
Instruction Generation for Hybrid Reconfigurable Systems

Ryan Kastner Seda Ogrenci-Memik Elaheh Bozorgzadeh Majid Sarrafzadeh

Computer Science Department
University of California, Los Angeles

Los Angeles, CA 90095
{kastner,seda,elib,majid}@cs.ucla.edu

Abstract
In this work, we present an algorithm for simultaneous template
generation and matching. The algorithm profiles the graph and
iteratively contracts edges to create the templates. The algorithm is
general and can be applied to any type of graph, including directed
graphs and hypergraphs. We discuss how to target the algorithm
towards the novel problem of instruction generation and selection for a
hybrid (re)configurable systems. In particular, we target the
Strategically Programmable System, which embeds complex
computational units like ALUs, IP blocks, etc. into a configurable
fabric. We argue that an essential compilation step for these systems is
instruction generation, as it is needed to specify the functionality of the
embedded computational units. Additionally, instruction generation
can be used to create soft macros – tightly sequenced pre-specified
operations placed in the configurable fabric.

1 Introduction
Regularity extraction attempts to find common sub-structures
(templates) in one or a collection of circuits (graphs). There are many
applications for regularity extraction, including, but not limited to,
scheduling during logic synthesis [1], system-level partitioning [2] and
FPGA mapping and placement [3]. We aim to build a general profiling
technique for simultaneous template generation and matching, which is
applicable to any task that uses a directed labeled graph. We target the
generation and matching algorithm towards instruction generation and
selection, though the methods we present are general enough to be
applied to any regularity extraction problem represented by a labeled
digraph.

A novel use of template generation and matching is instruction
generation during compilation for hybrid (re)configurable systems.
Hybrid (re)configurable systems contain some kind of computational
unit, e.g., ALUs, IPs or even traditional processors embedded into a
reconfigurable fabric. Instruction generation combines basic
operations into larger, more complex operations. The new operations
may be quite complex, involving hundreds of basic operations, e.g. an
FFT or filtering operation, or something less complex like a multiply-
add-accumulate (MAC) operation. The complex operations must occur
frequently to overcome limitations of tightly sequencing the operations
and the (possibly fixed) area that they occupy in the fabric.

In this paper, we focus on instruction generation for the Versatile
Programmable Blocks (VPBs) -- embedded hard-wired blocks that
perform complex instructions -- of the Strategically Programmable
System (SPS) [4]. The SPS architecture combines memory blocks and
VPBs into a fine-grained reconfigurable fabric. Additionally, regularity
extraction can indicate which operations are important to optimize as
soft macros implemented on a fine-grained reconfigurable fabric of the
SPS. The selected sets of operations should occur frequently within the
application. A system architect may choose to hand optimize these

operations to decrease power, increase performance and/or minimize
the silicon footprint. Cadambi and Goldstein show that soft macro
regularity extraction is beneficial for their PipeRench architecture [5].

In the next section, we formalize the problem of template matching and
generation. Section 3 proposes an algorithm for simultaneous template
generation and matching using graph profiling and edge contraction. In
Section 4, we present experimental results. We conclude in Section 5.

2 Problem Formulation
2.1 Template Matching
Regularity refers to the repeated occurrence of computational patterns
e.g. multiply-add patterns in an FIR filter and bi-quads in a cascade-
form IIR filter. A template refers to an instance of a regular
computational pattern.

We model an algorithm, circuit or system using a digraph G(V,E). The
nodes of the graph correspond to an instance of basic computational
units. Examples of node types are add, multiply, subtract, etc. Each
node has a label consistent with the type of operation that it performs.
The edges of a graph model the dependencies between two operations.
For instruction generation, the graph under consideration is a dataflow
graph. We consider labeled digraphs in this work as we are targeting
instruction generation, which use dataflow graphs; dataflow graphs can
be sufficiently modeled using labeled digraphs.

There are two general problems associated with template matching:

Problem 1: Given a directed, labeled graph G(N, A), a library of
templates, each of which is a directed labeled graph Ti(V,E), find every
subgraph of G that is isomorphic to Ti.

