Sequential SPFDs

Subarnarekha Sinha
University of California at Berkeley
Berkeley, CA 94720

Abstract

SPFDs are a mechanism to express flexibility in Boolean net-
works. Introduced by Yamashita et al. in the context of FPGA
synthesis [4], they were extended later to general combinational
networks [2]. We introduce the concept of sequential SPFDs
and provide an algorithm to compute them based on a partition
of the state bits. The SPFDs of each component in the partition
are used to generate equivalence classes of states. We provide a
formal relation between the resulting state classification and the
equivalence classes produced by classical state minimization of
completely specified machines [6]. The SPFDs associated with
the state bits can be applied for re-encoding the state space. For
this, we give an algorithm to re-synthesize the sequential circuit
using sequential SPFDs and the new state re-encoding.

1 Introduction

During logic synthesis, the implementation flexibility of a net-
work is used to optimize it. Classically, the flexibility of the in-
dividual network nodes is represented using Incompletely Spec-
ified Functions (ISFs). Don’t Cares are applied to extract this
flexibility. These are of two forms: Satisfiability Don’t Cares
(SDCs) and Observability Don’t Cares (ODCs) [1]. SDCs rep-
resent input combinations at a node that cannot be generated
by the driving logic. ODCs are input combinations for which
the output of the node is not observable at any primary output.
ODCs are expensive to compute and need to be updated after
every change of another node function. To avoid this, Compat-
ible Observability Don’t Cares (CODCs) [5] were introduced,
which represent subsets of ODCs. They are efficiently com-
puted by propagating CODCs in reverse topological order from
the outputs to the inputs, and are independent; i.e., a CODC at
one node can be used for optimizing the node function without
affecting the validity of the CODCs at other nodes.

Yamashita et al. developed a new method to express flexibil-
ity, called Sets of pairs of functions to be distinguished (SPFD),
in the context of FPGA synthesis [4]. These were extended [2]
for general combinational networks. SPFDs represent a set of
ISFs, in contrast to don’t cares which express a single ISF. The
SPFD of a node specifies which pairs of minterms have to be
distinguished by the node function to ensure that enough infor-
mation is available to resynthesize the fanout network. Since
an SPFD specifies what the node has to distinguish, it can be
considered the “information content” assigned to a node.

The classical computation of equivalence classes of states for
finite state machines was introduced in [11]. There has been
significant research in the area of finite state machine minimiza-
tion (c.f. [6]). Most of these approaches suffer from state space

Andreas Kuehlmann
Cadence Berkeley Labs
Berkeley, CA 94704

Robert K.Brayton
University of Californiaat Berkeley
Berkeley, CA 94720

output

Figure 1: Example.

explosion. In addition, the benefits of state minimization do not
necessarily translate favorably to the final implementation of the
sequential circuit. Approaches based on structural techniques
try to solve this problem by working directly on the sequential
circuit. The circuit structure is used to extract the set of un-
reachable states which are later applied as don’t cares for circuit
optimization ([7, 8]). However, these approaches still have to
represent the entire state space and can potentially run into the
state space explosion problem. To cope with this, local transfor-
mation techniques such as ATPG-based methods [9] and retim-
ing and resynthesis [10] have been used. These are currently the
most widely employed techniques, but do not capture the entire
freedom of sequential optimization. Our approach avoids the
state space explosion problem by using a partition of the state
space while exploring more sequential freedom.

In [2], a procedure for computing compatible SPFDs for all
nodes in a combinational network and a procedure to use them
in resynthesis are presented. A more recent publication [3] gives
more robust techniques for computing SPFDs. In this paper, we
introduce the concept of sequential SPFDs. In Section 2, we il-
lustrate how they can be used to reduce the number of state bits.
Section 3 gives a procedure for computing sequential SPFDs
and a proof that the union of the sequential SPFDs of the state
bits contains the classical state incompatibility graph of the se-
quential circuit [11]. In Section 4, we give a procedure for
resynthesizing a new circuit directly from the original one us-
ing sequential SPFDs.

2 Motivating Example

Example 1 Figure 1 gives an example of a sequential circuit
and its corresponding state transition graph (STG). It consists
of four latches connected in series forming a shift register. The
output of the fourth register is the only primary output of the
circuit. The initial value of the first register is 1, the others 0.

