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Abstract that infeasible sets of constraints can be identified [11]. In addition the

This paper presents a method to automatically generate posynomial rd€0Metric program's optimum can be found extremely efficiently, using

sponse surface models for the performance parameters of analog img]_terlor point methods [12], even for relatively large problems. The siz-

grated circuits. The posynomial models enable the use of efficient geo'—ng is so fast (seconds) that design space explorations and process corner

metric programming techniques for circuit sizing and optimization. To analysis can be performed quite easily.

avoid manual derivation of approximate symbolic equations and subse--rhe approach, however, also has a number of limitations today:

quent casting to posynomial format, techniques from design of experi-l) approximate symbolic equations that characterize the full circuit per-

ments and response surface modeling in combination with SPICE Simuf_orman(_:e have t9 be derl_ved. Despite the Progress in compyter-automated
ymbolic analysis techniques [6], these are still mainly limited to small-

lations are used to generate signomial and posynomial models in an autd? Lch teristi itating th | derivati £l ianal
matic way. Attention is paid to estimating the relative ‘goodness-of-fit' of signal characteristics, necessitating the manual derivation ot farge-signa

the generated models. Experimental results allow to assess both the qu pd tran5|ent_characterlstlcs; . .
the equations have be to cast in posynomial format. Although [9]

ity of the generated models as well as the strengths and the limitations o L : L
y 9 g and [10] show that many circuit characteristics are posynomial, this is

the presented approach. not the case for all characteristics! In this case, the equations have to be
Keywords approximated by some posynomial model. This is a manual effort with

difficult control on the approximation error. Up till now, no automatic
Analog Circuit Modeling, Posynomial and Signomial Response Surface 'V'Odelingyposynomial recasting approach has been presented;

Geometric Programming, Design of Experiments 3) also the device models have to be approximated in posynomial format
) [9]. This introduces an extra error, especially for deep submicron CMOS
1 Introduction processes. The results will differ from well established and accepted mod-

Automatic sizing of transistor-level analog integrated circuits is currently €I like BSIM-3v3, used and trusted by designers today.

one of the main research targets in the electronic design automation bus[iS Paper presents an approach to overcome these limitations. Our ap-
ness. Time to market and limited engineering resources (which yield #roach automatically generates signomial and posynomial models for all
higher return-on-investment on a higher design abstraction level) ask fofircuit characteristics based on numerical SPICE simulations using accu-
the automation of this traditionally hand-crafted task. rate device models. It keeps the simulation time to a strict minimum by
Analog circuit sizing can be decomposed into two subtasks: (1) one “in-2PPlying techniques from design of experiments and by parallelizing the
vestigates” the circuit's behavior (knowledge acquisition) and (2) one adSimulations over the available computing equipment. It also optimizes
justs the design parameters according to the obtained knowledge (knowihe use of computing resources by applying a simple but effective load-
edge use) [1]. The different solutions to the transistor-level sizing prob-alancing technique. The strong points of the approach are therefore:
lem found in literature, can be subdivided into three main categories [2]1) N0 a-priori generation of simplified equations needed: the models are
The distinction is based on the type of circuit knowledge acquisition em-Ruilt from SPICE simulations, ) o o
ployed: 2) not only posynomial but more general signomial circuit characteristics

o knowledge-based sizing: the knowledge of an expert designer is cag2Nd device models are allowed,

tured and encoded as a design plan or a set of rules, which are then exg! the full accuracy of SPICE simulations and established device models,
cuted during sizing [3], [4]; such as BSIM-3v3 or MM9, is used to generate the models.
e equation-based sizing: the circuit's behavior is captured in a modell & Paper is organized as follows. In section 2 we will discuss perfor-

that consists of a set of equations. These equations can be derived usifince modeling in general and set out some cornerstones used in our ap-
automated or hand-crafted symbolic analysis [5], [6]: proach. Section 3 describes the fundamentals of our posynomial modeling

e simulation-based sizing: the circuit's behavior is obtained by numericat€chniaque. The modeling algorithm has been implemented in a software
SPICE simulations at the transistor level and sizing is performed usingrototype that will be highlighted in section 4. Section 5 provides exper-
optimization techniques [7], [8]. |menta_l result_s obtained with the prototype. Finally, conclusions will be
All techniques have their pros and cons. Simulation-based methods hay&@wn in section 6.