This problem is essentially equivalent to the subgraph isomorphism
problem simplified due to the directed edges. Even with these
simplification the general directed subgraph isomorphism problem is
NP-complete [6].

Problem 2: Given an infinite number of each set of templates Ω = T1,
… , Tk and an overlapping set of subgraphs of the given graph G(N,E)
which are isomorphic to some member of Ω; minimize k as well as Σ xi
where xi is the number of templates of type Ti used such that the number
of nodes left uncovered is the minimum.

We want to minimize both the number of distinct templates that are
used in the covering while minimizing the number of instances of each
template. Additionally, we want cover as many nodes as possible. This
problem is a fusion of the graph covering and the coin changing
problems. It differs from the graph covering as it allows multiple
instances of template in it’s covering. The coin changing problem tries
to find the minimum number of coins to produce exact change; this is

similar to minimizing the number and types of templates to cover the
graph.

2.2 Template Generation
Most previous work have assumed that the templates were given as an
input. However, this may not always be the case; an automatic
regularity extraction algorithm must develop it’s own templates.

Consider instruction selection for hybrid reconfigurable architectures,
specifically the SPS. First, we must determine the functionality of the
VPBs (hard-wired embedded blocks) during the SPS architecture
generation phase. Template generation is a necessary step here.
Secondly, unlike traditional processors where the instructions
(templates) are fixed according to the ISA, it is possible to arrange fine-
grained reconfigurable fabric to perform virtually any combination of
basic operations. Hence, instruction templates are not fixed in fine-
grained reconfigurable architectures. Template generation is a
necessary step for the hybrid (re)configurable architecture generation
and compilation.

The custom instructions should be generated to maximally cover the
dataflow graph. In essence, the compiler must perform instruction
generation and selection, equivalently template generation and
matching.

3 An Algorithm for Simultaneous Template
Generation and Matching

In this section, we present an algorithm for template generation and
matching which iteratively clusters nodes based on profiling. During
the clustering, we generate templates and find a cover using the
templates. The algorithm starts by profiling the graph to determine the
frequency of node and edge types. Based on the most frequently
occurring edges, clustering is performed. An overview of the algorithm
is given in Figure 1.

1 Given a labeled digraph G(V, E)
2 # C is a set of edge types
3 C ← ∅
4 while stop_conditions_met(G)
5 C ← profile_graph(G)
6 cluster_common_edges(G, C)

Figure 1 Overview of clustering-based algorithm for template
generation and matching

3.1 Algorithm Description
The algorithm starts by calling the function profile_graph, which
traverses the graph to record the occurrence of a particular edge. It
returns the edge types ordered corresponding to the frequency of their
appearance in the graph.

The function cluster_commom_edges takes the labeled digraph and the
edge type frequencies and performs node clustering based on edge
contraction. Given two vertices v1 and v2, contraction removes v1 and
v2, replacing them with a new vertex v. The set of edges incident on v
are the union of the set of edges incident to v1 and v2. Edges from v1
and v2 with mutual endpoints, e.g. e1 = (v1, x) and e2 = (v2, x), may or
may not be merged into one edge; we merge them but we must
remember that these two edges exist to preserve the sanity of the logic.
We further discuss this and other issues concerning clustering later.

Finally, the function stop_conditions_met is called to possibly halt the
algorithm. The function returns “true” if the algorithm has generated a
sufficient amount of templates and/or the graph sufficiently covered.
Often, we wish stop when once a certain number of templates are

generated. Another possible stopping condition is when the generated
templates cover every vertex of the graph. Most likely, the stopping
condition function should be tailored to the particular application for
template generation and matching. We discuss the stopping conditions
we choose for instruction selection in the next section.

Figure 2 demonstrates two passes of the algorithm. The initial graph
(Figure 2a) is profiled and the edge type (*,*) is chosen for clustering.
You can see that there are many conflicting choices for edge contraction
(Figure 2b). We discuss how to resolve these conflicts later. Edges 2
and 3 are clustered to form a supernode (Figure 2c). The next round of
profiling chooses to contract the edge (*, {*:*}) where {*:*} is the
supernode created in the previous pass. Edge contraction occurs to
create a super-supernode. The algorithm stops having generated a
template and a covering using these templates (Figure 2d).