CEES

[

Plga(1) + . + (1)
POy (2) +... +ya(2)

Figure 2: Combinational Circuit.

R* (reachable states): 1000, 0100, 0010, 0001

1000 0001
yi(1) y1(2)
e
wo] — va(2)
0100 0010
Pliyi(1) + .+ 3u(1) R

PO y1(2)

Figure 3: Modified Combinational Circuit.

This circuit is sequentially redundant and could be implemented
with two registers only.

Combinational optimization treats the register inputs as primary
outputs and the register outputs as primary inputs, and optimizes
the combinational network between these boundaries. For the
example in Figure 1, the resulting combinational network is
shown in Figure 2. Obviously, combinational optimization tech-
niques based on CODCs or SPFDs will not produce any circuit
reduction.

Another way to apply combinational optimization techniques
to a sequential circuit is to consider the primary inputs plus reg-
ister outputs of the sequential circuit as primary inputs, and
only the primary outputs of the sequential circuit as primary
outputs. In addition, the register outputs can be constrained
to allow combinations that correspond to states that are reach-
able. Thus, the example of Figure 1 yields the combinational
optimization problem shown in Figure 3. Applying SPFDs
on this combinational circuit, the SPFD of the primary out-
put, which is the same as for y1(2), requires that all minterms
that produce a 1 have to be distinguished from all the minterms
that produce a 0. Its SPFD in terms of the present state bits
(y1(1),y2(1),ys(1),ya(1)), denoted Ry, is shown in Figure 3:
the minterm (0001) must be distinguished from the minterms
(1000), (0100) and (0010). The SPFDs of the remaining state
bits are empty. Thus, the union of the SPFDs of all state bits
yields R;. These are exactly the state pairs that produce dif-
ferent outputs in one transition. Thus SPFDs can provide infor-
mation about the transitions of a sequential circuit, but it is not
sufficient to just capture the information about one time frame.
Informally speaking, it is necessary to unroll the circuit multi-
ple times and determine the complete SPFDs at each node in a
sequential circuit by computing the union of the SPFDs of the
node in all time frames. We call these sequential SPFDs.

R* : 1000, 0100, 0010, 0001

c() c®
y(1) y1(2) y1(3)
=it ==
wy | 4(2) 94(3)
1000 0001 1000 0001 1000 0001
— Oo——0
= @]
0100 0010 0100 0010 0100 0010
Ry Ri(1) Ry(1)

Figure 4: SPFDs obtained after unrolling once.

R*:1000, 0100, 0010, 0001

@ cw cE ce)
4@11,(1) %n(2) %n(3) yi(4)
I LT - LT 0 LT -
A 1 | - 1 | - LT 0
- 1 | 0 1 | D 1 | -
vl | wo |l we| — | =@
1000 0001
0100 RS 0010
® c @ c) cw
(1) n(2) %(3) n(4) 31(5)
VI L - LT - LT . LT .
i) 1 | 0 1 | 0 1 | . LT -
ey i e 1 i — i y4l(4) 1 M(s-)
1000 0001

2
(=)
o

0010
A
Figure 5: Various levels of unrolling and the corresponding
SPFDs.

2.1 Sequential SPFDs

Consider a single unrolling of the circuit in Figure 1 which
yields the combinational optimization problem shown in Fig-
ure 4. Denote the first and second copies by C (1) and C(2), re-
spectively. The resulting combinational circuit has one primary
output, y1(3), and four primary inputs, y1 (1), y2(1), y3(1) and
ya(1).

Computing the SPFDs of the nodes in the circuit and express-
ing the union of the SPFDs of the present state bits of C'(2) and
C(1) in terms of the present state bits of C(2) and C(1), re-
spectively yields R;(1) and R2(1), shown in Figure 4. R4(1)
is exactly the same as R in Figure 3. R2(1) denotes the state
pairs that produce different outputs after exactly two transitions.
Hence, the union of the two SPFDs, Ry = R2(1)+R1(1), gives
all those state pairs that produce different outputs in one or two
transitions.

Unrolling the circuit once more and computing the SPFDs
of all three copies gives Rs shown in Figure 5(a). It has an
edge between any two states that can produce different outputs

output

Figure 6: Another example.

in one, two, or three transitions.