the full accuracy of SPICE as trusted by most designers, whereas syms .

bolic equations can only be derived in manageable CPU times in simpli- Performance mOde“ng

fied approximate format. On the other hand, simulation-based circuit opConsider a systerfi transforming an input signdl’ into an output signal
timization is awfully slow, even when parallelizing the process on a farmY” (Fig. 1-(a)). The mathematical modeling of this input-output relation-
of workstations, whereas symbolic methods are much faster in executioship is calledbehavioral modeling Fig. 1-(b) depicts the same system
time. seen from a designer’s point of view: a number of design parameters (
Recently, it was demonstrated that the optimization of analog integratedause the system to exhibit a particular performarite The modeling of
circuits, like amplifiers, switched-capacitor filters, LC oscillators, etc., this relationship is callegerformance modelingThis paper concentrates
can be formulated as a geometric program [9], [10]. The circuits areon the latter.

characterized with symbolic equations that have to be cast in posynomial o )

format. The advantages of a geometric program are (1) that the prob2.1  Black-box fitting techniques

Iem_ Is convex and therefore_ has only one g!obfal Op“f_“”m' (.2) that thiﬁn general, a mathematical model is assumed, and the parameters of the
optimum is not correlated with the optimization’s starting point and (3) yqqg) are fitted, so that the model corresponds as closely as possible to
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Figure 1. Electronic system seen (a) as a system that relates an input signal Performance Calculation
E to an output signal Y and (b) as a system for which a set of design
parameters X have to be chosen to obtain a specified performand Second-order Polynomial
Regression
simulated or measured data of the real system. Standard mathematical Polynomial leosynomiaI
fitting techniques like interpolation or least-squares regression, go back Conversion
several centuries and are well known. However, the use of these tech-
niques in analog integrated circuit design has always been rather limited. | Model Quality Estimation _|

The advantage of black-box modeling is obvious: no intrinsic system
knowledge is needed in the fitting process. The model is built from input-
output responses only, hence the name “black-box” fitting.

The opposite is true for the model selection: selecting @ model that igjgnomial and posynomial models. The latter allow to formulate analog
suited to capture all important effects is a hard task. Understanding thgjrcit sizing as a geometric program.

nature of the system is very beneficial in that case. We will assume a quit (primal) geometric program is the constrained optimization problem:
general model that however satisfies desired mathematical properties.

Figure 2. Posynomial model generation flow

Notice also that in general such models have a trade-off between general- minimize fo (X) @
ity and accuracy for a given model complexity. This means that a model with the constraintsf; (X) < 1, i=1,....p
that has to be valid over a large range of design paraméfergpically B .
has a larger fit error for the performancBghan a model that only has to 9;(X) = 1, j=L.q ©)
be valid for a small range oX. xr 2> 0, k=1,....,n

. . with all f;(X) posynomial and aly; (X)) monomial.
2.2 Design of Experiments By substituting all variables; by z, = log () and taking the logarithm

Techniques from design Of experiments provide a mathema’[ical basis tgf the ObjeC'[ive funCtion and eVery ConStraint, |t can readily be seen that

select a limited but “optimal” set of sample points needed to fit a black-the transformed problem is a convex optimization problem. Hence, it has

box model [13]. Design of experiments considers the fitting process a&nly one global optimum. In addition this optimum can very efficiently

an estimation of model parameters. E.g. sampling schemes can be cor@€ found using interior point methods [12].

