays. Recently, FPGA vendors have introduced
hierarchical FPGAs consisting of logic clusters. Examples of such
devices are the Xilinx Virtex [21] and the Apex 10K [22] from Altera.
In these architectures, groups of Logic Elements (LEs) are clustered to
provide better performance, specially for communication oriented
designs. Figure 1.a shows the structure of an LE built of a 4-input look-

up table (LUT) and a Flip-Flop (FF). Each logic cluster consists of sev-
eral of these LEs as shown in Figure 1.b. Dedicated local routing is pro-

vided inside each cluster for communication between the local LEs.
Prior research [3][17] on hierarchical FPGA architectures has

focussed mainly in the area-delay trade-off stemming from the size and
structure of the clusters. Betz et al. [3][17] presented two clustering
algorithms, VPack and a timing-driven version, T-VPack. A recent
work, RPack[2], presented a routability-driven packing algorithm
which first identifies routability factors, prioritizes these factors into the
clustering cost function and achieves fewer routing tracks than
VPack[3]. This approach, however, produces routing track counts com-
parable to those generated by T-VPack[5][17].

In this paper, we explore the routability of clustered (from now on,
we use the terms cluster and hierarchical interchangeably) architectures.
We utilize Rent’s rule [11][15] as a complexity metric for improving the
clustering and placement of circuits on hierarchical FPGA architectures,
such that the overall device utilization is improved. For MCNC bench-
mark circuits placed and routed on hierarchical FPGAs, an improve-
ment of as much as 21% in terms of overall area utilization is achieved
in comparison to results obtained from a state-of-art FPGA tool [3][17].

The rest of the paper is organized as follows. Section 2 highlights
the previous work done in the area of FPGA routability analysis and
gives an overview of Rent’s rule. Section 3 presents the problem state-
ment. Section 4 shows the interconnect resource driven bottom-up clus-
tering technique which is built on top of T-VPack [17]. The next section
discusses the Rent’s rule based FPGA placement. This is followed by
experimental results in Section 6 and their analysis. Section 7 concludes
this paper.

2. Previous Work and Rent’s Rule
This sections summarizes previous work done to capture intercon-

nect complexity in FPGAs. This is followed by an overview of Rent’s
rule.

2.1 Previous Work
Researchers have tried to capture interconnect requirements for cir-

cuit routability using a variety of metrics. El Gammal [12] used a sto-
chastic model to estimate routability of channeled gate arrays. This was
extended by Chan et al. [7] to FPGAs. Alexander [1] used a sequence of
Steiner tree-on-a-graph approximations to determine routing solutions
for FPGAs. Wu [20] showed that simplified variants of FPGA routing
are reducible to the graph coloring problem and used this result to show
the NP-hard nature of FPGA routing. Wood [19] estimated FPGA
routability using boolean satisfiability and Binary Decision Diagrams
(BDDs), extending the work that Devadas [10] had done for ASIC rout-
ing.

Most routability methods are very time consuming and difficult to
use directly as a placement cost function. They also do not capture the
architectural issues that are typical to FPGAs, like the length of seg-
ments used, level of clustering and complexity variations in different

Interconnect Resource-Aware Placement for Hierarchical
FPGAs*

Amit Singh, Ganapathy Parthasarathy, Malgorzata Marek-Sadowska
Department of Electrical and Computer Engineering

University of California, Santa Barbara, Santa Barbara, CA 93106, USA
{asingh@cornet.ece, gpartha@bigbend.ece, mms@ece}.ucsb.edu

b) A logic cluster of size n

LE

LE

n

Inputs
(2n+2)

n

outputs

clk

a) A Logic Element (LE)

4-LUT
D Mux

Figure 1: Logic Element and Logic Cluster

*

This work was supported in part by the GSRC DARPA-MARCO grant and in part by California MICRO
 program through Xilinx.

parts of the designs to be implemented. In this work, we look at empiri-
cal methods for routability estimation. The metric we use is based on
Rent’s rule. Rent’s rule was first proposed by Rent at IBM and also
derived by several others including Donath [11], Brown [6] and Land-
man [15]. Since then, Rent’s rule has been used extensively as a predic-
tor of circuit complexity. Hagen et al. [13] used the spectra-based ratio
cut partitioning to obtain partitioning trees with the lowest observed
Rent’s parameter. They argued that such partitioning trees correspond to
area-efficient top-down layouts. Van Marck et al. [16] used circuit inter-
connect behavior to study Rent’s exponent of circuits and proposed a
method to capture the variation in complexities in different parts of
designs.