Unrolling the circuit any further produces no additional
edges. Thus Rj3 includes all pairs of states that must be dis-
tinguished. If a pair of states s and s’ has no edge between
them, then the sequential circuit behaves identically, irrespec-
tive of whether it starts from s or s’. Hence, these two states
could be merged. The graph Rs can be colored to obtain equiv-
alence classes for the states. Four colors are needed and hence
two state bits are required to implement the circuit.

This example illustrates how progressive unrolling adds
edges between state pairs (s, s') that behave differently in the
future. In this particular example, since all states behave dif-
ferently, we don’t gain any additional information over the fact
that the set of reachable states has four states and can be colored
with four colors.

The next example illustrates how sequential SPFDs can pro-

vide useful information that cannot be gained just by examining
the set of reachable states.
Example 2 Consider the circuit in Figure 6. It is similar to
that in Figure 1 except that the primary output of the circuit is
now the OR of the first and third register outputs. The results
for no unrollings and one unrolling are shown in Figure 7 and
are denoted R; and R, respectively. R; and R, denote the
state pairs that produce different outputs in one and two transi-
tions respectively. Here, Ry = R,. We can stop the unrolling
process since unrolling the circuit any further does not produce
any more state pairs that behave differently in the future. Since
R; is bipartite, only one state bit is required to implement the
circuit.

Thus, SPFDs can give useful relations between states which can
be exploited for deriving a new state encoding. In the following
section, we give a general procedure which uses SPFDs for re-
encoding the state space. We also prove the correctness of the
procedure.

3 Sequential SPFD Computation

3.1 Notation

For a sequential circuit M, denote the set of states by S, the
set of transitions by T, the present state bits by Y, and next
state bits by Y'. Let y; € Y denote a present state bit of M
and y; € Y denote the next state bit corresponding to ;. Let
Y = {V1,)2, -+, Vi }, denote a partition of Y, where each

o1(1)
R*:1000, 0100, 0010, 0001

1000 0001

0010 0100
R

yi(1) y1(2) %(3)
R:‘ —— ‘ — ‘ 1000 0001
wm| L w@] w()

0010 0100
Ry

Figure 7: Ry and Ry .

Y; is an individual component of . Each node n; € M has a
sequential SPFD, R;, associated with it.

Let C be the combinational circuit obtained from M where
its primary inputs are the primary inputs plus the present state
inputs of M, and primary outputs are the primary outputs and
the next state outputs of M.

3.2 Algorithm

Algorithm Com_seq_spfds starts with the combinational
circuit C' obtained from M without unrolling. It computes
the SPFDs of all nodes in C' and uses them to update the
sequential SPFDs of the nodes in M, which are initially empty.
The SPFDs associated with the present state bits denote the
information that they have to provide for ensuring correct
functionality after one time frame. Next, the SPFD of each
present state bit, y;, is attached to the primary output of C that
corresponds to y;. Then, the SPFDs of C are re-computed.
In general, the i** step computes the sequential SPFDs of the
nodes required for correctness in < 4 time frames. The process
stops when no more edges are added to any node in the network.

Algorithm Com_seq_spfds(M,)):

1. R* = Reach_states(M).
2. For each node n; € M, R; < ¢.
3. Obtain the combinational circuit C from M.

4. Restrict the present state inputs of C so that it allows only
R*; these are applied to restrict the number of input com-
binations that can be used during the image computation
steps. The initial SPFDs on the POs of C that are also
POs in M are given by the functions of the gates driving
these outputs. The SPFDs of the remaining POs of C (i.e.,
the next state bits of M) are empty.

5. Compute_spfds(C).
6. Update_spfds(M1).
7. repeat {

(a) Modify_state_spfds(M,).

(b) Attach empty SPFDs to the POs of C that are also
POs of M and the SPFDs of the present state bits of
M to the POs of C that correspond to the next state
bits of M.

(c) Compute_spfds(C).

(d) Update_spfds(M).

} until (no change in SPFDs of nodes).
8. Stop.