posed that guarantee uncorrelated model parameter estimation to a certygtice that if anyf; or g; contains a negative constant term (which makes

degree for a specific model. them theoretically speaking non—posynomial), the nature of the geometric

Well-known and often-used sampling schemes range from full- and fracProgram is not harmed. Indeed, the constant term can easily be eliminated

tional factorial design’ over Placket-Burman and Taguchi S(‘:hemesl térom the left-hand side of the constraints. Since Shlftlng the goal function

Latin hypercube and even random design. The choice and the literatufdy @ constant amount does not influence the location of the optimum in

is vast. A very interesting sampling scheme, however, are orthogonal aferms ofzx, the same statement holds here as well.

rays, more specifically level-2 orthogonal arrays of strength 3 [14]. This . .

scheme places the sampling points on the edges of a fitting hypercube gf Generation of posynomlal models

size(2dx)" around a center poirX ™. The 4-dimensional level-2 orthog-  The posynomial performance models (needed for the geometric program-

onal array of strength three around O illustrates this: ming formulation) can be derived using symbolic circuit analysis. In [9]
and [10] this hand-crafted process is demonstrated. This is however a

“dx —dx —dx —dx non-systematic, tedious process. As far as we know, automated posyno-

-dx -dx dx dx

“dx  dx -dx  dx mial model generators have not yet been reported in literature. We will
-dx dx dx —dx present such an approach here. Fig. 2 illustrates the adopted procedure.
dx —dx—dx dx Based on the results of a well-designed set of simulation experiments,

dx -dx dx -dx - . . . . .
dx  dx —dx —dx we will fit a second-order polynomial (which at the same time is a kind
dx dx dx d of signomial). Next, this model will automatically be converted into a

Usually the center point is provided as well. Orthogonal arrays of strengttPoSynomial model. Finally the quality of this model is estimated. The

3 allow the uncorrelated estimation of linear, quadratic and interactior"€xt Sections will focus on the signomial regression, the posynomial con-

terms of a second-order polynomial phenomenon. This is a very benefi*érsion and the quality estimation.

cial property when fitting local models of a more general system. _ : :

The combination of design of experiments with a standard fitting tech-3'1 Second-order p0|yn0mlal regression

nique often is calledesponse surface modeling (RSM¥]. This tech- Consider a set of experimentsX;, 5 = 1...a that correspond to a set
nique (using orthogonal arrays) will allow us in this paper to efficiently of a performance®;,j7 = 1...a. A model M (X, c1,cz,...cm), lin-

generate models that have a specific desired format. ear w.r.t. m fit parameters.,,, needs to be fitted such that the distance
between the system’s performance and the performance of the model is

2.3 Geometric programming basics minimal. Several distance measures can be used for fitting the model

Let X = (z1, 2,3, ..,2n)" be a vector of real, positive variables. A parameters. A commonly used measure is the sum of the square perfor-

mance deviations over all sample points, leading to the well-krieast
squares regressiorrhe least squares fitting of a signomial functipfX)

00 =3 (aT1 ) W 0 = 3 e @

=1

function f is calledsignomialif it has the form

with ¢; € R anda;; € R. If we restrict allc; to be positive ¢; € R™), with ¢; = [[;-, «;"**, can be formulated as a minimization problem:
then the functionf is calledposynomial If in additionm = 1, then the o m 2

function f is calledmonomial If all exponentsw;; are integer, then the minimize ¥ = Z ({Z (citij) pg} ) (5)
signomial becomes polynomial Our modeling approach will generate =\ Lliz1



with ¢; ; the actual value of; for experimentj. This corresponds to the
minimization of a positive-definite general quadratic form:

U= 0(0)+C"B+ S0TAC (©)

with B = V¥ and A represents the Hessian &f Usually this problem
is solved by solvincAC' = — B which in our case corresponds to solving:

TT! =P (7)