DeHon [9] showed that for hierarchical FPGAs, 100% logic utiliza-
tion is not necessarily beneficial for overall device area minimization.
He presented some initial evidence to support this claim and presented a
technique for depopulating gates in a hierarchical array. His results indi-
cate that a careful partitioning of designs and depopulation of logic
clusters can result in better FPGA resource utilization. This is an
extremely important consideration in the era of Deep Submicron (DSM)
technologies where FPGA vendors claim million gate FPGAs and ship
devices in which most of the silicon area (as much as 85-90%) is
devoted to interconnects. By intelligently under-utilizing logic
resources of an FPGA using Rent’s rule, we can improve both place-
ment and routability in the device, thereby saving area and reducing die
sizes. We show the inherent advantage of this empirical metric, both
during the logic clustering, and the placement phases. This technique is
specially effective for hierarchical FPGA architectures where different
levels of hierarchy may have different routing resource complexities.

We use a combination of empirical analysis and analytical methods
to study different circuits, perform netlist clustering (with modification
in cases when netlist have non-uniform local Rent’s parameter) and
achieve efficient place and route solutions for hierarchical FPGA archi-
tectures.

2.2. Rent’s Rule Overview
In 1960, E.F. Rent of IBM published two internal memoranda that

contained the log plots of “number of pins” versus “number of circuits”
in a logic design. Such plots tend to form straight lines in a log-log scale
and follow the relationship:

 (1)

where Nio = number of pins in a module, B is the number of blocks in

the module, K is the number of connections per block in the module,
and p is a parameter known as Rent’s parameter. Rent used this empiri-
cal measure to estimate routability of logic circuits.

In 1995 Van Marck et al. [16] showed that for a placed circuit that
minimizes the total wire-length, the local Rent’s parameter of a design
can be determined from the slope of the log-log plot of number of inter-
connections from a block versus length of interconnection. For this
placed design, he calculated the local Rent’s parameter of the design, as
follows:

For a given block, vi, in a design, count the number of interconnec-

tions, Nj, of length lj, from block vi (i.e. both input and output nets), and

find the best-fitting line on the log(Nj) versus log(lj) plot. The local

Rent’s parameter of this block is then defined as the slope of this log-log
plot. Their method, essentially, proposes the use of net length distribu-
tion as a means to calculate the relation between the interconnect com-
plexity and block count. This is useful for designs in which different

parts can have widely different complexities.

3. Definitions and Problem Statement
We first present our hierarchical architecture model and define key

terms. This is followed by the formal problem statement.
3.1 Architecture Model

Figure 2 shows a typical hierarchical FPGA architecture. Each
logic cluster (CLB) in this figure is similar to the one shown in Figure
1.b and consists of n LEs. Local routing is provided inside the cluster,
which allows all the n LEs to connect to each other through the use of
multiplexers. Routing between the clusters is through inter-cluster
tracks. The number of tracks between any two neighboring clusters is
uniform and is called the channel width. The number of logic clusters
that each wire-segment spans before going through a switch box is
called the track segment length. All switch-boxes are of the subset type
and provide inter-cluster routing from any track i to its adjoining hori-
zontal or vertical segment i. Switches are a 50-50 mix of tri-state buffers
and pass-transistors. All pins on a cluster can connect to any of the
available tracks in its adjacent channels. We assume that a cluster of
size n has (2n+2) input pins and n output pins. Indeed, this is sufficient
to achieve full logic connectivity as shown by Betz in [5]. In addition,
we assume that all segments are of lengths 1. Even though this architec-
tural decision influences our results, we believe that the tendency shown
in these results will hold for similar architectures with different parame-
ters and segment lengths.

3.2 Definition of Key Terms
The local Rent’s parameter of a design, Pd, is determined from the

log-log relationship between the number of used pins on a cluster versus
the number of used LEs in the cluster. We determine the FPGA architec-
ture’s Rent’s exponent Pa from the log-log relationship between the

number of available cluster pins versus the cluster size. Pa captures the

interconnect resource growth of an FPGA [9]. Network utilization is
defined as the ratio of used interconnect to the available interconnect in
a FPGA fabric in which the minimum number of tracks is the required
channel density.

