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Abstract� The soaring clocking frequency and integration den�

sity demand robust and stable power delivery to support tens of

millions of transistors switching� To ensure the design quality of

power delivery� extensive transient power grid simulations need to

be performed during design process� However� the traditional cir�

cuit simulation engines are not scaled as well as the complexity of

power delivery� as a result� it often takes a long runtime and huge

memory requirement to simulate a medium size power grid circuit�

In this paper� we develop and present a new e�cient tran�

sient simulation algorithm for power distribution� The proposed

algorithm� TLM�ADI �Transmission�Line�Modeling Alternating�

Direction�Implicit�� �rst models the power delivery structure as

transmission line mesh structure� then solves the transient MNA

matrices by the alternating�direction�implicit method� The pro�

posed algorithm� with linear runtime and memory requirement� is also

unconditionally stable which ensures that the time�step is not limited

by any stability requirement� Extensive experimental results show

that the proposed algorithm is not only orders of magnitude faster

than SPICE but also extremely memory saving and accurate�

I� INTRODUCTION

The increase in the complexity of the VLSI chips� and the de�
crease in the feature size of the chips demand larger grids for power
distribution� This causes the design and veri�cation of the power
networks have become a challenging task� The inferior designed
power distribution network can degrade the circuit performance�
noise margin� and the reliability� Since the power grids are rapidly
becoming a limiting factor in high performance microprocessors�
the ability of analyzing power grids e�ciently is a critical require�
ment to obtain a robust design ���� �	�� �
�� ����
There are several sources that cause the degradation of the qual�
ity of power delivery systems such as IR drop� Ldi�dt drop� and
resonance issues� While IR drop can be simply veri�ed by the DC
analysis� the Ldi�dt drop issues need to be analyzed by transient
simulation due to the di�erentiation nature of Ldi�dt drop� In or�
der to ensure the design quality of power delivery� extensive tran�
sient simulations are required during the design process� However�
due to the complexity of on�chip power grids� it is computation�
ally expensive to simulate all the transistors with power delivery
structure� To e�ectively enhance the simulation speed� it has been
proposed to decouple the power delivery structure simulation and
transistors simulation �
�� That is� it �rst simulates transistors to
get the drown current waveforms and then performs linear simula�
tion with those currents attached as independent current sources�
In this way� we can e�ectively speed up the simulation since there
are fewer elements in both circuits and the linear circuit can be
simulated e�ciently with only one LU decomposition� However�
due to the large size and grid nature of the linear circuit� SPICE
��� does not perform well in this type of system and often takes
days to complete the full simulation and needs many giga bytes
of memory space� Hence� in order to facilitate the design of large
scale power grids� it is crucial to develop an e�cient transient sim�
ulation engine which is capable of performing the full�chip power
grid analysis in a reasonable turn around time�
In this paper� we propose to use the TLM �Transmission Line

Modeling� ��� method to perform the time�domain simulation
since TLM can capture both the IR drop and Ldi�dt drop� TLM
is close related to the FDTD �Finite Di�erence Time Domain�
method� which is one of the most popular and powerful compu�
tational electromagnetic techniques in the microwave simulation
�eld ���� ���� ����� The TLM method di�ers from FDTD in the
sense that it utilizes transmission line cells to model the structure
and directly solves the voltage and current quantities while FDTD
uses Yee cell structure to obtain electric and magnetic �elds� Since
voltages and currents are the major focus of the VLSI power de�
livery analysis� TLM method can be applied directly to perform
power delivery transient simulation� The TLM method has been
successfully applied to analyze the LC networks by Gwarek �����
Unfortunately� the time step size is restricted by the minimum
grid cell size �Courant stability condition as the standard FDTD
method ������ For example� for the VLSI technology with feature
size as ��� �m and the dielectric permittivity as �� the Courant
limit is close to ���� fs� Thus it needs around 	������ time steps
to simulate an ��ns period�
To e�ectively reduce the stability limit requirement� several un�
conditional FDTD methods ��	�� ��
�� ���� have been proposed and
showed good potential in the application of on�chip microwave
analysis ��	�� However� there is still no unconditionally stable
TLM method in the literature to the authors� best knowledge�
In this paper� we develop an unconditionally stable algorithm�
TLM�ADI� which relaxes the time�step constraint enforced by
the Courant stability limit of the traditional TLM method� This
new time�stepping scheme is based on an innovative alternating�
direction�implicit �ADI� method ��
�� With this new method� the
upper bound of the time step is only limited by the accuracy re�
quirement rather than stability requirement� Thus� it greatly en�
hances the computational e�ciency due to the reduction of num�
ber of time steps� Furthermore� the runtime and memory is linear
with O�N� �N � the total number of nodes� since at each time step