Edge 1

Edge 2
Edge 3

* * *

* *

+ +

*

+*

* * *

* *

+ +

*

+*

Cluster edge
Type (*, *)

Cluster edge

2 and 3

* * *

* *

+ +

*

+*

Supernodes

* * *

* *

+ +

*

+*

Cluster edge
(*, *:*)

a) b)

c)d)

Super-supernodes

Edge 4 Edge 5

Figure 2 Contraction of edges to create supernodes. The supernodes
correspond to templates.

Edge contraction essentially creates a supernode from two nodes. The
supernode must hold the DAG of the operations that it implements in
order to realize the templates that it is generating; we call this the
(super)node’s internal DAG.

Every time we create a new supernode, we generate a new template
corresponding to that new node. That template is the internal DAG of
the supernode. It is possible that identical templates are generated
through separate sequences of clustering. Therefore, we cannot identify
the template based on its sequence of edge contractions; we must
consider the supernode’s internal DAG. A graph isomorphism
algorithm (e.g. Gemini [7]) is needed to identify whether two templates
(generated through a different sequence of edge contractions) are
identical.

3.2 Finding an Optimal Covering
Choosing the sequence of edges to contract can greatly affect the
quality of the solution. Consider the graph in Figure 2. The best cover
consists of one template consisting of two multiply operations feeding
into another multiply (as demonstrated in Figure 2d). But, if we
contracted Edge 1 instead of Edge 2 and 3, we would not have been
able to achieve this cover. This dilemma has haunted graph covering
algorithm makers for a long time; there is no known exact method to
avoid such ill-fated decisions. We employ a heuristic based on
maximum independent set of a conflict graph.

A conflict graph is an undirected graph Gc(Vc,Ec). There is a vertex v ∈
Vc for each possible instance of a template in the labeled digraph G; G
is the graph that we are performing template generation and matching.
There is an edge e = (v1, v2) between the vertices v1 and v2 if two
different instances of a template share a common node in G. Since we

are trying to maximize the number of nodes that are covered using the
minimum number of templates, we want to cover as many nodes
possible at each step. This is accomplished by taking the maximum
independent set of nodes in the conflict graph. The Maximum
Independent Set (MIS) is the largest subset of vertices S of a graph G
such that no two vertices of S are adjacent.

Theorem 3.1 Given a graph G(V,E) to cover with a template T, the
template instance assignment corresponding to the nodes from the
maximum independent set of the conflict graph Gc(Vc,Ec) gives an
optimal covering where optimality is defined as a covering the
maximum number of vertices in V.

Since the vertices of the conflict graph correspond with covering of
nodes, finding the MIS of the conflict graph Gc gives a covering of the
maximum number of nodes. MIS is NP-complete [6]; fortunately the
simple minimum-degree algorithm [8] has been shown to give good
results. We use that algorithm to find a good set of edges to contract.

4 Experimental Results
4.1 Experimental Setup
To test our template generation and matching algorithm, we
implemented a hybrid (re)configurable system compiler front-end on
top of the SUIF2 compiler system [9]. SUIF is a well-known
intermediate format (IF) that is used heavily in industry and academia.
It compiles C/C++/Fortran source code into a high-level IF. We used
the Machine-SUIF [10] back end to create a low-level IF representation,
i.e. a Control Flow Graph (CFG). From there, we implemented a pass
to convert the CFG to a Control Dataflow Graph (CDFG). Our
template generation and matching algorithm was performed over all the
dataflow graphs of a CDFG.

We look at the applications from the MediaBench test suite [11]. From
these applications, we selected a set of files that implement DSP
functions. Table 1 presents the characteristics of the selected DSP
functions.

