
On the Optimization Power of Redundancy Addition and
Removal Techniques for Sequential Circuits

Enrique San Millán, Luis Entrena, José Alberto Espejo

Electrical, Electronic and Automation Engineering Department
University Carlos III of Madrid

{quique, entrena, ppespejo}@ing.uc3m.es

ABSTRACT

This paper attempts to determine the capabilities of
existing Redundancy Addition and Removal (SRAR)
techniques for logic optimization of sequential circuits. To
this purpose, we compare this method with the Retiming
and Resynthesis (RaR) techniques. For the RaR case the
set of possible transformations has been established by
relating them to STG transformations by other authors.
Following these works, we first formally demonstrate that
logic transformations provided by RaR are covered by
SRAR as well. Then we also show that SRAR is able to
identify transformations that cannot be found by RaR. This
way we prove the higher potential of the Sequential
Redundancy Addition and Removal over the Retiming and
Resynthesis techniques.

1. INTRODUCTION
Logic optimization for synchronous sequential circuits

is still an open and challenging problem. Given an initial
circuit description at the gate level, sequential logic
optimization aims at computing an equivalent circuit with
a smaller area occupation usually estimated through the
gate, connection or literal counts.

The two main approaches to sequential logic
optimization are Retiming and Resynthesis (RaR)
[MSBS91] and Sequential Redundancy Addition and
Removal (SRAR) [EnCh95]. The Retiming technique
consists in moving the flip-flops across combinational
gates, merging combinational blocks and optimizing the
resulting logic with combinational techniques in a
Resynthesis step. This method has become quite attractive,
despite its limitations.

The possible movements of flip-flops across
combinational gates can be built from a sequence of four
primitive retiming operations, as stated in the following
lemma [RSSB98]:

Lemma: A general retiming operation can be
constructed as the sequence of retiming moves across
primitive transformations i), ii), iii) and iv) shown in the
figure 1.1.

Forward (i)

Forward (iii)

Backward (ii)

Backward (iv)

Figure 1.1: Primitive retiming operations

The method of Retiming and Resynthesis has been
widely studied, and the optimization capability of these
methods have been formally established by several authors
[MSBS91][ZSA98][Ran97][RSSB98].

The approach to establish the capabilities of the
method has been characterized by relating them to the
STG transformations in the following theorems
[RSBS91][RSSB98]:

Theorem (Malik): Given a machine implementation
M1, corresponding to a state transition graph G, with a
state assignment S1, it is always possible to derive a
machine M2 corresponding to the same state transition
graph G, and a state assignment S2 by applying only a
series of Resynthesis and Retiming operations on M1

Theorem: Let M1 be an implementation
corresponding to state assignment S1 and STG G1 and M2
be an implementation corresponding to state assignment
S2 and STG G2. Then M2 can be obtained from M1 using
only a sequence of Retiming and Resynthesis operations if
and only if G1 and G2 are 1-step equivalent.

The other method, Redundancy Addition and Removal
has been shown to be a powerful logic optimization
method by several authors [EnCh95], [ChMa94],
[KuMe94], [EESO01]. This technique has demonstrated to
produce excellent results for combinational circuits, being
the major advantages the low memory usage and the short
run times. Sequential logic optimization is also possible
using this technique by considering sequential
redundancies [EnCh95].

In this work we compare the sequential
transformations that can be obtained by RaR and by
SRAR, working towards a formalization of the set of
transformations that can be obtained with the latter
technique. In particular, we demonstrate that the SRAR
technique covers all the possible optimizations that can be
provided by the RaR technique. Then we will show that
SRAR is able to optimize some typical circuit cases that
cannot be optimized by Retiming and Resynthesis. This
way, we demonstrate the higher potential of the Sequential
Redundancy Addition and Removal technique.

2. OPTIMIZATION POWER OF
SEQUENTIAL REDUNDANCY ADDITION
AND REMOVAL

2.1 Possible Retiming transformations with
Redundancy Addition and Removal

Although Redundancy Addition and Removal
techniques have been shown to be efficient optimization
techniques, the power of optimization of these methods
has not been formalized. In this section we will show some
of the capabilities of these methods, first comparing them
with the Retiming methods and then showing some
additional features.

Theorem: All possible Retiming transformations in a
circuit can be obtained by Redundancy Addition and
Removal Transformations.

