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Abstract
This paper presents a method to automatically generate posynomial re-
sponse surface models for the performance parameters of analog inte-
grated circuits. The posynomial models enable the use of efficient geo-
metric programming techniques for circuit sizing and optimization. To
avoid manual derivation of approximate symbolic equations and subse-
quent casting to posynomial format, techniques from design of experi-
ments and response surface modeling in combination with SPICE simu-
lations are used to generate signomial and posynomial models in an auto-
matic way. Attention is paid to estimating the relative ‘goodness-of-fit’ of
the generated models. Experimental results allow to assess both the qual-
ity of the generated models as well as the strengths and the limitations of
the presented approach.
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1 Introduction
Automatic sizing of transistor-level analog integrated circuits is currently
one of the main research targets in the electronic design automation busi-
ness. Time to market and limited engineering resources (which yield a
higher return-on-investment on a higher design abstraction level) ask for
the automation of this traditionally hand-crafted task.
Analog circuit sizing can be decomposed into two subtasks: (1) one “in-
vestigates” the circuit’s behavior (knowledge acquisition) and (2) one ad-
justs the design parameters according to the obtained knowledge (knowl-
edge use) [1]. The different solutions to the transistor-level sizing prob-
lem found in literature, can be subdivided into three main categories [2].
The distinction is based on the type of circuit knowledge acquisition em-
ployed:
• knowledge-based sizing: the knowledge of an expert designer is cap-
tured and encoded as a design plan or a set of rules, which are then exe-
cuted during sizing [3], [4];
• equation-based sizing: the circuit’s behavior is captured in a model
that consists of a set of equations. These equations can be derived using
automated or hand-crafted symbolic analysis [5], [6];
• simulation-based sizing: the circuit’s behavior is obtained by numerical
SPICE simulations at the transistor level and sizing is performed using
optimization techniques [7], [8].
All techniques have their pros and cons. Simulation-based methods have
the full accuracy of SPICE as trusted by most designers, whereas sym-
bolic equations can only be derived in manageable CPU times in simpli-
fied approximate format. On the other hand, simulation-based circuit op-
timization is awfully slow, even when parallelizing the process on a farm
of workstations, whereas symbolic methods are much faster in execution
time.
Recently, it was demonstrated that the optimization of analog integrated
circuits, like amplifiers, switched-capacitor filters, LC oscillators, etc.,
can be formulated as a geometric program [9], [10]. The circuits are
characterized with symbolic equations that have to be cast in posynomial
format. The advantages of a geometric program are (1) that the prob-
lem is convex and therefore has only one global optimum, (2) that this
optimum is not correlated with the optimization’s starting point and (3)

that infeasible sets of constraints can be identified [11]. In addition the
geometric program’s optimum can be found extremely efficiently, using
interior point methods [12], even for relatively large problems. The siz-
ing is so fast (seconds) that design space explorations and process corner
analysis can be performed quite easily.
The approach, however, also has a number of limitations today:
1) approximate symbolic equations that characterize the full circuit per-
formance have to be derived. Despite the progress in computer-automated
symbolic analysis techniques [6], these are still mainly limited to small-
signal characteristics, necessitating the manual derivation of large-signal
and transient characteristics;
2) the equations have be to cast in posynomial format. Although [9]
and [10] show that many circuit characteristics are posynomial, this is
not the case for all characteristics! In this case, the equations have to be
approximated by some posynomial model. This is a manual effort with
difficult control on the approximation error. Up till now, no automatic
posynomial recasting approach has been presented;
3) also the device models have to be approximated in posynomial format
[9]. This introduces an extra error, especially for deep submicron CMOS
processes. The results will differ from well established and accepted mod-
els like BSIM-3v3, used and trusted by designers today.
This paper presents an approach to overcome these limitations. Our ap-
proach automatically generates signomial and posynomial models for all
circuit characteristics based on numerical SPICE simulations using accu-
rate device models. It keeps the simulation time to a strict minimum by
applying techniques from design of experiments and by parallelizing the
simulations over the available computing equipment. It also optimizes
the use of computing resources by applying a simple but effective load-
balancing technique. The strong points of the approach are therefore:
1) no a-priori generation of simplified equations needed: the models are
built from SPICE simulations,
2) not only posynomial but more general signomial circuit characteristics
and device models are allowed,
3) the full accuracy of SPICE simulations and established device models,
such as BSIM-3v3 or MM9, is used to generate the models.
The paper is organized as follows. In section 2 we will discuss perfor-
mance modeling in general and set out some cornerstones used in our ap-
proach. Section 3 describes the fundamentals of our posynomial modeling
technique. The modeling algorithm has been implemented in a software
prototype that will be highlighted in section 4. Section 5 provides exper-
imental results obtained with the prototype. Finally, conclusions will be
drawn in section 6.