Benchmark C File Description

mpeg2 motion.c Motion vector decoding

mpeg2 getblk.c DCT block decoding

adpcm adpcm.c ADPCM to/from 16-bit PCM

epic convolve.c 2D general image convolution

jpeg jctrans.c Transcoding compression

jpeg jdmerge.c Color conversion

rasta fft.c Fast Fourier Transform

rasta noise_est.c Noise estimation functions

gsm gsm_decode.c GSM decoding

gsm gsm_encode.c GSM encoding
Table 1 MediaBench test files

4.2 Results
We ran the template generation and matching algorithms on the test
files. For each test file, a set of templates was generated and a covering
was produced using the generated templates. Templates were generated
on the nodes that performed arithmetic operations. The stopping
condition of the algorithm depended on the frequency of the most often

occurring edge. If the edge type occurred less than x%, the algorithm
completes. We call this the cut-off percentage.

We varied the cut-off percentage to measure the tradeoff of number of
generated templates vs. percentage of the graph covered by those
templates. As the cut-off percentage increases, the number of generated
templates decreases and fewer nodes are covered. As it decreases to 0,
the algorithm generates a larger number of templates and covers more
nodes, but the additional templates that are generated may only cover a
few additional nodes.

30%

40%

50%

60%

70%

80%

90%

0 5 10 15 20 25 30
number of templates

%
 n

od
es

 c
ov

er
ed

cluster

simple
cluster
optimal
covering

Figure 3 Comparison of clustering techniques

The “cluster” line in Figure 3 plots the average number of templates
generated and the percentage of the graph covered using the generated
templates. By varying the cut-off frequency we produced the points of
the graph. A cut-off frequency of zero will cover every node by
creating templates that occur a small number of times (including
singleton templates). Sometimes a graph cannot be completely covered
by templates, as an arithmetic node is isolated in a dataflow graph (CFG
node) by itself. In the benchmarks that we consider, the “optimal”
covering is a covering of 83% of the nodes i.e., on average, 17% of the
nodes are isolated. You can see that in order to generate an optimal
covering the algorithm generates an average of 21.9 templates.

The slope of the line (∆(% coverage)/ ∆templates) gives much intuition
into the amount of coverage you get by generating additional templates.
When the number of templates is small (less than 5) the slope is large,
meaning that adding another template gives you a large amount of
additional graph coverage. As the number of templates increases, the
slope decreases. It is interesting to note that the slope dramatically
reduces around 5 templates. It seems to suggest that using five
templates is a good number for covering the benchmarks.

During our experiments, we noticed that the number of operations
(node) per template is small. We tried restricting the edge contraction
so that only templates with 2 nodes would be generated. We called this
“simple” clustering. The results using this clustering scheme were
plotted in Figure 3. The points were generated by varying the cut-off
percentage in a similar manner as the previous experiment. As you can
see, the results mimic those of the “complex” clustering technique. The
main difference is that the simple technique cannot achieve an optimal
covering like the complex technique. But, in order to achieve an
optimal covering, the complex technique generated a large amount of
templates. Many of these generated templates covered a limited number
of nodes - a poor solution. Therefore, a template generation and
matching which limits the templates to 2 nodes gives a solution with
similar quality as the complex algorithm.

Additionally, we noticed the types complex templates varied widely
across all the applications. Therefore, if we wanted to generate one

“generic” system for all the benchmarks, e.g. a system of DPS
applications, that we examined, there would be a large number of
templates and each application would use only a small subset of those
templates. On the other hand, we found that there was much less
variation of template types when we used the simple templates.

MediaBench file name
Operation

motion jdmerge getblk gsm_dec jctrans

ADD 50.3% 84.6% 44.5% 29.6% 84.6%

MUL 36.3% 13.8% 24.0% 22.4% 13. 8%

Template Coverage

MUL-MUL 0.0% 0.0% 1.3% 0.0% 0.0%

ADD-ADD 14.5% 9.1% 3.2% 3.6% 9.1%

ADD-MUL 0.0% 0.4% 0.6% 0.0% 0.4%

MUL-ADD 36.3% 13.0% 21.5% 22.4% 13.0%
Table 2 Coverage using simple add and multiple template

combinations

To further explore this phenomenon, we looked at simple template
combinations using add and multiply combinations – the two most
frequently occurring arithmetic node types across all the benchmarks.
Table 2 shows the results of the coverage using the 4 add/multiply
sequences as individual templates. In the table, the notation OP1-OP2
denotes that the template consists of the two operations with an edge
{OP1, OP2}.