Considering thafl'T* is symmetric, one might be tempted to solve (7)
straight away using e.g. a Cholesky decomposition. However, the condi-
tion number of I'T* is approximately equal to the square of the condition
number ofT'. This results in an ill-conditioned solution of (7), especially . ) o o
when adopting asymmetrical sampling schemes or sampling schemes thatF'gue[t?vg- Egjﬁfa“t%”;'eﬁ'rs‘ggfé"("g?gg”;Iv(g)ir’]‘tz@rl:é't‘i’gn“?:rﬁ: ster_rr?% g;i) ’i‘:gl‘

are not close to the unity matrix.‘Since for both signomial and posynomial termsqare plotted in solid lines, tr?e approximate posynorﬁials in d?)tted
models the requirement; > 0, Vi holds, our sampling scheme becomes lines.

most asymmetrical.

If we restrict ourselves to second-order polynomial models, we can easily

overcome this burden by first applying an axis translation that makes th©f course the role ok; andz; can be interchanged here. The choice
sampling symmetrical, then solving (7) and finally restoring the original is made based upon which approximation harms the posynomiality of the
axes. This procedure leaves the second-order polynomial nature of tHéear term least (i.e. changing the sigrepbr c;). If both choices destroy
model intact. Restricting ourselves to a second-order polynomial modethe posynomiality of the linear term or both linear terms are already non—
has another advantage: we can convert it without too great difficulty to arposynomial, then we substitute the largest variable. If one of the linear
approximate posynomial moddesides, it does not put a severe hold on terms is still posynomial and we can keep it that way by replacing the
the quality of the resulting models. The reason for this is the fact that a lopther term, then we do so. Otherwise we replace the posynomial term.
of performance parameters for integrated circuits are very near to simpl&his procedure guarantees the best possible approximation.

sums and additions of design parameters if the latter are well chosen anel negative quadratic terms:
proper scaling is applied.

E.g. consider the following approximate expressions for some perfor- ciiT; N ;,; + i (16)
mance parameters of CMOS operational amplifiers: d;,; andb; ; are chosen such that the function value and the first derivative
GBW— 2Ips;in and SR— Ibias ®) are maintained, i.e.:
VasTinCdom Cldom dii = —2ci4 (m:)g (17)
When logarithmically scaling the performance space as well as the design bii = 3ci (m;)z (18)

space, these parameters become fully linearly signomial. . . L . .
It should be noted also that the number of fit parameters in a generig'g' 3 illustrates these approximations. It is clear that these approxima-

n-dimensionalk-th order polynomial model i©(n*). This in general tions make a model that favors a good fit at the center pointHowever,
hinders the use of higher-order models. when used during circuit sizing, this center point will move and the model

We will now explain how the signomial model is converted in an approx- Will bé updated adaptively [10], [11].

imate posynomial model, so that it becomes useful for geometric pro/PPIying the above approximations in reverse order removes any signo-

gramming. Consider the genericdimensional second-order polynomial mial term from t_he mod_el, except for the constant term which most IiI_<er
model: becomes negative. This poses no problem since when appearing in any

N N non geometric program, this constant term can easily be eliminated. The com-
_ tational complexity of the above procedureign?).
FX) =co+ > (m)+ Y (cand) +3 Y (egmay) @ P
= = s 3.2 Model quality assessment

The terms that have a positive coefficientor c;; are monomial terms. . T
. L . As model quality parameter we took the root mean square deviation in the
The terms that have a negative coefficient can be approximated around g