Proof: As all possible Retiming transformations are
compositions of four primitive operations, we just need to
proof that each one of these primitives can be performed
by a Redundancy Addition and Removal Transformation.
We consider the four cases i), ii), iii) and iv) shown in
figure 1.1:

i) Moving forward two registers through a nand gate
can be accomplished in two steps: moving first the
inverter, and then the and gate. So we consider both cases:
• Moving forward an and gate:

FF1

FF1

FF1

FF1

FF2

FF2

FF2

g1

g2
g1

g1
g2

g2

s-a-1

0
0

00

s-a-1

0

0

0

Propagation path blocked

Propagation path blocked

a)

b)

c)

d)

Figure 2.2: Moving forward an and gate.

Consider the circuit in figure 2.2 a). We need to move
forward g1 through FF1. First we add g2 and FF2 as
shown in figure 2.2 b) because the connection between g2
and FF2 is redundant. To show this redundancy, consider
the s-a-1 fault shown in figure 2.2 b). To justify the fault,
FF2 needs a mandatory assignment of 0, and by
implication, g1 and FF1 have assignments of 0. FF1=0
blocks the fault, and thus connection FF2 to g2 is
redundant.
Now, by adding this redundancy to the circuit, a new
redundancy has appeared as shown in figure 2.2 c). S-a-1
fault shown in that figure produces a mandatory
assignment of 0 in g2, which blocks the fault propagation.
So the second input to g1 is redundant, and by eliminating
this redundancy we get 2.2 d), reaching the transformed
circuit we were looking for.
• Moving forward an inverter:
Consider the circuit in figure 2.3a). The addition shown in
2.3b) and removal shown in 2.3c) leads to 2.3d)

FF2

FF2

FF2

FF1

FF1

FF1

g

g

s-a-1

0
0

1

0

1

1

s-a-1

0
1

0

1

a)

b)

c)

d)

Propagation path blocked

Propagation path blocked

0

Figure 2.3: Moving forward an inverter

ii) Moving backward a register through a nand gate:
It can be accomplished as in i) in two steps: moving first
the and gate and then moving the inverter.
• Moving backward an and gate:
Consider the circuit in figure 2.4a). The addition shown in
2.4b) and removal shown in 2.4c) leads to 2.4d)

FF1

FF1

FF1

FF1

FF2

FF2

FF2

g1

g2
g1

g2
g1

g2

s-a-1
0

1

0

0

s-a-1

Propagation path blocked

00

00

Propagation path blocked

a)

b)

c)

d)

Figure 2.4. Moving backward an and gate

• Moving backward an inverter:

FF1

FF2

FF2

FF2

FF1

FF1

g

g

s-a-1
0

1

00

1

1

s-a-10

0
1

0

1

1

Propagation path blocked

a)

b)

c)

d)

Figure 2.5. Moving backward an inverter

Consider the circuit in figure 2.5a). The addition shown in
2.5b) and removal shown in 2.5c) leads to 2.5d)

iii) Moving forward a register in a multiple fanout
point:
Consider the circuit in figure 2.6a). The addition shown in
2.6b) and removal shown in 2.6c) leads to 2.6d)

FF1

FF1

FF1 FF1

FF2 FF2

g

g

FF2

d)

b)

c)

a)

Figure 2.6. Moving forward a register in a multiple
fanout point

iv) Moving backward a register to a multiple fanout

point:
 Consider the circuit in figure 2.7a). The addition shown
in 2.7b) and removal shown in 2.7c) leads to 2.7d)

s-a-0

1

0
1

0

s-a-0
1

0
0
1

FF1

FF2

FF1

FF1

FF2

FF2

FF1
g

g
a) b)

c) d)

Figure 2.7

Having proved that all the primitive Retiming
transformations can be achieved by Redundancy Addition
and Removal transformations, the proof is finished. n

This theorem shows that the powerful of Redundancy
Addition and Removal techniques is at least the same as
the one stated for Retiming methods.

Note that for the proof of the theorem only a subset of
all the possible redundancy additions is used. Addition of
multiple wires/gates at the same time is not needed for the
proof.

As we have characterization of the possible Retiming
transformations by relating them to the STG
transformations, we apply those results to Redundancy
Addition and Removal methods as follows:

Corollary: (encoding power of Redundancy Addition
and Removal). Given a machine implementation M1,
corresponding to a state transition graph G, with a state
assignment S1, it is always possible to derive a machine
M2 corresponding to the same state transition graph G,
and state assignment S2 by applying only a series of
Redundancy Addition and Removal operations on M1.

Corollary: Let M1 be an implementation
corresponding to state assignment S1 and STG G1 and M2
be an implementation corresponding to state assignment
S2 and STG G2 such that G2 is 1-step equivalent to G1.
Then M2 can be obtained from M1 using only a sequence
of Redundancy Addition and Removal operations.