it only solves around
p
N tridiagonal matrix equations with di�

mension
p
N �pN �

The TLM�ADI method with linear runtime and memory require�
ment is also unconditionally stable which ensures that time�step is
not limited by any stability requirement� Extensive experimental
results show that our algorithm is not only orders of magnitude
faster than SPICE but also extremely memory saving and accu�
rate�
The remainder of the paper is organized as follows� In Section II�
we brie�y review the �nite�di�erence algorithm� In Section III� we
derive the numerical formulation for our proposed method� and
two main features� unconditional stability and linear run time� of
the proposed method are dressed� In Section IV� numerical exper�
iments are presented� In Section V� the conclusion of this paper
is given�

II� POWER GRID MODELING AND SIMULATION
WITH THE FINITE DIFFERENCE METHOD

As illustrated in Figure �� we use transmission line grids to
model the power delivery structure� In each wire segment� we
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Fig� �� The transmission line modeling of a power grid structure

use a serially connected resistors and inductors with a ground
capacitor to represent it� The parameters r� l� and c are resistance
per unit length� inductance per unit length� and capacitance per
unit length� respectively� Once the model has been set up� the
system matrices are created by the transient nodal analysis� In
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Fig� �� KCL and KVL for a cell

each cell� as illustrated in Figure 	� by applying KCL at center
node� and KVL around the loops of that node in both the x� y
and y�z planes� we can write KCL and KVL equations for a node
oij at position �xi� zj� as �For simplicity� we ignore independent
sources��

�Cij
�

�t
�xij � ��Gijxij ���

After assembling the KVL and KCL equations for each cell� the
full system equations can be summarized as

�C
�

�t
x� �Gx � �Ss�t� ���

where x is the vector of nodal voltages and currents through the
inductors� and Ss�t� is the vector of voltage and current sources�
The system equations are equivalent to the modi�ed nodal anal�
ysis �MNA� equations�

Connection Between MNA and Transmission�Line�Equation

Equation �	� can also be expressed in the transmission�line�
equation �TLE� formation and hence can be solved by related
techniques such as TLM and FDTD methods ����
For instance� after multiplying the both sides of Equation ��� by
�C��ij and taking limit as �x � �� �z � �� and �l � � �Here�

a uniform internodal distance is assumed� i�e�� �x � �z � �l���
we can get the general TLE as follows�
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The basic concepts of �nite di�erence schemes for solving the 	�
dimensional TLE are quite simple� First� the domain �x � z � t
planes� of the solution is subdivided by a net with a �nite
number of mesh points ��xi� zj � tn� � �i�x� j�z� n�t� which is
represented by �jni�j� in the rest paper�� Then� the derivative
at each mesh point is replaced by the �nite di�erence� The
�nite di�erence can be done in many ways such as forward�
di�erence� backward�di�erence� or centered�di�erence� For exam�
ple� by using the centered�di�erence� the �v�xi� zj � t���tn���� and
�ix�x� zj � tn�������xi can be approximated as

�v�xi� zj � t�

�tn����
�

�vjni�j � vjn��
i�j

�t
���

�ix�x� zj � tn�����

�xi
�

�ixj
n����

i�����j � ixj
n����

i�����j

�x
� ���

In addition� we can approximate �ix��t� �iz��t� �iz��z� �v��x�
and �v��z by the similar way�
Similarly� ix and iz can be approximated by the centered�time�
average as

ix�xi����� zj � tn� �
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�
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Plugging the above approximated equations into Equation �
���
��
�For simplicity� we set r � � which is the LC circuit�� we get the
updating equations ���� as follows�
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The above updating equations are a simple explicit �nite di�er�
ence scheme� They can be easily done since only one unknown
variable appears in each di�erence equation� While it su�ers on
the Courant stability constraint ���� which is
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III� TRANSMISSION�LINE�MODELING
ALTERNATING�DIRECTION�IMPLICIT
METHOD

In this section� we �rst derive and present the TLM�ADI algo�
rithm for the homogeneous case �r� l� and c are constants�� Then
its stability is studied analytically� At the end� we generalize the
TLM�ADI method to the inhomogeneous case �r� l� and c have dif�
ferent values at di�erent positions�� and show that the run time of
the proposed algorithm is linear with O�N� �N � the total number
of nodes��






A� HOMOGENEOUS CASE

The ADI method is a well known method for solving the partial
di�erential equations �PDE�� The main feature of ADI is to sweep
directions alternately� Here we derive and present our uncondi�
tionally stable algorithm based on the ADI scheme� In contrast to
the standard �nite di�erence formulation with only one iteration
to advance from the nth to �n � ��th time step� the formulation
requires one sub�iteration to advance form nth to �n���	�th time
step� and a second sub�iteration to advance from �n � ��	�th to

�n���th time step� For example� considering the KCL equation of
���� every term in the �rst sub�iteration is e�ectively discretized
at n � ��� as
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where �ix � ix�x � �x�	� z� � ix�x � �x�	� z�� and �iz �
iz�x� z ��z�	� � iz�x� z � �z�	�� Note that the current terms
are discretized at time steps n and n � ��	� giving an over all
e�ect of n � ���� Thus� the �ix��l is evaluated explicitly from
known data at time step n� while the �iz��l is evaluated implic�
itly from as�yet known data at time step n � ��	� In the second
sub�iteration� every term is e�ectively discretized at n� 
�� as
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Here� the current terms are discretized at time steps n� ��	 and
n � �� giving an over all e�ect of n � 
��� Thus� the �iz��l is
evaluated explicitly from known data at time step n� ��	� while
the�ix��l is evaluated implicitly from as�yet known data at time
step n��� This ADI scheme can be applied to the KVL equations
of����
The updating equations are listed below� In this generalized for�
mulation� we have used the conventional semi�implicit formulation
to evaluate the voltage and current terms at the appropriate time
steps�
Sub�iteration �� Advance ix� iz� and v from time step n to
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Equation ��
� provides an explicit updating expression for ix
since it only depends on known values� Equation ���� provides an
implicit updating expression for the voltage component v� Note
that the matrix associated with this equation is tridiagonal� It can
be e�ciently solved by LU decomposition in linear time� After
that� we can update iz by plugging the values of v into Equation
��
��
Sub�iteration �� Advance ix� iz� and v from time step n���	

to time step n� ��
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Equation ���� provides an explicit updating expression for iz be�
cause it only depends on known values� Equation ���� provides an
implicit updating expression for the voltage component v� Since
the matrix associated with this equation is tridiagonal� it can be
e�ciently solved by LU decomposition in linear time� Finally� we
can update ix by substituting the values of v into Equation �����

B� STABILITY ANALYSIS

The general way of verifying the stability of a �nite�di�erence
algorithm is to put a sinusoidal traveling wave into the algorithm�
and make sure that the propagation gain of this traveling wave is
no more than one for all frequencies� By applying the Von Neu�
mann analysis ��� in the LC circuit �r � ��� we can analytically
prove that TLM�ADI method is unconditionally stable�
For each time step n� the instantaneous values of the inx � i

n
z � and

v
n
y in space across the grids are Fourier�transformed into the spa�
tial spectral domain with respect to the x and z coordinates to
provide a spectrum of spatial sinusoidal modes� By assuming the
wavenumbers kx� and kz along the x�� and z�direction� respec�
tively� these components can be represented as
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The composite vector in the spatial spectral domain at time�step
n is denoted as
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It can be shown that the Sub�iteration � �consisting of the equa�
tions ��
����
� with r � �� can be written in the spatial spectral
domain in matrix form as
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Similarly� it can be shown that Sub�iteration 	 �consisting of the
Equations ��������� with r � �� can be written in the spatial
spectral domain in matrix form as
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Substituting �	
� into �	
�� we get
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With the help of package MAPLETM� we can �nd the three eigen�
values of the composite matrix M �M�M� as follows
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By the detail analysis of the above eigenvalues� we are able to
prove that the proposed algorithm is unconditionally stable in the
following theorem�

Theorem �� The TLM�ADI algorithm is unconditionally stable�
Proof� The �rst eigenvalue is unity� For the rest two eigenvalues�
the arguments of the square roots in the numerators are all neg�
ative numbers� Hence� the square roots are imaginary numbers�
By taking the magnitudes of the numerators� we �nd symbolically
that they are exactly the same as denominators� Therefore� the
magnitudes of the eigenvalues are unity� regardless of the �t� If
all the eigenvalues of the iterative matrix are less or equal to one�
the iterative scheme is unconditionally stable� We conclude that
our TLM�ADI algorithm is unconditionally stable� �

C� INHOMOGENEOUS CASE AND LINEAR RUN
TIME

Generally� the parameters r� l� and c may have di�erent values
at di�erent positions of the circuit� Hence� we extend the TLM�
ADI method to handle more general situations� as illustrated in
Figure 
� The Rx�i�����j and Lx�i�����j are the equivalent resis�
tances and inductances in x� direction for a cell� Rz�i�j���� and
Lz�i�j���� are the equivalent resistances and inductances in z� di�
rection for a cell� and Ci�j is the equivalent capacitance for a cell�
By applying the similar derivation of Equation ��
������� we get
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the updating equations in matrix forms as follows�
For Sub�iteration �� we divide the set of these N �N � Nx �

Nz� nodes by Nx subsets with each one containing Nz points at
the z� direction� as illustrated in Figure ��
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where Dxi� Dvxi and Dxvi are Nz � Nz diagonal matrices� �Dzi

is a �Nz� ��� �Nz� �� diagonal matrix� Zzvi is a Nz�Nz lower�
��banded matrix �only diagonal and the �rst lower�subdiagonal
terms are nonzeros�� Yvzi is a �Nz� ��� �Nz� �� upper���banded
matrix �only diagonal and the �rst upper�subdiagonal terms are
nonzeros�� �i is a Nz � Nz tridiagonal matrix� ixjni������ and

vjni�� are Nz � � vectors �n � ��	� �� � � ��	� � � ��� and izjni�� is
a �Nz � �� � � vector �n � ��	� �� � � ��	� � � ��� All de�nitions of
these matrices and vectors are listed in Appendix A�

The computational load for ixjn����i������
is O�Nz� since it only de�

pends on the known values� From Equation �	�� and �
��� the

matrix associated with updating vjn����i�� is tridiagonal� so the run

time is also O�Nz�� The work load for izjn����i�� is O�Nz � �� be�

cause it depends only on the known values after vjn����i�� being

updated� Therefore� the run time is O�Nz� for each i�
Hence� the computational load for Sub�iteration � is O�N��
For Sub�iteration �� we divide the set of these N nodes by Nz

subsets with each one containing Nx points at the x� direction�
as illustrated in Figure ��

izjn����j���� � Dzj iz j
n����

��j���� � Dvzj �vj
n����
��j�� � vjn������j 	

�j � �� � � � � Nz � � �
�	

�jvjn����j � vjn������j � Dzvj �izj
n����

��j���� � izjn������j����	 � Zxvj ixj
n����

��j
�j � �� � � � � Nz �
�	

ixjn����j � �Dxj ixj
n����

��j � Yvxjvjn����j
�j � �� � � � � Nz �

	

where Dzj � Dvzj and Dzvj are Nx �Nx diagonal matrices� �Dxj is
a �Nx � ��� �Nx � �� diagonal matrix� Zxvj is a Nx �Nx lower�
��banded matrix� Yvxj is a �Nx � �� � �Nx � �� upper���banded
matrix� �i is a Nx � Nx tridiagonal matrix� ixjn��j and vjn��j are
Nx � � column vectors �n � ��	� �� � � ��	� � � ��� izjn��j���� is a

�Nx � �� � � vector �n � ��	� �� � � ��	� � � ��� All de�nitions of
these matrices and vectors are listed in Appendix A�
By the similar way� the computational load for Sub�iteration 	 is
also O�N��
Now� we can easily prove that TLM�ADI algorithm has a linear
run time at each time step�

Theorem �� The run time of TLM�ADI algorithm is O�N� at
each time step� where N is the total number of nodes�
Proof� Two sub�iterations� � and 	� need to be performed for
each time step� From the above discussion� we know their run
times are both O�N�� Therefore� the total run time is O�N�� �
We summarize our TLM�ADI algorithm in Table I�



�

TLM�ADI Algorithm

Input� ixjn� iz jn� vjn Output� ixjn��� iz jn��� vjn��
Begin
Sub�Iteration ��

ixjn����i������
� Dxiixjni������ � Dvxi�vjni���� � vjni���

�i � �� � � � � Nx � �

�ivjn����i�� � vjni�� �Dxvi�ixjni������ � ixjni�������
�Zzviizjni�� �i � �� � � � � Nx

izjn����i�� � �Dziizjni�� �Yvzivjn����i�� �i � �� � � � � Nx

Sub�Iteration ��

izjn����j����
� Dzjiz jn������j����

�Dvzj�vjn������j�� � vjn������j �

�j � �� � � � � Nz � �

�jvjn����j � vjn������j �Dzvj�izjn������j����
� izjn������j����

�

�Zxvj ixjn������j �j � �� � � � � Nz

ixjn����j � �Dxj ixjn������j � Yvxjvjn����j �j � �� � � � � Nz

End
Note� All symbols are defined in Appendix A�

TABLE I

TLM�ADI algorithm
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Fig� �� Compare the �a� run time �b� memory usages between TLM	ADI