. . o . existing sampling points as starting point. We normalized this quality fig-
center pointX ™™ by posynomial approximations as follows: ST i .
S . ure by dividing it by the performance range of the sample points, leading
e negative linear terms:

to a relative quality figure for modelM:

d;
ciwi 4 by (10) Vo (M(X5) —py)
T - J (19)
q= —
d; andb; are chosen such that the function value and the first derivative a [C + (maX?zl pj — MmN —; pj)]
are maintained, i.e.. with ¢ a constant to avoid error overestimation when the performance

d = —e (m,f)z (11) range appror_:\ches zero. This figure is_: _
‘ LA 1) computationally cheap (no extra simulations are needed),
bi = 2cu; (12)  2) easyto assess: a quality larger tHasuggests a bad fit
In addition it must be said that this figure is rather a pessimistic measure
for the posynomial model approximation. Indeed: the use of orthogonal
o e A di jT; S (13) arrays to position the samples within the fitting hypercube, results in a
e zi R sampling points — except for the center point — located at the extremes
d;,; andb; ; are chosen such that the function value and the firstderivativeOf the fitting hypercube, _Whe_re the approximation error is Iar_ge_st_. Re-
are maintained, i.e.: member that the approximation was conceived such as to minimize the

modeling error in the center point.

e negative interaction terms:

dij = —cij(z})’ (14)

1 . v e . . .
N Notice that the fitting technique itself might not always be the cause, also the
bi 2¢i,5%; (15) 9 B ¢ y

fitting capabilities of the model for the given circuit at hand are involved.
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In order to have a more realistic quality assessment for these models, we n n2h
introduce two extra relative quality figures: via —_Ln3 - van

1) the relative deviation in the center point, which we will labgl ! !

2) the quality figure of (19) evaluated in sampling goints located in the s

interior of the fitting hypercube, which we will labe). : : —

A drawback of the latter is the need for extra analyses (i.e. circuit simula- Figure 5. Schematic of a high-speed CMOS OTA
tions). Notice that for the generated posynomial modedan be consid-

. . N i v; b ub i v; b ub
ered as the worst-case value (we therefore give it an extra subggript: | | | | I | | | |
R ; 1 | ves. mi -0.75V -4V 2 | vgs me 0.75V a4V
q:c as the typical-case value angl as the optimal-case value. 3 | wpsae | 01V v 4| vos s | 073V | -av
. 5 | vagay | 075V | -4V 6 | vasms | 075V | -av
4 Modeling prototype 7| wpsars | 0V | v || 8| wpsas | 01V | -av
. . e . . 9 ip M1 -10uA | -10mA || 10 ip M2 10uA | 10mA
The signomial and posynomial fitting techniques have been implemented 1| in wa | 1000a || 12 | i wa | 100ua
in PRISM, our Posynomial Response Surface Modeling prototype. Fig. 4 13 iBs 1A | 100uA

shows the overall concept of BBM. The core engines have been coded Table I. Design variables chosen as model inputs
using C++, while the analysis clients and servers have been coded in Perl.

The total amounts to about 40 000 lines of code. In the design a number

of extra design principles were taken into account, based on need obsegix parameters of the OTA will be modeled:

vations within our analog integrated circuit design group. The principless the low-frequency gain4.r), the unity-gain frequencyf() and the

are: phase margirPM, whose actual values will be determined from an AC
e Resource parallelization simulation,

e Load b_alancmg ) e the offset at the input(,5) determined from a DC sweep analysis,

e Analysis abstraction o the positive slew rate and negative slew ref&f, SR.) that will be

PRISM's TCP-based client-server simulation system schedules simulaextracted from a transient simulation.
tion and extraction jobs on remote workstations over the intra-net or theFor all six model parameters, two models are generated around the center
Internet (esource parallelizatioy Upon completion the duration of each pointz; = 0.5, Vi: a second-order polynomial (signomial) model (SM),
analysis-extraction job is preserved in a server-load database. During trend a posynomial model with integer exponents -1, 0, 1, 2 containing
generation of a model (which typically requires hundreds of simulations)level-2 interactions (PM). The nominal performance in the center point
the average analysis-extraction duration for a server is taken as its averagan be found in table Il. In advance all performangeare scaled either
load. At regular times this load information adjusts the client-server joblinearly (A r, PM, vog, SR,, SR»), according to:

scheduling planl¢ad balancing. 1

SPICE simulations are performed using a standard simulation tool chosen Dilin = iI% (pi — Pityp) (21)
according to the availability or preference. At this moment interfaces + 1Pi |

to ELDO and Berkeley SPICE 3f3 are provided. At the client side an With p; ., a typical value of the parameter (e.g. the target specification),
abstraction layer totally hides the specific nature of these simulation toolsr scaled logarithmically ), according to:

allowing easy migration of PESM to a new simulator environment. 1 ( i )