The global Rent’s parameter of the design, is the value of Pd at the

top-most level in the design hierarchy. However, for random designs,
this may not be the same as the local Rent’s parameter of the design at
some level in the design hierarchy. For designs that are already placed,
Van Marck [16] proposed a method for calculating the local Rent’s
parameter. This method is discussed in Section 2.2.

Since the FPGA device has uniform interconnect resources, Pa at

the local level is a fairly accurate measure of the overall device Pa. To

check the accuracy of the Pa value calculated using formula (1), we

placed and routed uniform complexity benchmarks circuits having val-
ues of Pd ranging from 0.2 to 0.9. The synthetic benchmarks were cre-

ated using gnl [18] by doing a bottom-up clustering of blocks having a
pre-defined Rent’s parameter, such that a block in a higher level has a

Nio KB
p

=

Figure 2: General Architecture model

CLB

Switch Box Tracks Cluster

CLBCLBCLB

CLB CLB CLB CLB

Pd value similar to the Pd values in the lower levels. For each generated

benchmark, the routing resource utilization was measured. Figure 3
shows a plotted graph of the routing utilization versus Pd for a simple

island style architecture with segmentation of 1. Similar experiments

are performed on clustered architectures. We obtain Pa by drawing the

best-fit line and using the value that gives the highest network utiliza-
tion for the same architecture.

We now give a formal problem definition:
Problem Statement: Given a hierarchical 2-D mesh FPGA chip with
Rent’s exponent, Pa, and a design mapped to k-LUTs, having Rent’s

exponent Pd, fit the design in the chip so that the area of the mapped,

placed and routed design is minimized, subject to the constraint of a
given bounding box aspect-ratio.

4. Logic Clustering using Rent’s rule
Most modern day designs exhibit Rent’s parameter of p>0.5. Since

designs are usually hierarchical, with different hierarchies having dif-
ferent interconnect complexities and even different modules (blocks) in
the same hierarchy having different interconnect complexity, a trial and
error clustering and placement implementation method may lead to
unnecessary congestion and too much unused routing resources.

Our method, aims to alleviate this problem by depopulating logic
clusters. This bottom-up clustering has two phases. The first phase finds
the upper bound on the cluster pin size based on the architecture’s
Rent’s parameter. This allowable number of cluster pins is bounded by
the cluster size and the maximum available pins in each cluster in the
architecture. That is, if j is the number of pins which can be used, then

, since the minimum number of pins is k+1 (k is the

LE size) and the maximum number of pins is 2n+2+n = (3n+2). We
can calculate j as shown below.

 (2)

where (k+1) is the average number of connection per k-input LE (this
value results from the technology mapping phase), n is the cluster size,
and Pa is the architecture’s Rent’s parameter as found from the synthetic

benchmark circuits. The value of j constraints the local Rent’s parame-
ter of any logic cluster in the design, Pd, to be no greater than Pa.

The second phase performs clustering based on the new set of
block pin constraints. Clustering is performed in a bottom-up fashion
and is based on an LE attractiveness gain function described in [17].

Each LE in the unclustered design has a gain value associated with it.
This gain value is a function of 2 parameters, (i) an attractiveness func-
tion, which measures the attraction that the unclustered LE, B, has to the

current cluster C, , and (ii), a Critically
function, Cr(B), which aims to cluster those unclustered LEs which are
the most timing critical. The gain function is defined as :

 (3)

The default values of α and G are 0.75 and j respectively. We per-
form clustering one LE at a time starting with the unclustered LE with
the highest gain value (this is the LE with the highest criticality as found
by doing a static timing analysis on the network of LEs). After the LE
has been absorbed into a cluster, the gain values for the remaining
unclustered LEs are recomputed using formula (3) and the unclustered
LE with the highest gain is chosen. This LE can be added to the current
cluster only if the capacity, and cluster pin constraints (as found in
phase 1) are satisfied. In the case when either of these 2 constraints are
violated, we form a new cluster and absorb the unclustered LE into the
new cluster. Once all unclustered LEs have been absorbed, the original
network of unclustered LEs has been transformed into a clustered net-
work of LEs.

Our clustering technique guarantees a fair amount of uniformity in
the clustered design’s complexity as measured by Rent’s parameter and
gives our placement tool (described in the next section), a fairly uniform
depopulated hierarchical circuit where the worst case Pd of any logic

cluster is equal to Pa. The placement tool then recognizes the variations

in the spatial complexities of the clusters and generates placement solu-
tions which result in fewer routing tracks and shorter wirelengths after
routing.