2 Performance modeling
Consider a systemS transforming an input signalE into an output signal
Y (Fig. 1-(a)). The mathematical modeling of this input-output relation-
ship is calledbehavioral modeling. Fig. 1-(b) depicts the same system
seen from a designer’s point of view: a number of design parameters (X)
cause the system to exhibit a particular performance (P ). The modeling of
this relationship is calledperformance modeling. This paper concentrates
on the latter.

2.1 Black-box fitting techniques
In general, a mathematical model is assumed, and the parameters of the
model are fitted, so that the model corresponds as closely as possible to
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Figure 1. Electronic system seen (a) as a system that relates an input signal
E to an output signal Y and (b) as a system for which a set of design
parametersX have to be chosen to obtain a specified performanceP

simulated or measured data of the real system. Standard mathematical
fitting techniques like interpolation or least-squares regression, go back
several centuries and are well known. However, the use of these tech-
niques in analog integrated circuit design has always been rather limited.
The advantage of black-box modeling is obvious: no intrinsic system
knowledge is needed in the fitting process. The model is built from input-
output responses only, hence the name “black-box” fitting.
The opposite is true for the model selection: selecting a model that is
suited to capture all important effects is a hard task. Understanding the
nature of the system is very beneficial in that case. We will assume a quite
general model that however satisfies desired mathematical properties.
Notice also that in general such models have a trade-off between general-
ity and accuracy for a given model complexity. This means that a model
that has to be valid over a large range of design parametersX typically
has a larger fit error for the performancesP than a model that only has to
be valid for a small range ofX.

2.2 Design of Experiments
Techniques from design of experiments provide a mathematical basis to
select a limited but “optimal” set of sample points needed to fit a black-
box model [13]. Design of experiments considers the fitting process as
an estimation of model parameters. E.g. sampling schemes can be com-
posed that guarantee uncorrelated model parameter estimation to a certain
degree for a specific model.
Well-known and often-used sampling schemes range from full- and frac-
tional factorial design, over Placket-Burman and Taguchi schemes, to
Latin hypercube and even random design. The choice and the literature
is vast. A very interesting sampling scheme, however, are orthogonal ar-
rays, more specifically level-2 orthogonal arrays of strength 3 [14]. This
scheme places the sampling points on the edges of a fitting hypercube of
size(2dx)n around a center pointX∗. The 4-dimensional level-2 orthog-
onal array of strength three around 0 illustrates this:
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Usually the center point is provided as well. Orthogonal arrays of strength
3 allow the uncorrelated estimation of linear, quadratic and interaction
terms of a second-order polynomial phenomenon. This is a very benefi-
cial property when fitting local models of a more general system.
The combination of design of experiments with a standard fitting tech-
nique often is calledresponse surface modeling (RSM)[15]. This tech-
nique (using orthogonal arrays) will allow us in this paper to efficiently
generate models that have a specific desired format.

2.3 Geometric programming basics
Let X = (x1, x2, x3, . . . , xn)T be a vector of real, positive variables. A
functionf is calledsignomialif it has the form

f(X) =

m∑
i=1

(
ci

n∏
j=1

(
x

αij

j

))
(1)

with ci ∈ R andαij ∈ R. If we restrict allci to be positive (ci ∈ R+),
then the functionf is calledposynomial. If in additionm = 1, then the
functionf is calledmonomial. If all exponentsαij are integer, then the
signomial becomes apolynomial. Our modeling approach will generate
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Figure 2. Posynomial model generation flow

signomial and posynomial models. The latter allow to formulate analog
circuit sizing as a geometric program.
A (primal) geometric program is the constrained optimization problem:

minimizef0(X) (2)

with the constraints:fi(X) ≤ 1, i = 1, . . . , p

gj(X) = 1, j = 1, . . . , q (3)

