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ABSTRACT 

This paper attempts to determine the capabilities of 
existing Redundancy Addition and Removal (SRAR) 
techniques for logic optimization of sequential circuits. To 
this purpose, we compare this method with the Retiming 
and Resynthesis (RaR) techniques. For the RaR case the 
set of possible transformations has been established by 
relating them to STG transformations by other authors. 
Following these works, we first formally demonstrate that 
logic transformations provided by RaR are covered by 
SRAR as well. Then we also show that SRAR is able to 
identify transformations that cannot be found by RaR. This 
way we prove the higher potential of the Sequential 
Redundancy Addition and Removal over the Retiming and 
Resynthesis techniques.  

 

1. INTRODUCTION 
Logic optimization for synchronous sequential circuits 

is still an open and challenging problem. Given an initial 
circuit description at the gate level, sequential logic 
optimization aims at computing an equivalent circuit with 
a smaller area occupation usually estimated through the 
gate, connection or literal counts.  

The two main approaches to sequential logic 
optimization are Retiming and Resynthesis (RaR) 
[MSBS91] and Sequential Redundancy Addition and 
Removal (SRAR) [EnCh95]. The Retiming technique 
consists in moving the flip-flops across combinational 
gates, merging combinational blocks and optimizing the 
resulting logic with combinational techniques in a 
Resynthesis step. This method has become quite attractive, 
despite its limitations.  

The possible movements of flip-flops across 
combinational gates can be built from a sequence of four 
primitive retiming operations, as stated in the following 
lemma [RSSB98]: 

Lemma: A general retiming operation can be 
constructed as the sequence of retiming moves across 
primitive transformations i), ii), iii) and iv) shown in the 
figure 1.1.  

 
Forward (i)

Forward (iii)

Backward (ii)

Backward (iv)  
 

Figure 1.1: Primitive retiming operations  
 

The method of Retiming and Resynthesis has been 
widely studied, and the optimization capability of these 
methods have been formally established by several authors 
[MSBS91][ZSA98][Ran97][RSSB98]. 

The approach to establish the capabilities of the 
method has been characterized by relating them to the 
STG transformations in the following theorems 
[RSBS91][RSSB98]:  

Theorem (Malik): Given a machine implementation 
M1, corresponding to a state transition graph G, with a 
state assignment S1, it is always possible to derive a 
machine M2 corresponding to the same state transition 
graph G, and a state assignment S2 by applying only a 
series of Resynthesis and Retiming operations on M1 

Theorem: Let M1 be an implementation 
corresponding to state assignment S1 and STG G1 and M2 
be an implementation corresponding to state assignment 
S2 and STG G2. Then M2 can be obtained from M1 using 
only a sequence of Retiming and Resynthesis operations if 
and only if G1 and G2 are 1-step equivalent. 

The other method, Redundancy Addition and Removal 
has been shown to be a powerful logic optimization 
method by several authors [EnCh95], [ChMa94], 
[KuMe94], [EESO01]. This technique has demonstrated to 
produce excellent results for combinational circuits, being 
the major advantages the low memory usage and the short 
run times. Sequential logic optimization is also possible 
using this technique by considering sequential 
redundancies [EnCh95]. 



In this work we compare the sequential 
transformations that can be obtained by RaR and by 
SRAR, working towards a formalization of the set of 
transformations that can be obtained with the latter 
technique. In particular, we demonstrate that the SRAR 
technique covers all the possible optimizations that can be 
provided by the RaR technique. Then we will show that 
SRAR is able to optimize some typical circuit cases that 
cannot be optimized by Retiming and Resynthesis. This 
way, we demonstrate the higher potential of the Sequential 
Redundancy Addition and Removal technique. 

2. OPTIMIZATION POWER OF 
SEQUENTIAL REDUNDANCY ADDITION 
AND REMOVAL 

2.1 Possible Retiming transformations with 
Redundancy Addition and Removal 

Although Redundancy Addition and Removal 
techniques have been shown to be efficient optimization 
techniques, the power of optimization of these methods 
has not been formalized. In this section we will show some 
of the capabilities of these methods, first comparing them 
with the Retiming methods and then showing some 
additional features. 

Theorem: All possible Retiming transformations in a 
circuit can be obtained by Redundancy Addition and 
Removal Transformations. 

Proof: As all possible Retiming transformations are 
compositions of four primitive operations, we just need to 
proof that each one of these primitives can be performed 
by a Redundancy Addition and Removal Transformation. 
We consider the four cases i), ii), iii) and iv) shown in 
figure 1.1: 

i) Moving forward two registers through a nand gate 
can be accomplished in two steps: moving first the 
inverter, and then the and gate. So we consider both cases: 
• Moving forward an and gate: 
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Figure 2.2: Moving forward an and gate. 