Reach_states computes the set of reachable states of M start-
ing from the initial states. In general, any over-approximation
of the reachable states can be used. However, the SPFDs of
the nodes are the smallest if the exact set of reachable states is
applied. Compute_spfds computes the SPFDs of all the nodes
in C as in the combinational case([2, 3]). It proceeds from pri-
mary outputs to primary inputs and consists of two steps applied
at each node in a reverse topological order; the SPFDs are first
mapped from the node’s local output space to its local input
space and then distributed among its fanins. Subroutine Up-
date_spfds uses the SPFDs of the nodes in C for updating the
sequential SPFDs of the corresponding nodes of M. For each
node n; in M, it computes the union of the sequential SPFD of
n; stored in M with the new SPFD attached to the copy of n; in
C. During each SPFD computation phase, the present state bits
are treated as primary inputs; hence the SPFD of each present
state bit, y;, is expressed in terms of the fanins of the fanouts
of y;. Modify_state_spfds transforms this SPFD so that it is
solely expressed in terms of the state bits in)k, where y; € Yx.
The set of reachable states, R*, is used to restrict the minterm
combinations in the SPFD of ;. It only contains edges between
nodes a and b such that a and b are cubes of), variables and are
contained in Sk, where Sy, is obtained from R* by existentially
quantifying the variables not in V.

For now, the algorithm assumes that) has been chosen. It is
important to observe that the algorithm only uses) in the sub-
routine Modify_state_spfds.) is useful if we want to do partial
re-encoding of the state space since each component of the par-
tition can be re-encoded independently. This avoids building an
incompatibility graph over the entire state space. One simple
heuristic to choose) could group present state bits that have
paths to the same set of primary outputs. In general, the struc-
ture of the circuit’s topology can be exploited to find a good
partition.

3.3 Theory

We formalize the ideas presented above. In general, M is a
Mealy machine; its primary output logic is a function of the
present state and the primary inputs.

Definition 1 A pair of states (s, s’) in S is distinguishable if
there exists an input sequence such that M produces different
output sequences for s and s’

Figure 8: Illustration of the proof of Lemma 3

Definition 2 Given a state s, the projection of s onto the set
of variables Z, is obtained by existential quantification of all
variables not in Z from s. This is denoted as sZ.

Definition 3 The sequential SPFD at a node, 7;, is the SPFD,
R;, associated with it when Com_seq_spfds terminates.

In the sequel, R}" denotes the SPFD of #; after m steps of
Com_seq_spfds.

Definition 4 The SPFD of a component, Y, € Y is the union
of the SPFDs of the present state bits in). It is denoted as
Ry, .

Definition 5 The state SPFD, R, isagraph G = (S, E), where
an edge exists between two states s and s’ if there exists a com-
ponent, J; € Y, such that (s¥i,s"i) € Ry,. Here, s¥i and
s'Yi are projections of s and s’ respectively onto the state bits
of V.

We first show that the algorithm Com_seq_spfds terminates
and then that the state SPFD, R, has an edge between a pair of
states if they are distinguishable.

Lemmal The computation of Rf of a node, mn; by
Com_seq-spfds is monotonic in k.

Proof:

Let the SPFD of n; after k£ and (k 4 1) iterations be denoted as
RY and R¥* respectively. Since R¥*" is obtained from R} by
adding SPFDs edges, hence Rf C R O

Lemma2 RY is finite for k > 0.

Proof:

Let the inputs of n; be denoted as Y;. R¥ denotes the input

combinations that have to be distinguished after & iterations.

Since n; has a finite number of inputs, RY C Y; x Y; is finite.
O

Lemma 3 If two reachable states s and s’ are distinguishable,
then the state SPFD, R, contains an edge between them.

Proof:
By contradiction. Suppose s and s’ are distinguishable in k
steps but (s,s') € R. Then, there must be a set of states
{5a, 5b,54,8,} € S such that (si,sa) € T, (sp,8) € T,
(sa,sp) € Rand (s, sp) & R. This is illustrated in Figure 8.
Suppose the algorithm stops after m steps. The stopping cri-
terion requires that no more additional SPFD edges are added.

Since (sa,ss) € R, then e = (s¥*,sy*) must exist in the

Figure 9: M’: Implementing the Transition relation of M

SPFD of at least one component, V. This implies that there
exists a present state bit, y; € Y, s.t. its SPFD, R;, con-
tains e. Since e € RJ", the algorithm would have added
e’ = (s, s to the SPFD of a present state bit, ;, in the
next iteration, where y; €). Hence, ¢’ € Ry,. This contra-
dicts our assumption (s, s;) & R. O

Theorem1 The sequential SPFDs computed by
Com_seq-_spfds contains the information for correct re-
encoding of a sequential machine.