5. Placement using Rent’s rule
We use a simulated annealing [14] place and route tool built on top

of a state-of-art FPGA place and route tool VPRv4.30 [3]. The place-
ment cost function is:

 (4)

In the placement cost function, Pdk corresponds to the local placed

Rent’s parameter of net i and the clusters connected to it, as found using
Van Marck’s technique. This local placed Rent’s parameter is calculated
for each net in the clustered netlist. For each net, we consider the place-
ment of the clusters connected to the net, and calculate the interconnect
length requirements due to the current placement. In a sense, if we con-
sider the individual clusters as constituting the lower level of the design
hierarchy, then the clusters and their surrounding interconnects form the
higher level of the design hierarchy. Therefore, in the placement phase,
we are not concerned with the Rent’s parameters of the individual clus-
ters but rather, with the Rent’s parameter of the clustered netlist at the
higher level of hierarchy. Pdk calculation takes O(nlog(n)) time, since

all the net-lengths need to be sorted. At each stage of the placement
algorithm, any cluster swap results in an updated local placed Rent’s
parameter for only those clusters and the nets connected to them. Wire-
length is calculated as the minimum perimeter (bounding-box) that
encloses a net and the cost function minimizes the scaled sum of these
bounding boxes over all nets. Each bounding box is scaled by 2 param-
eters. q(i) is a factor similar to the one used in [3] and ranges from 1 for
nets with few pins to 2.79 for nets with 50 terminals. The 2nd parame-

Figure 3: Routing utilization v/s Pd, seg = 1, Pa =0.62

k 1+ j 3n 2+≤ ≤

j k 1+()n
Pa

= k 1+ j≤ 3n 2+<

A B() Nets B() Nets C()∩=

Attraction B() α Cr B() 1 α–()+• A B()
G

------------•=

q i() 1 Pdk Pa–

k i∈()∀
∑+

 
 
 

wirelengthi()

i 1=

Nets

∑

ter, , attempts to minimize the sum of differences

between Pa and the local placed Pd of all clusters on a net. In cases

where local placed Pd is greater than Pa, the scaling has the effect of

moving congested blocks into sparsely populated areas of the fabric.

6. Experimental Results
We have implemented our bottom-up clustering and placement

technique, iRAP (Interconnect Resource Aware Placement), on top of
the state-of-art FPGA place and route tool, VPR (v4.30) [3]. We experi-
mented with 2 kinds of benchmarks (i) synthetic benchmarks [18] with
fixed design Rent’s parameter and (ii) random MCNC benchmarks.
Each design was mapped into 4-input LUTs using flowmap [8] and
clustered using the technique outlined in section 4. Mapped and clus-
tered designs were then placed and routed using the technique outlined
in section 5. Tables 1 and 2 show the placed and routed results for 11
MCNC benchmark circuits for cluster sizes of 4 and 8 respectively. Fig-

ures 4-6 show the benchmark circuit C432 when clustered, placed and
routed under 3 different conditions. Figure 4 shows the VPRv4.30 [3]
generated packing (packed using T-VPack [17]) and routing for this cir-
cuit. Each block in the fabric is a cluster of size 4 and contains 10 input
and 4 output pins. The placed and routed circuit utilizes 13 tracks with 5
empty clusters. Figure 5 shows the same place and route tool result for
the circuit which has been depopulated to meet the architecture’s Rent’s
parameter. The track reduction in this case is 15% without any logic

area and critical delay overhead (most empty clusters were simply filled
up). Figure 6 shows the place and route result for the depopulated cir-
cuit using iRAP. The number of tracks needed to route this circuit is 10
in this case, or a further improvement of 9% in number of tracks over
the one in Figure 5, without any logic area overhead.

1 Pdk
Pa–∑+()

 Figure 4: C432 placed and routed using VPR

Figure 5: Depopulated C432 placed and routed using VPR

 Figure 6: C432 placed and routed using iRAP

Table 1: Cluster size 4
Circuit T-VPack+VPR VPR+depopulation iRAP

nx,ny Channel WL Trans. nx,ny Channel WL Trans. nx,ny Channel WL Trans.
C432 6,6 13 904 2739.90 6,6 11 819 2400.54 6,6 10 753 2248.21
C499 5,5 16 806 3432.08 5,5 13 706 2880.38 5,5 12 664 2719.55
C880 7,7 16 1510 3142.41 7,7 13 1292 2636.17 7,7 13 1243 2636.17