xk ≥ 0, k = 1, . . . , n

with all fi(X) posynomial and allgj(X) monomial.
By substituting all variablesxi by zk = log (xk) and taking the logarithm
of the objective function and every constraint, it can readily be seen that
the transformed problem is a convex optimization problem. Hence, it has
only one global optimum. In addition this optimum can very efficiently
be found using interior point methods [12].
Notice that if anyfi or gj contains a negative constant term (which makes
them theoretically speaking non–posynomial), the nature of the geometric
program is not harmed. Indeed, the constant term can easily be eliminated
from the left-hand side of the constraints. Since shifting the goal function
by a constant amount does not influence the location of the optimum in
terms ofxk, the same statement holds here as well.

3 Generation of posynomial models
The posynomial performance models (needed for the geometric program-
ming formulation) can be derived using symbolic circuit analysis. In [9]
and [10] this hand-crafted process is demonstrated. This is however a
non–systematic, tedious process. As far as we know, automated posyno-
mial model generators have not yet been reported in literature. We will
present such an approach here. Fig. 2 illustrates the adopted procedure.
Based on the results of a well-designed set of simulation experiments,
we will fit a second-order polynomial (which at the same time is a kind
of signomial). Next, this model will automatically be converted into a
posynomial model. Finally the quality of this model is estimated. The
next sections will focus on the signomial regression, the posynomial con-
version and the quality estimation.

3.1 Second-order polynomial regression
Consider a set ofa experimentsXj , j = 1 . . . a that correspond to a set
of a performancespj , j = 1 . . . a. A modelM(X, c1, c2, . . . cm), lin-
ear w.r.t. m fit parameterscm, needs to be fitted such that the distance
between the system’s performance and the performance of the model is
minimal. Several distance measures can be used for fitting the model
parameters. A commonly used measure is the sum of the square perfor-
mance deviations over all sample points, leading to the well-knownleast
squares regression. The least squares fitting of a signomial functionf(X)

f(X) =
m∑

i=1

citi (4)

with ti =
∏n

l=1 xαil
l , can be formulated as a minimization problem:

minimizeΨ =

a∑
j=1

([
m∑

i=1

(citi,j) − pj

]2)
(5)



with ti,j the actual value ofti for experimentj. This corresponds to the
minimization of a positive-definite general quadratic form:

Ψ = Ψ(0) + CT B +
1

2
CT AC (6)

with B = ∇Ψ andA represents the Hessian ofΨ. Usually this problem
is solved by solvingAC = −B which in our case corresponds to solving:

TTt = P (7)

Considering thatTTt is symmetric, one might be tempted to solve (7)
straight away using e.g. a Cholesky decomposition. However, the condi-
tion number ofTTt is approximately equal to the square of the condition
number ofT. This results in an ill-conditioned solution of (7), especially
when adopting asymmetrical sampling schemes or sampling schemes that
are not close to the unity matrix. Since for both signomial and posynomial
models the requirementxi ≥ 0, ∀i holds, our sampling scheme becomes
most asymmetrical.
If we restrict ourselves to second-order polynomial models, we can easily
overcome this burden by first applying an axis translation that makes the
sampling symmetrical, then solving (7) and finally restoring the original
axes. This procedure leaves the second-order polynomial nature of the
model intact. Restricting ourselves to a second-order polynomial model
has another advantage: we can convert it without too great difficulty to an
approximate posynomial model. Besides, it does not put a severe hold on
the quality of the resulting models. The reason for this is the fact that a lot
of performance parameters for integrated circuits are very near to simple
sums and additions of design parameters if the latter are well chosen and
proper scaling is applied.
E.g. consider the following approximate expressions for some perfor-
mance parameters of CMOS operational amplifiers:

GBW=
2IDS,in

VGST,inCdom
and SR=

Ibias

Cdom
(8)

When logarithmically scaling the performance space as well as the design
space, these parameters become fully linearly signomial.
It should be noted also that the number of fit parameters in a generic
n-dimensionalk-th order polynomial model isO(nk). This in general
hinders the use of higher-order models.
We will now explain how the signomial model is converted in an approx-
imate posynomial model, so that it becomes useful for geometric pro-
gramming. Consider the genericn-dimensional second-order polynomial
model:

f(X) = c0 +

n∑
i=1

(cixi) +

n∑
i=1

(
ci,ix

2
i

)
+

n∑
i=1

n∑
j=i+1

(ci,jxixj) (9)