Dilog = log
’ 1+ log (pi,typ) Pi,typ

5 Experimental results - : : N

L ) ) _The plus sign in (21) and (22) is chosen if a model for minimization of
As test case we used the circuit of Fig. 5, a high-speed CMOS OTA whiche parameter is required, the minus sign if a model for maximization is
we want to model using a Qu#n CMOS technology from Alcatel Micro- required.

elt_actromcs. The supply voltage is 5V. The nominal threshold voltages of4:h model is generated twice keeping the same center point for different
this technology ar@.76V" for NMOS-devices and-0.75V" for PMOS- ygjative sizesdz = 0.1,0.01) of the fitting hypercube. The fitting was
devices. The circuit has to drive a load capacitance of 10pF. carried out using an orthogonal array of strength 3 of dimengighnx
Thirteen independent design variables were retained as inputs for thp3, i.e. 243 experiments each requiring three SPICE simulations were
models. In Table I an overview of the chosen variables and their boundg 5 ried out to obtain the experimental data. For the case where 0.1
is given. Note that currents and transistor drive voltages are chosen gg, some experiments the DC-solution proved to be not physical or the
variables, rather than transistor widths, since we use an operating-poitimy|ations did not converge. These experiments were retained from the
driven formulation for analog circuit sizing [16]. The bounded range of it hrocess. This of course ruins the desired orthogonality properties of the
variablesv; & [Ibi, ub] is logarithmically scaled onte; < [0, 1] using orthogonal arrays we use. However, as mentioned before, these properties
Ui) | < b > (20) only become relevant as soon as the relative size of the fitting hypercube
og

z; = log (E " becomes small.

(22)

ALp | 36.45dB fu | 6761MHz || PM 90.28

2 . .
For the experimental results we also used an orthogonal array hypercube with 2686w || sr, 217 Vius sk, | 262vis

a size 1/3 of the original size. Yoif
3For this purpose we integrated the BSIM-3v3 model into Berkeley SPICE 3f4. Table Il. Performance of the CMOS OTA for x; = 0.5, Vi
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Figure 6. Graphical representation of the model coefficients of the (signo-

sizes. The anomaly of thB)M-model fordz = 0.01 is due to numerical
instabilitied during fit and approximation calculations.

6 Conclusions

This paper has presented a technique to automatically generate posyno-
mial performance models from full-accuracy SPICE simulations. Both
signomial and posynomial models can be generated. The latter can be
employed in automatic circuit sizing using highly efficient interior-point
geometric programming algorithms. Our approach reduces the time and
the effort needed to generate posynomial models to a strict minimum. The
results are promising, but indicate room for improvement a.o. concern-
ing numerical stability and the fitting of more specific (non—polynomial)

mial) model for Ay g for the casedx = 0.1.

posynomial models that might enable further reduction of the fit error for

large hypercube sizes.
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Fig. 6 illustrates the model coefficients of the signomial model4gg

for the caselz = 0.1. It can be seen that in general an unconstrained-[g]
fitted model is not posynomial since many negative coefficients occur.
Table 11l shows the results for the origally fitted signomial models, whereas
table IV shows the results for the derived posynomial models. The range,
the standard deviation in the fit points)(and the quality figure(s) have [9]
been given for every modeled parameter. Weclet 0.001 (see (19))
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