Consider the circuit in figure 2.2 a). We need to move 
forward g1 through FF1. First we add g2 and FF2 as 
shown in figure 2.2 b) because the connection between g2 
and FF2 is redundant. To show this redundancy, consider 
the s-a-1 fault shown in figure 2.2 b). To justify the fault, 
FF2 needs a mandatory assignment of 0, and by 
implication, g1 and FF1 have assignments of 0. FF1=0 
blocks the fault, and thus connection FF2 to g2 is 
redundant.  
Now, by adding this redundancy to the circuit, a new 
redundancy has appeared as shown in figure 2.2 c). S-a-1 
fault shown in that figure produces a mandatory 
assignment of 0 in g2, which blocks the fault propagation. 
So the second input to g1 is redundant, and by eliminating 
this redundancy we get 2.2 d), reaching the transformed 
circuit we were looking for. 
• Moving forward an inverter: 
Consider the circuit in figure 2.3a). The addition shown in 
2.3b) and removal shown in 2.3c) leads to 2.3d)  
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Figure 2.3: Moving forward an inverter 
 

ii) Moving backward a register through a nand gate: 
It can be accomplished as in i) in two steps: moving first 
the and gate and then moving the inverter. 
• Moving backward an and gate: 
Consider the circuit in figure 2.4a). The addition shown in 
2.4b) and removal shown in 2.4c) leads to 2.4d) 
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Figure 2.4. Moving backward an and gate 
 
• Moving backward an inverter: 
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Figure 2.5. Moving backward an inverter 
 

 
Consider the circuit in figure 2.5a). The addition shown in 
2.5b) and removal shown in 2.5c) leads to 2.5d) 

iii) Moving forward a register in a multiple fanout 
point: 
Consider the circuit in figure 2.6a). The addition shown in 
2.6b) and removal shown in 2.6c) leads to 2.6d) 
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Figure 2.6. Moving forward a register in a multiple 
fanout point 

 
iv)  Moving backward a register to a multiple fanout  

point: 
 Consider the circuit in figure 2.7a). The addition shown 
in 2.7b) and removal shown in 2.7c) leads to 2.7d) 
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Figure 2.7 
 

Having proved that all the primitive Retiming 
transformations can be achieved by Redundancy Addition 
and Removal transformations, the proof is finished.  n 
 

This theorem shows that the powerful of Redundancy 
Addition and Removal techniques is at least the same as 
the one stated for Retiming methods. 

Note that for the proof of the theorem only a subset of 
all the possible redundancy additions is used. Addition of 
multiple wires/gates at the same time is not needed for the 
proof. 

As we have characterization of the possible Retiming 
transformations by relating them to the STG 
transformations, we apply those results to Redundancy 
Addition and Removal methods as follows: 

Corollary: (encoding power of Redundancy Addition 
and Removal). Given a machine implementation M1, 
corresponding to a state transition graph G, with a state 
assignment S1, it is always possible to derive a machine 
M2 corresponding to the same state transition graph G, 
and state assignment S2 by applying only a series of 
Redundancy Addition and Removal operations on M1. 

Corollary: Let M1 be an implementation 
corresponding to state assignment S1 and STG G1 and M2 
be an implementation corresponding to state assignment 
S2 and STG G2 such that G2 is 1-step equivalent to G1. 
Then M2 can be obtained from M1 using only a sequence 
of Redundancy Addition and Removal operations. 

2.2 Redundancy Addition and Removal 
Transformations which are not possible with 
Retiming and Resynthesis 

Now we have established some of the capabilities of the 
Redundancy Addition and Removal methods, but now we 
will show that, opposed to the Retiming methods, these are 
not the only possible STG transformations that these 
techniques provide. 

We will show examples where optimization by 
Retiming and Resynthesis is not possible, but optimization 
by Redundancy Addition and Removal is. 

 
Example 1: In the example shown in figure 2.8 is not 

possible to reach circuit 2.8b) from circuit 2.8a) by a 
sequence of Retiming and Resynthesis transformations 
[Ran97]. 

However, Redundancy Addition of a gate and Removal 
of a wire makes the optimization possible.  The addition of 
the redundant or gate shown in figure 2.8c) makes the 
wire shown in figure 2.8d) redundant, and the removal of 
this redundant wire leads to circuit 2.8b).  
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Figure 2.8.  Example 1  
 

Example 2: In the example of figure 2.9 is not possible 
to reach circuit 2.9b) from 2.9a) by a sequence of Retiming 
and Resynthesis transformations [RSSB98]. 

As in the previous example, there is a transformation 
of Addition and Removal that can transform one circuit 
into the other. The addition of the redundant or gate 
shown in figure 2.9c), makes redundant the wire shown in 
figure 2.9d). Removal of that redundant gate leads to 
circuit 2.9b) 
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Figure 2.9.  Example 2 

3. CONCLUSIONS AND FUTURE WORK 
Logic optimization for synchronous sequential circuits 

is still an open issue. The two main approaches to 
sequential logic optimization are RaR and SRAR. In this 

work we have compared the sequential transformations 
that can be obtained with both methods.  

We have formally demonstrated that all the possible 
transformations that can be obtained in a circuit by a 
sequence of RaR operations can also be obtained by a 
sequence of SRAR transformations. 

We have also shown that SRAR is able to perform 
transformations that cannot be found by RaR. This way we 
have proved the SRAR techniques are more complete than 
the RaR methods. 
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