2.2 Redundancy Addition and Removal
Transformations which are not possible with
Retiming and Resynthesis

Now we have established some of the capabilities of the
Redundancy Addition and Removal methods, but now we
will show that, opposed to the Retiming methods, these are
not the only possible STG transformations that these
techniques provide.

We will show examples where optimization by
Retiming and Resynthesis is not possible, but optimization
by Redundancy Addition and Removal is.

Example 1: In the example shown in figure 2.8 is not

possible to reach circuit 2.8b) from circuit 2.8a) by a
sequence of Retiming and Resynthesis transformations
[Ran97].

However, Redundancy Addition of a gate and Removal
of a wire makes the optimization possible. The addition of
the redundant or gate shown in figure 2.8c) makes the
wire shown in figure 2.8d) redundant, and the removal of
this redundant wire leads to circuit 2.8b).

x

e

y

e

x

e
o

y

e

e

e

s-a-1
0

0

0
0 0

Propagation path blocked

s-a-v
0

0

0 0 Propagation path blocked
x

y

a) Original circuit

c)

d)

b) Equivalent circuit

g1

g1

g1

g2

g2

Figure 2.8. Example 1

Example 2: In the example of figure 2.9 is not possible
to reach circuit 2.9b) from 2.9a) by a sequence of Retiming
and Resynthesis transformations [RSSB98].

As in the previous example, there is a transformation
of Addition and Removal that can transform one circuit
into the other. The addition of the redundant or gate
shown in figure 2.9c), makes redundant the wire shown in
figure 2.9d). Removal of that redundant gate leads to
circuit 2.9b)

s-a-0

s-a-0

a) Original Circuit b) Equivalent Circuit

c)

d)

Figure 2.9. Example 2

3. CONCLUSIONS AND FUTURE WORK
Logic optimization for synchronous sequential circuits

is still an open issue. The two main approaches to
sequential logic optimization are RaR and SRAR. In this

work we have compared the sequential transformations
that can be obtained with both methods.

We have formally demonstrated that all the possible
transformations that can be obtained in a circuit by a
sequence of RaR operations can also be obtained by a
sequence of SRAR transformations.

We have also shown that SRAR is able to perform
transformations that cannot be found by RaR. This way we
have proved the SRAR techniques are more complete than
the RaR methods.

4. REFERENCES

[ChMa94] S. C. Chang, M. Marek-Sadowska. “Perturb and

Simplify: Multi-level Boolean Network Optimizer”.
Proc. ICCAD-94, p. 2-5. November, 1994

[EnCh95] L.A. Entrena, K.-T. Cheng. “Combinational and
sequential logic optimization by redundancy
addition and removal”. IEEE Trans. on CAD, Vol.
14, No. 7, July 1995, p. 909-916

[GlCh95] U. Gläser, K.-T. Cheng. “Logic Optimization by an
Improved Sequential Redundancy Addition and
Removal Technique”. Proc. ASP-DAC. September,
1995

[KuMe94] W. Kunz, P. R. Menon. “Multi-level Logic
Optimization by Implication Analysis”. Proc.
ICCAD-94, pp. 6-13. November, 1994

[MSBS91] S. Malik, E. M. Sentovich, R. Brayton, A.
Sangiovanni-Vincentelli. “Retiming and
Resynthesis: Optimizing Sequential Circuits Using
Combinational Techniques”. IEEE Transactions on
CAD of Integrated Circuits and Systems, vol. 10, p.
74-84. January 1991

[EESO01] J. A. Espejo, L. Entrena, E. San Millán, E. Olías.
“Generalized Reasoning Scheme for Redundancy
Addition and Removal Logic Optimization”. Proc.
DATE’01, p. 391-395. March 2001.

[SEEO99] E. San Millán, L. Entrena, J.A. Espejo, Silvia
Chiusano, Fulvio Corno. “ Integrating symbolic
Techniques in ATPG-Based Sequential Logic
Optimization”. Proc. DATE’99, p. 516-523 March
1999.

[RSSB98] R.K. Ranjan, V. Singhal, F. Somenzi, R.K.
Brayton. “On the optimization Power of Retiming
and Resynthesis Transformations”. Proc.
ICCAD’98, p 402-407, November 1998.

[Ran97] R.K.Ranjan. “Design and Implementation
Verification of Finite State Systems”. PhD thesis.
Electronics Research Laboratory. University of
California. Berkeley. CA 94720. 1997.
Memorandum No. UCB/ERL M97/99.

[ZSA98] H.Zhou, V. Singhal, A. Aziz. “How Powerful is
Retiming?”. Proc. IEEE/ACM intl. Workshop on
Logic Synthesis, p 111-125, May 1998.

	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index