C2670 24,24 18 4327 2969.99 24,24 16 4309 2632.47 24,24 14 4124 2479.77
C3540 12,12 20 5248 3500.17 12,12 19 5029 3336.12 12,12 18 4901 3204.69
C1908 8,8 16 1898 3052.14 9,9 13 1780 2481.34 9,9 12 1721 2362.53
C6288 13,13 15 4220 2647.50 13,13 12 3402 2225.80 13,13 11 3257 2063.59
C7552 20,20 19 11363 3139.88 20,20 17 9576 2809.44 20,20 15 9446 2519.44
alu2 10,10 15 2597 2758.33 10,10 13 2297 2454.37 10,10 12 2291 2318.60
alu4 13,13 16 4783 2809.70 13,13 15 4436 2647.50 13,13 14 4275 2502.75
des 32,32 21 31986 3297.93 32,32 20 31787 2652.17 32,32 19 30413 2509.63

Average 14,14 16.8 6329.4 3044.5 14,14 14.7 5948.5 2650.6 14,14 13.6 5735.2 2505.9

Table 1 shows the results for cluster size 4. Column 1 lists the 11
MCNC benchmark circuits. The next 4 columns show the array size,
the minimum channel width, total wire-length and routing transistor
count/per block when these circuits are placed and routed using
VPR[3][17]. No clustering and placement modifications were done in
this case. The next 4 columns show the results for the same circuits
when we use our Rent’s parameter-based clustering technique on top of
the VPR tool. We achieve on average a 13% reduction in tracks per
channel over designs clustered and routed without modifications. The
last four columns show the same circuits after they have been clustered,
placed and routed using the techniques outlined in sections 4 and 5.
Over stand-alone VPR (first 4 columns), an average track reduction of
21.3% is achieved. Total wire-length is also reduced by 9.4%. Table 2
shows the results for size 8 clusters. In this case, for the same array size
for each placed and routed circuit, we are able to reduce the average
channel width by 17.7% over VPR. This translates into average savings
of 11% in total wire-length over VPR. These results show the efficiency
of our techniques and validate our claim that significant area savings
can be accomplished by going for less than 100% logic utilization and
efficiently using an inter-connect aware clustering and placement tech-
nique. We also observe that despite a slight increase in the number of
clusters generated using our clustering technique, this increase does not
translate into an increase in the critical path delay after routing. This can
be attributed to a better distribution of the blocks during the placement
process. Currently, we are exploring cost functions that could lead to
better clustering results.

7. Conclusions and Future work
We have presented efficient routability-driven clustering and place-

ment techniques for hierarchical FPGAs using Rent’s rule and show that
these techniques can result in significant area savings. By clustering cir-
cuits using Rent’s parameter and minimizing the sum of differences
between the architecture and design Rent’s parameter, we have reduced
the average track count for 11 MCNC benchmark circuits by 21% over
a state-of-art FPGA place and route tool. Since as much as 90% of an
FPGA is devoted to interconnects, this results in significant overall
device area savings. Currently, we are considering the effects that dif-
ferent segment type and architectures will have on our results.

8. References
[1] M.J. Alexander, J.P. Cohoon, J.L. Ganley, G. Robins,“An Architecture-driven
approach to FPGA routing using multi-weighted graphs”, Proc. Euro-DAC,
1994, pp.259-264.
[2] E. Bozogzadeh, S. Ogrenci-Memik, M. Sarrafzadeh, “RPack: Routability-
driven Packing for Cluster-Based FPGAs”, Proceedings, Asia-South Pacific