We can gather a lot of information using these simple templates. For
example, the sequence of operations deviates from probability theory as
the sequence MUL-ADD is found with much greater frequency than
ADD-MUL. Probabilistically, these sequences should occur in the
same proportion. Additionally, it shows that the MUL-ADD and ADD-
ADD sequences could be implemented as a VPB or macro for DSP
applications as it is widely used across all the applications. In
summary, we presented evidence that templates can be limited to
simple, two operation sequences while achieving good coverings using
a small number of templates. We believe that this is due to the structure
of the CDFGs.

In general, the dataflow graphs of the CDFGs are not deep and the
actual number of arithmetic operations per dataflow graph is not large
enough to encourage templates with a large cardinality. These are two
well-known phenomena and are the source of problems in exploiting
parallelism for VLIW processors. Therefore, we believe that hybrid
(re)configurable systems must leverage techniques from the VLIW
domain such as predicated execution and hyperblock construction in
order to realize larger template cardinality.

5 Conclusion
In this work, we addressed the problems of template generation and
matching. We proposed an algorithm to perform simultaneous template
generation and matching. Our algorithm generates templates by
profiling the graph and clustering common edges. To our knowledge,
this is the first algorithm to consider template generation without
input/output restrictions.

Template generation is a relatively new and essential problem for
compilation to configurable systems. Template generation can be used

to create macros, which are tightly coupled sequential operations that
are placed in the same vicinity in a configurable fabric. Furthermore,
the macros are ideal candidates for hand optimization. Additionally,
template generation can be used to specify the functionality for pre-
placed ASIC blocks (VPBs) in hybrid (re)configurable systems like
SPS.

We developed the front-end compiler for a hybrid (re)configurable
system. Using DSP benchmarks, we showed that full-blown template
generation is unnecessary as simple templates – templates with a
sequence of two operations – create a graph covering with similar
quality to more complex templates. This suggests that advanced
compiler techniques such as predicated executation and hyperblock
construction are needed in order to efficiently utilize large templates.

In the future, we plan to study the effect of that predicated execution
and hyperblock on template generation. Also, we intend to develop a
complete back-end of a retargetable compiler for hybrid
(re)configurable systems.

References

[1] T. Ly, D. Knapp, R. Miller and D. MacMillen, Scheduling using
Behavioral Templates, Design Automation Conference, 1995.

[2] D. S. Rao and F. J. Kurdahi, On Clustering for Maximal
Regularity Extraction, IEEE Trans. on Computer-Aided Design,
Vol. 12, No. 8, August, 1993.

[3] A. Chowdhary, S. Kale, P. Saripella, N. Sehgal and R. Gupta, A
General Approach for Regularity Extraction in Datapath Circuits,
International Conference on Computer-Aided Design, 1998.

[4] S. Ogrenci-Memik, E. Bozorgzadeh, R. Kastner and M.
Sarrafzadeh, Strategically Programmable Systems, Reconfigurable
Architecture Workshop, 2001.

[5] S. Cadambi and S. C. Goldstein, CPR: A Configuration Profiling
Tool, Symposium on Field-Programmable Custom Computing
Machines, 1999.

[6] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, W. H. Freeman and
Company, New York, 1979.

[7] C. Ebeling and O. Zaijicek, Validating VLSI Circuit Layout by
Wirelist Comparison, International Conference on Computer-
Aided Design, 1983.

[8] M. M. Halldórsson and J. Radhakrishnan, Greed is Good:
Approximating Independent Sets in Sparse and Bounded-degree
Graphs, ACM Symposium on the Theory of Computing, 1994

[9] R. Wilson et al., SUIF: An Infrastructure for Research on
Parallelizing and Optimizing Compilers, ACM SIGPLAN Notices,
Dec. 1996.

[10] M. D. Smith, Extending SUIF for Machine-dependent Operations,
SUIF Compiler Workshop, 1996

[11] C. Lee, M. Potkonjak and W. H. Maggione-Smith, MediaBench: A
Tool for Evaluating and Synthesizing Multimedia and
Communications Systems, IEEE/ACM International Symposium
on Microarchitecture, 1997.

	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index