Proof:

R¥ is monotonic (Lemma 1) and finite (Lemma 2) for all k > 0.
Thus, R}“ has a fixed point and hence Com_seq_spfds termi-
nates. By Lemma 3, an edge exists in the state SPFD between
any two reachable distinguishable states. O

3.4 PreviousWork

The work presented in this paper is similar to classical state
minimization of completely specified machines (c.f. [6]), which
progressively partitions the state space into equivalence classes
until no additional refinements can be made. At this point, the
states in an equivalence class can be merged. Thus, each equiv-
alence class contains states which are not distinguishable. By
Lemma 3, the state SPFD contains an edge between any two
states that are distinguishable. Hence, the states that can be col-
ored with the same color are a subset of an equivalence class ob-
tained by the classical state minimization. However, two states
in the same equivalence class can have an edge between them
in the state SPFD, since in general, only containment is guaran-
teed.

Consider the circuit M’, shown in Figure 9. M’ has a sin-
gle multi-valued node, i, which implements the transition and
output relations of M. The inputs of 5 are the primary inputs
and the present state variables of M. The outputs of 7 are the
primary outputs and next state variables of M. The state SPFD
obtained by executing Com_seq_spfds on M’ with Y = {Y'}
has an edge between two states iff they are distinguishable. In
this case, the equivalence classes obtained from the state SPFD
coincide with the ones obtained by the classical state minimiza-
tion algorithm. Thus, the additional edges are due to the partic-
ular decomposition of M and the partitioning of the state bits.

3.5 State Encoding Using Sequential SPFDs

The SPFD of each component in the partition can be used to
perform a re-encoding of the state space. For each component
Vi, its SPFD, Ry,, is solely expressed in terms of the variables

of ;. Ry, can thus be colored to get a new encoding of the bits
of);. This procedure can be repeated for each ;.

This method can accomplish a wide range of state encodings
depending on the partition used while computing the SPFDs.
On one extreme, if Y = {Y'}, then the SPFD of that component
is equal to the state SPFD. Coloring the state SPFD yields a
complete re-encoding of the state space. On the other extreme,
re-encoding using Y = {V1,Y2, -+, Vm}, Where J; = y;,
yields the original state encoding. A good partition that uses
the initial decomposition of the circuit can be applied to do par-
tial re-encoding of the state space. This approach is computa-
tionally feasible for very large machines since it only encodes a
subset of the state variables in each step. Traditional state min-
imization algorithms must build an incompatibility graph over
the entire state space.

The following example illustrates the effect of the different
partitions of Y on the quality of state re-encoding.

Example 3 Consider the circuit in Figure 6 and perform re-
encoding of the state space for different partitions of Y.

1.y = {yl}, where V1 = (y1,yz, y3,y4). After the
first step, the SPFDs of y» and y, are obtained. The
SPFDs of y, and y4 are {(0100,1000), (0100,0010)}
and {(0001,1000), (0001,0010)}, respectively. Simi-
larly, after the second step, the SPFDs of y; and ys;
are {(1000,0100), (1000,0001)} and {(0010,0100),
(0010,0001)}. Another step of the algorithm adds no
more edges and thus the algorithm stops. The SPFD of
)1 is bipartite. Hence, this SPFD can be colored using
two colors®. As a result, the reached states of the original
state space can be encoded as:

1000 — 0;0010 — 0; 0100 — 1; 0001 — 1;

2. Y = {1, Y}, where Y1 = (y1,y3) and Yo = (y2, ya).
After the first step, the SPFDs of y» and y4 are obtained.
The SPFDs of y» and y,4 in terms of the variables in their
respective components are {(10,00)} and {(01,00)}, re-
spectively. Similarly, after the second step, the SPFDs of
y1 and ys in terms of variables in their respective com-
ponents are {(10,00)} and {(01,00)}. The algorithm
terminates in the next step. Consider the effect of re-
encoding each partition separately. The SPFD of) is
{(10,00), (01,00)}. Since, it is bipartite, it can be col-
ored using two colors. Let minterms 00, 01 and 10 in),
map to 1, 0 and 0 respectively. Similarly, J» can be re-
encoded by coloring Ry,. Since Ry, is also bipartite, it
can also be colored with two colors. Let minterms 00, 01
and 10 in > map to 0, 1 and 1 respectively. Hence, a
circuit with two state bits can be obtained. So, the new
encoding of the reached states is:

1000 — 00; 0010 — 00;0100 — 11;0001 — 11;

3. Y= {y17y27y37y4}1 where Y1 = y1, Vo = y2, V3 =
ys and)V, = ya4. The algorithm terminates in three steps
and computes the SPFDs of all the nodes. The SPFDs

1Thisis exactly what we got at the end of Section 2

of each y; in terms of ¥ is {(1,0)}. Re-encoding each
partition separately produces no reduction in the state bits.

3.6 Sequential SPFDs Based on the Classical | ncom-
patibility Graph

It is interesting to note that the incompatibility graph of M de-

rived using the classical state minimization algorithms ([6]) can

be directly used to derive the sequential SPFDs of all the nodes

of M in one step. The procedure is outlined below:

1. Treat M as a specialized combinational circuit C where
the POs are the POs of M and the Pls are the Pls of M
plus the state bits of M. The next state bits of M are the
inputs of a dummy node D in C. The SPFD of D is the
supplied incompatibility graph.

2. Compute the SPFDs of all nodes in C (including D) in
reverse topological order from primary outputs to primary
inputs using Compute_spfds.

4 ResynthesisProcedure

Given the encoding relation between the old states and the new
states, Enc and the sequential SPFDs at all the nodes in M,
the original circuit can be resynthesized using the following
algorithm.

Algorithm Seq_resyn:

1. Proceed in topological fashion from primary inputs and
present state bits to primary outputs and present state out-
puts.

2. For each node, n;, perform the following two steps:

(a) Compute the mapping between the original and the
new fanin spaces of node 7;:

En(Y;,Y;) = IxyyeR (Y)Y = Enc(Y))
G(X,Y,Y;)G(X,Y*°,Y;),

where X is the set of primary inputs, Y is the set of
old state variables, Y° is the set of new state vari-
ables, R*(Y) is the set of reachable states, Enc
gives the new encoding of the states, G(X,Y,Y;)
gives the transition relation of the original fanins
and G(X,Y*,Y;) the transition relation of the new
fanins. The process is illustrated in Figure 10.
(b) Obtain the modified SPFD as

RI™(Y;,Y)) = 3y, v En(Y;, ;) En(Y],Y))
R]'(ijvy},)'
Color it to get an ISF for the node and minimize it.

3. Attach a new multi-output node, F, at the output of the
next state bits. F' has n inputs and m outputs, where n
is the number of original state bits and m is the number
of new state bits. This node maps the re-implemented next
state bits, Y, onto their new state encoding, Enc(Y"'), as
shown in Figure 11.

origina new

Yy : e
\ (End) !

X: Primary Inputs of M
Y': Original State bits of M
Y*: Encoded State bits of M

Figure 10: Deriving the encoding relation between the original
and new fanin variables, En(Y;,Yj;).

Figure 11: Computing the node of the multivalued function.

Example 4 Figure 1 can be redrawn as shown in Figure 12.
Assume that the sequential SPFDs of all the nodes are given.
Further, let the encoding between the old and the new state
spaces be {(1000,00), (0100,01), (0010, 10), (0001,11)}.
The sequential SPFD of f; is {(1000,0100), (1000, 0010),
(1000, 0001)}. In terms of its inputs, the SPFD can be re-
written as {(0001,1000), (0001,0100), (0001,0010)}. The
SPFD of f; in terms of its new fanins y{ and y5 is {(11,00),
(11,10), (11,01)}. Thus, we can re-implement f; as f1 =
(y§ + y5)- Similarly, the new functions of fa, f; and f4 are
fo =95 u5, fa = (yf + v5) and fu = y{ys respectively. The
encoding between Y’ and Y is

1000 — 0010
0100 — 1110
0010 — 1000
0001 — 1011.