Design Automation Conference, January 2001.
[3] V. Betz, J. Rose “VPR: A New Packing, Placement and Routing tool for
FPGA research”, Proc Seventh FPLA, pp. 213-222, 1997.
[4] V. Betz, J. Rose, “Cluster-Based Logic Blocks for FPGAs:Area-Efficiency
vs. Input sharing and Size”, IEEE Custom Integrated Circuits Conference,
1997,pp.551-554.
[5] V. Betz, J. Rose, and A. Marquardt, “Architecture and CAD for Deep-Submi-
cron FPGAs”, Kluwer Academic Publishers, 1999.
[6] S. Brown, J. Rose, Z.G. Vranesic, “A Stochastic model to predict the
routability of Field programmable gate arrays”, IEEE Trans. on CAD, Dec.
1993, pp.1827-1838.
[7] P.K. Chan, M.D. Schlag, J.Y. Zien, “On routability prediction for field pro-
grammable gate-arrays,Proc. Design Automation Conf. 1993, pp.326-330.
[8] J. Cong, and Y. Ding, “FlowMap: An Optimal Technology Mapping Algo-
rithm for Delay Optimization in Lookup-Table Based FPGA Designs”. IEEE
Trans. on Computer-Aided Design, Jan. 1994, Vol. 13, No. 1, pp. 1-12.
[9] A. DeHon “Balancing Interconnect and Computation in a Reconfigurable
Array (or why you don’t really want 100% LUT utilization”, Proc. FPGA 1999.
[10] S. Devadas, “Optimal Layout via Boolean Satisfiability”, Proc. ICCAD,
1989, pp.294-297.
[11] W.E. Donath, “Placement and Average Interconnect requirements of Com-
puter logic”, IEEE Trans. Circuits and Systems, CAS-26:272-277, 1979.
[12] A.A.El Gamal, “Two-dimensional stochastic model for interconnections in
master-slice integrated circuits”, IEEE Trans. on Circuits and Sys-
tems,CAS_28:127-138,Feb, 1981
[13] L. Hagen, A.B. Kahng, F.J. Kurdahi, “On the Intrinsic Rent Parameter and
Spectra-based Partitioning Methodologies”, IEEE Trans. on CAD, pp.27-36,
Vol. 13,No. 1, Jan 1994.
[14] S. Kirpatrick, C.D. Gelatt, M.P. Vecchi, “Optimization by Simulated
Annealing”, Science, 220:671-680, 1983.
[15] B.S. Landman, R.L. Russo, “On a pin versus block relationship for parti-
tions of logic graphs”, IEEE Trans. on Computers, C-20:1469-1479, 974.
[16] H. Van Marck, D. Stroobandt, J. Van Campenhout, “Towards an extension
of Rent’s rule for describing local variations in interconnect complexity” Proc.
4th Intl. Symposium for Young Computer Scientists, pp.136-141, 1995.
[17] A. Marquardt, V. Betz and J. Rose, ``Using Cluster-Based Logic Blocks and
Timing-Driven Packing to Improve FPGA Speed and Density,'' ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, Monterey, CA,
February 1999, pp. 37 - 46.
[18] D. Stroobandt, P. Verplaeste, J. Van Campenhout, “Generating synthetic
benchmark circuits for evaluating CAD tools”, IEEE Trans. on CAD,
19(9):1011-1022, September 2000.
[19] R.G. Wood, R.A. Rutenbar, “FPGA routing and routability estimation using
Boolean Satisfiability”, Proc. Intl. Symposium on FPGAs” Feb 1997.
[20] Y.L. Wu, S.Tsukiyama, M. Marek-Sadowska, “Graph based analysis of 2-D
FPGA routing” IEEE Trans. CAD, (1):33-44, Jan 1996.
[21] http://www.xilinx.com
[22] http://www.altera.com

Table 2: Cluster size 8
Circuit T-VPack+VPR VPR+depopulation iRAP

nx,ny Channel WL Trans. nx,ny Channel WL Trans. nx,ny Channel WL Trans.
C432 4,4 18 579 6837.67 4,4 14 520 5474.81 4,4 13 489 5164.53
C499 5,5 20 758 6812.52 5,5 15 706 5276.55 5,5 13 693 4726.65
C880 5,5 20 1062 6812.52 5,5 18 950 6267.02 5,5 17 911 5984.84

C2670 12,12 44 4787 10681.2 12,12 42 4417 10252.5 12,12 41 4346 10030.7
C3540 9,9 33 5120 8795.07 9,9 25 4119 6833.04 9,9 24 4036 6611.48
C1908 7,7 24 1735 7061.06 7,7 15 1593 4712.85 7,7 15 1507 4712.85
C6288 9,9 21 3436 5922.69 9,9 17 2840 5012.35 9,9 16 2820 4649.46
C7552 12,12 41 10250 10030.7 12,12 39 8641 9601.38 12,12 38 8566 9393.22
alu2 7,7 18 1681 5598.02 7,7 16 1599 4962.91 7,7 15 1534 4712.85
alu4 9,9 24 3881 6611.48 9,9 23 3678 6377.87 9,9 21 3515 5922.69
des 21,21 53 29280 11660.3 21,21 49 27515 10880.6 21,21 47 27216 10470.0

Average 10,10 28.7 5688.1 7893.1 10,10 24.8 5143.5 6877.4 10,10 23.6 5057.5 6577.2

	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index