The terms that have a positive coefficientci or cij are monomial terms.
The terms that have a negative coefficient can be approximated around a
center pointX∗ by posynomial approximations as follows:
• negative linear terms:

cixi ≈ di

xi
+ bi (10)

di andbi are chosen such that the function value and the first derivative
are maintained, i.e.:

di = −ci (x∗
i )

2 (11)

bi = 2 cix
∗
i (12)

• negative interaction terms:

ci,jxixj ≈ di,jxj

xi
+ bi,jxj (13)

di,j andbi,j are chosen such that the function value and the first derivative
are maintained, i.e.:

di,j = −ci,j (x∗
i )

2 (14)

bi,j = 2 ci,jx
∗
i (15)
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Figure 3. Posynomial approximation of (a) negative linear terms, (b) neg-
ative quadratic terms and (c) negative interaction terms. The original
terms are plotted in solid lines, the approximate posynomials in dotted
lines.

Of course the role ofxi andxj can be interchanged here. The choice
is made based upon which approximation harms the posynomiality of the
linear term least (i.e. changing the sign ofci or cj ). If both choices destroy
the posynomiality of the linear term or both linear terms are already non–
posynomial, then we substitute the largest variable. If one of the linear
terms is still posynomial and we can keep it that way by replacing the
other term, then we do so. Otherwise we replace the posynomial term.
This procedure guarantees the best possible approximation.
• negative quadratic terms:

ci,ix
2
i ≈ di,i

xi
+ bi,i (16)

di,i andbi,i are chosen such that the function value and the first derivative
are maintained, i.e.:

di,i = −2 ci,i (x∗
i )

3 (17)

bi,i = 3 ci,i (x∗
i )

2 (18)

Fig. 3 illustrates these approximations. It is clear that these approxima-
tions make a model that favors a good fit at the center pointX∗. However,
when used during circuit sizing, this center point will move and the model
will be updated adaptively [10], [11].
Applying the above approximations in reverse order removes any signo-
mial term from the model, except for the constant term which most likely
becomes negative. This poses no problem since when appearing in any
geometric program, this constant term can easily be eliminated. The com-
putational complexity of the above procedure isO(n2).

3.2 Model quality assessment
As model quality parameter we took the root mean square deviation in the
existing sampling points as starting point. We normalized this quality fig-
ure by dividing it by the performance range of the sample points, leading
to a relative quality figureq for modelM :

q =

√∑a
j=1 (M(Xj) − pj)

a
[
c +

(
maxa

j=1 pj − mina
j=1 pj

)] (19)

with c a constant to avoid error overestimation when the performance
range approaches zero. This figure is:
1) computationally cheap (no extra simulations are needed),
2) easy to assess: a quality larger than1 suggests a bad fit1.
In addition it must be said that this figure is rather a pessimistic measure
for the posynomial model approximation. Indeed: the use of orthogonal
arrays to position the samples within the fitting hypercube, results in a
sampling points — except for the center point — located at the extremes
of the fitting hypercube, where the approximation error is largest. Re-
member that the approximation was conceived such as to minimize the
modeling error in the center point.

1Notice that the fitting technique itself might not always be the cause, also the
fitting capabilities of the model for the given circuit at hand are involved.
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In order to have a more realistic quality assessment for these models, we
introduce two extra relative quality figures:
1) the relative deviation in the center point, which we will labelqoc

2) the quality figure of (19) evaluated in sampling points located in the
interior of the fitting hypercube, which we will labelqtc

2

A drawback of the latter is the need for extra analyses (i.e. circuit simula-
tions). Notice that for the generated posynomial modelsq can be consid-
ered as the worst-case value (we therefore give it an extra subscript:qwc),
qtc as the typical-case value andqoc as the optimal-case value.