The new function of the output node F' is given in Table 1. It
can be implemented as two binary nodes, n1 and n..

n = flg(ﬁ@ﬁl)
fifs(fo @ fa)

n2

The SPFD of the output in terms of its inputs is
{(0001,1000), (0001,0100), (0001,0010)}. Given the new

Table 1: Function Table of MV-node

)
o

[9
0

=]t
o o r oM
N NN
o o ol
»oro

0
1
1

R : 1000, 0100, 0010, 0001 tput

y P (I A
f L[[«
Y3 —‘ {>[3 %
Y1 I > 1 77/\

Figure 12: Revisiting the first example.

fi=vi+ys

=Y S ys
ny = Y5
Intial state : 00

Figure 13: Re-implementation of Example 1.

state encoding, the modified SPFD is {(11,00), (11,01),
(11,10) }. Thus the new function of the output is yfy5.

The above circuit can be further simplified by collapsing fi,
f2, f3 and f4 into nq and ny to yield the circuit shown in Fig-
ure 13.

Similarly, resynthesizing the circuit in Figure 5 using the
state encoding

1000 — 1;0100 — 0;0010 — 1;0001 — 0;

and simplifying it yields the circuit in Figure 14. Note that in
general Com_seq_spfds followed by Seq_resyn may be iterated

to yield further reductions.

5 Conclusionsand Future Work

Given a partition of the state bits, an algorithm was presented
which computes sequential SPFDs for the nodes in a sequential
circuit. Each component in the partition is also associated with
an SPFD. The SPFDs of these components can be applied for
re-encoding the state space. This approach can be particularly
useful for larger machines as it avoids building the incompat-
ibility graph for the entire state space. The effect of different
partitions on the quality of results was illustrated. In the future,
we plan to investigate different partitioning heuristics to come
up with good criteria for partitioning the state space.

Another algorithm uses the sequential SPFDs and a new state
encoding to resynthesize the sequential circuit. The resynthesis
procedure can also be used in conjuction with other state mini-
mization algorithms for obtaining a new circuit. The two algo-
rithms can be iterated to yield new partitions and new encod-
ings. The algorithms work directly on the current implementa-
tion of the machine and thus only deal with completely specified
machines. A natural extension is to investigate the application
of these ideas to incompletely specified machines.

Acknowledgements

This research was supported by the SRC under contract 683-002 and the
California Micro program and our sponsors under this program, Fujistu,
Cadence and Synopsys.

output

Y1

n=1y
Initial state: 1

Figure 14: Re-implementation of Example 2.

References

[1] G.D. Hachtel and F. Somenzi. Logic Synthesis and verification
algorithms. Boston : Kluwer Academic Publishers, 1996.

[2] S. Sinha and R. Brayton, “Implementation and use of SPFDs in
optimizing boolean networks,” in ICCAD, pages 103-110, 1998.

[3] S. Sinhaand R. Brayton, “Improved Robust SPFD Computations”,
in IWLS2001.

[4] S. Yamashita, H. Sawada, and A. Nagoya. A New Method to Ex-
press Functional Permissibilities for LUT based FPGAs and Its Ap-
plications. In ICCAD, pages 254261, 1996.

[5] H. Savoj. Don’t Cares in Multi-Level Network Optimization. Ph.D.
thesis, UC Berkeley, 1992.

[6] T.Kam.T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. Syn-
thesis of finite state machines: logical optimization. Boston :
Kluwer Academic Publishers, 1997.

[7]1 B. Lin, H. Touati and R. Newton. Don’t Care Minimization of
Multi-level Sequential Logic Networks. In ICCAD, pages 414-417,
1990.

[8] C.Lin, K. Chen, M. Marek-Sadowska and M. Lee. Sequential Per-
missible Functions and their Application to Circuit Optimization.
In European Design and Test Conference, pages 334-339, 1996.

[9] K.T. Cheng and L.A. Entrena. Sequential logic optimization by re-
dundancy addition and removal. In ICCAD, pages 310-315, 1993.

[10] S. Malik, E.M. Sentovich and R.K. Brayton. Retiming and Resyn-
thesis: Optimizing sequential networks with combinational net-
works. In |[EEE Trans on Computer-Aided Design, pages 74-84,
1991.

[11] Z.Kohavi. Switching and Finite Automata Theory. McGraw Hill
Publishing Company, 1978.

	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index