and SPICE

IV� EXPERIMENTAL RESULTS

In this section� we present several numerical experiments with
implementing the TLM�ADI method in C language� and perform�
ing on an Alpha workstation with Dual SLOTB ��� MHz Alpha
	�	�� processors� For simplicity� the experiments are performed
on the homogeneous case� We use r � ���
 ���m� l � ��	�
pH��m� c � ���	� fF��m� and �x � �z � 
�� �m as the com�
mon parameters� Numerical results are carried out by using both
the TLM�ADI algorithm and the general circuit simulator SPICE�
The comparison of run time between TLM�ADI method and
SPICE simulator is shown at Figure 
�a� with �ps�time�step and

�� time steps� Figure 
�a� shows that the TLM�ADI method is
over ��� times faster than SPICE even for the circuit with only
around ������� nodes� In Figure 
�b�� �� we show that the run
time and memory requirement for TLM�ADI are both linear�
In Figure �� we examine the accuracy and unconditional stabil�
ity of the TLM�ADI algorithm by simulating the DC transient
response of a RLC circuit with ��� nodes� �ps�time�step� and �
volt DC voltage source excitation� Figure ��a� shows that TLM�
ADI produced almost identical waveform as SPICE�s at one node�
We demonstrate the unconditional stability of TLM�ADI method
in Figure ��b�� In this case� the Courant stability constraint is
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�����	 ps� Figure ��b� shows that the time step of TLM�ADI is
not limited by the stability constraint�
Finally� we use the TLM�ADI algorithm to simulate a 	�����node
power grids in ��ns clock period and show the result in Figure ��
Each node is attached a time�varying current source to model the
drown current�

V� CONCLUSION

An e�cient TLM�ADI algorithm for transient power grids simu�
lation is developed� Its unconditional stability and linear run time
have been demonstrated� The numerical simulation also shows
that the TLM�ADI algorithm not only speeds up orders of magni�
tude over the SPICE but also cuts down the memory requirement
and the results agree very well with the SPICE�s�
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Appendix A
Sub�iteration ��

� The kth diagonal entries of D matrices� and �Dzi�

�Dxi	
k

�
�Lx�i�����k � Rx�i�����k�t

�Lx�i�����k � Rx�i�����k�t

�Dvxi	
k

�
��t

�Lx�i�����k � Rx�i�����k�t

�Dxvi	
k

�
�t

�Ci�k

� �Dzi	
k

�
�Lz�i�k���� � Rz�i�k�����t

�Lz�i�k���� � Rz�i�k�����t

� The kth diagonal �Zzvi	
kd � and the kth first�lower�subdiagonal �Zzvi	

kl of Zzvi

�Zzvi	
kd �

�t

�Ci�k

�Lz�i�k���� � Rz�i�k�����t

�Lz�i�k���� � Rz�i�k�����t

�Zzvi	
kl � �

�t

�Ci�k

�Lz�i�k���� � Rz�i�k�����t

�Lz�i�k���� � Rz�i�k�����t

� The kth diagonal �Yvzi	
kd � and the kth first�upper�subdiagonal �Yvzi	

ku of Yvzi�

�Yvzi	
kd � �

��t

�Lz�i�k���� � Rz�i�k�����t

�Yvzi	
ku �

��t

�Lz�i�k���� � Rz�i�k�����t

� The tridiagonal matrix �i

�i �



���

�i�� �i�� � � � � � � � � � � �
�i�� �i�� �i�� � � � � � � � �
� �i�
 �i�
 �i�
 � � � � �
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�
�
�

�
�
�

�
�
� �

� � � � � � � � �i�Nz�� �i�Nz�� �i�Nz��
� � � � � � � � � � � �i�Nz

�i�Nz
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 �
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Ci�j ��Lz�i�j���� � Rz�i�j�����t	

� The ixjni������� vj
n
i��� and izjni���
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Sub�iteration ��

� The kth diagonal entries of D matrices� and �Dxj �

�Dzj 	k �
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��t
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�Ck�j

� �Dxj 	k �
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�Lx�k�����j � Rx�k�����j�t

� The kth diagonal �Zxvj 	kd � and the kth first�lower�subdiagonal �Zxvj 	kl of Zxvj
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� The tridiagonal matrix �j
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