4 Modeling prototype
The signomial and posynomial fitting techniques have been implemented
in PR

N
ISM, our Posynomial Response Surface Modeling prototype. Fig. 4

shows the overall concept of PR
N
ISM. The core engines have been coded

using C++, while the analysis clients and servers have been coded in Perl.
The total amounts to about 40 000 lines of code. In the design a number
of extra design principles were taken into account, based on need obser-
vations within our analog integrated circuit design group. The principles
are:
• Resource parallelization
• Load balancing
• Analysis abstraction
PR

N
ISM’s TCP-based client-server simulation system schedules simula-

tion and extraction jobs on remote workstations over the intra-net or the
Internet (resource parallelization). Upon completion the duration of each
analysis-extraction job is preserved in a server-load database. During the
generation of a model (which typically requires hundreds of simulations)
the average analysis-extraction duration for a server is taken as its average
load. At regular times this load information adjusts the client-server job
scheduling plan (load balancing).
SPICE simulations are performed using a standard simulation tool chosen
according to the availability or preference. At this moment interfaces
to ELDO and Berkeley SPICE 3f43 are provided. At the client side an
abstraction layer totally hides the specific nature of these simulation tools,
allowing easy migration of PR

N
ISM to a new simulator environment.

5 Experimental results
As test case we used the circuit of Fig. 5, a high-speed CMOS OTA which
we want to model using a 0.7µm CMOS technology from Alcatel Micro-
electronics. The supply voltage is 5V. The nominal threshold voltages of
this technology are0.76V for NMOS-devices and−0.75V for PMOS-
devices. The circuit has to drive a load capacitance of 10pF.
Thirteen independent design variables were retained as inputs for the
models. In Table I an overview of the chosen variables and their bounds
is given. Note that currents and transistor drive voltages are chosen as
variables, rather than transistor widths, since we use an operating-point
driven formulation for analog circuit sizing [16]. The bounded range of
variablesvi ∈ [lbi , ub] is logarithmically scaled ontoxi ∈ [0, 1] using

xi = log
( vi

lb

)
log

(
lb

ub

)
(20)

2For the experimental results we also used an orthogonal array hypercube with
a size 1/3 of the original size.

3For this purpose we integrated the BSIM-3v3 model into Berkeley SPICE 3f4.
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Figure 5. Schematic of a high-speed CMOS OTA

i vi lb ub i vi lb ub

1 vGS,M1 -0.75V -4V 2 vGS,M2 0.75V 4V

3 vDS,M2 0.1V 4V 4 vGS,M3 -0.75V -4V

5 vGS,M4 -0.75V -4V 6 vGS,M5 -0.75V -4V

7 vDS,M5 -0.1V -4V 8 vDS,M6 -0.1V -4V

9 iD,M1 -10uA -10mA 10 iD,M2 10uA 10mA

11 iB1 1uA 100uA 12 iB2 1uA 100uA

13 iB3 1uA 100uA

Table I. Design variables chosen as model inputs

Six parameters of the OTA will be modeled:
• the low-frequency gain (ALF ), the unity-gain frequency (fu) and the
phase marginPM , whose actual values will be determined from an AC
simulation,
• the offset at the input (voff ) determined from a DC sweep analysis,
• the positive slew rate and negative slew rate (SRp , SRn ) that will be
extracted from a transient simulation.
For all six model parameters, two models are generated around the center
point xi = 0.5, ∀i: a second-order polynomial (signomial) model (SM),
and a posynomial model with integer exponents -1, 0, 1, 2 containing
level-2 interactions (PM). The nominal performance in the center point
can be found in table II. In advance all performancespi are scaled either
linearly (ALF , PM , voff , SRp , SRn ), according to:

pi,lin = ± 1

1 + |pi,typ | (pi − pi,typ) (21)

with pi,typ a typical value of the parameter (e.g. the target specification),
or scaled logarithmically (fu), according to:

pi,log = ± 1

1 + log (pi,typ)
log

(
pi

pi,typ

)
(22)

The plus sign in (21) and (22) is chosen if a model for minimization of
the parameter is required, the minus sign if a model for maximization is
required.
Each model is generated twice keeping the same center point for different
relative sizes (dx = 0.1, 0.01) of the fitting hypercube. The fitting was
carried out using an orthogonal array of strength 3 of dimension243 ×
13, i.e. 243 experiments each requiring three SPICE simulations were
carried out to obtain the experimental data. For the case wheredx = 0.1
for some experiments the DC-solution proved to be not physical or the
simulations did not converge. These experiments were retained from the
fit process. This of course ruins the desired orthogonality properties of the
orthogonal arrays we use. However, as mentioned before, these properties
only become relevant as soon as the relative size of the fitting hypercube
becomes small.

ALF 36.45 dB fu 6.761 MHz PM 90.28o

voff 2.646 uV SRp 21.7 V/us SRn -26.2 V/us

Table II. Performance of the CMOS OTA for xi = 0.5, ∀i
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Figure 6. Graphical representation of the model coefficients of the (signo-
mial) model for ALF for the casedx = 0.1.

param range σ q

dx = 0.1

ALF 0.93662 0.13153e-1 1.404 %

fu 0.12683 0.59763e-3 0.471 %

PM 0.16144 0.30017e-2 1.859 %

voff 0.10203e-3 0.31287e-5 1.549 %

SRp 1.11368 0.53327e-1 4.788 %

SRn 2.00118 0.45433e-1 2.270 %

dx = 0.01

ALF 0.10409 0.25744e-3 0.247 %

fu 0.14651e-1 0.73839e-5 0.504 %

PM 0.84243e-2 0.49900e-3 5.924 %

voff 5.18427e-6 6.25512e-7 0.595 %

SRp 0.12833 0.25624e-2 1.997 %

SRn 0.17249 0.48414e-2 2.807 %

Table III. Properties of the signomial models (SM)

PR
N
ISM was run on an Intel Celeron 466MHz running Linux. The analy-

sis servers ran on 17 UNIX workstations, ranging from a SUN Ultra Sparc
I (with a SPECfp95 of 9) to an HP B-1000 (with a SPECfp95 of 42) using
their native OS. It took approximately 3 min. to generate all signomial
models. The posynomial approximation took another 10 sec.
Fig. 6 illustrates the model coefficients of the signomial model forALF

for the casedx = 0.1. It can be seen that in general an unconstrained-
fitted model is not posynomial since many negative coefficients occur.
Table III shows the results for the origally fitted signomial models, whereas
table IV shows the results for the derived posynomial models. The range,
the standard deviation in the fit points (σ) and the quality figure(s) have
been given for every modeled parameter. We letc = 0.001 (see (19))
which is a realistic value in view of (21) and (22). The parameterc only
has significant influence for the offset model. The reason for this is that
the operating-point driven formulation makes the offset negligible “by
construction”. This also explains why the nominal value for the offset
(see Table II) is so low.
Several conclusions are to be drawn from these results:
• the signomial fits are in general quite good.
• the posynomial approximated models are useful for limited hypercube

param range σ qwc qtc qoc

dx = 0.1

ALF 0.93662 0.53034e+1 566.228 % 52.329 % -1.123 %

fu 0.12683 0.11825e+2 9324.387 % 890.198 % 1.366 %

PM 0.16144 0.10254e+2 6351.869 % 617.059 % 1.061 %

voff 0.10203e-3 0.77042e-4 38.135 % 4.372 % -0.981 %

SRp 1.11368 0.18157e+2 1630.345 % 139.408 % -14.669 %

SRn 2.00118 0.10335e+2 516.463 % 48.227 % 0.275 %

dx = 0.01

ALF 0.10409 0.75125e-2 7.217 % 0.760 % -0.365 %

fu 0.14651e-1 0.10013e-2 6.834 % 0.835 % 0.070 %

PM (*) 0.84243e-2 0.51649 6131.264 % 559.083 % 32.224 %

voff 5.18427e-6 0.98512e-5 9.451 % 1.871 % -0.797 %

SRp 0.12833 0.60875 474.354 % 45.924 % -2.862 %

SRn 0.17249 0.36425 211.172 % 23.814 % -0.081 %

Table IV. Properties of the posynomial models (PM)

sizes. The anomaly of thePM -model fordx = 0.01 is due to numerical
instabilities4 during fit and approximation calculations.

6 Conclusions
This paper has presented a technique to automatically generate posyno-
mial performance models from full-accuracy SPICE simulations. Both
signomial and posynomial models can be generated. The latter can be
employed in automatic circuit sizing using highly efficient interior-point
geometric programming algorithms. Our approach reduces the time and
the effort needed to generate posynomial models to a strict minimum. The
results are promising, but indicate room for improvement a.o. concern-
ing numerical stability and the fitting of more specific (non–polynomial)
posynomial models that might enable further reduction of the fit error for
large hypercube sizes.
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