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Abstract

In this paper, we develop a wavelet collocation method with
nonlinear companding for behavioral modeling of analog circuits. To
construct the behavioral models, the circuit is first partitioned into
building blocks and the input-output function of each block is then
approximated by wavelets. As the blocks are mathematically
represented by sets of simple wavelet basis functions, the computation
cost for the behavioral simulation is significantly reduced. The
proposed method presents several merits compared with those
conventional techniques. First, the algorithm for expanding input-
output functions by wavelets is a general-purpose approach, which can
be applied in automatically modeling of different analog circuit blocks
with different structures. Second, both the small signal effect and the
large signal effect are modeled in a unified formulation, which eases
the process of modeling and simulation. Third, a nonlinear companding
method is developed to control the modeling error distribution. To
demonstrate the promising features of the proposed method, a 4th order
switched-current filter is employed to build the behavioral model.

1. Introduction

With the remarkable evolution of mixed analog and digital ICs,
the need for advanced analog behavioral modeling techniques has
become increasingly urgent. First, in top-down designs, the simulation
based on behavioral models can provide fast prediction of system
performance, which helps to select proper architectures for circuit
implementation and analyze tradeoffs at the early design stages [4].
Second, in bottom-up verifications, transistor-level simulation is too
expensive in memory space and computation time to afford the
verification of a whole mixed-signal chip containing a large number of
analog components. Under such circumstance, behavioral models
enable designers to verify the complex system efficiently and result in
fast system evaluation.

For modeling nonlinear analog circuits, it is required to partition
the whole circuit into building blocks and express the input-output
relation of each block by a nonlinear function [1]-[5]. After those
sophisticated analog circuit blocks are mathematically represented by a
set of simple functions, the computational cost for simulation is
significantly reduced. There exist two methods to obtain the nonlinear
input-output functions: (1) developing the function manually by
theoretical analysis [4]; (2) approximating the input-output function by
polynomial expansion and determining the unknown coefficients by a
set of collocation points [3]. The first approach takes into account the
internal non-ideals of the analog circuits and helps designers to
understand the physical behavior more accurately and intuitively.

However, such a modeling method is circuit-structure-dependent [4]
and can hardly be used in automatic behavioral model generation.
Moreover, the manual analysis is time-consuming and too complicated
for large circuits. Most importantly, the theoretical models are derived
under some assumptions and can work correctly only in a limited input
range. For example, Ref. [4] only considers the circuit behavior with
small signal input. Therefore, the theoretically derived model in [4]
may run in some blind working regions when the input signals are too
large. Compared with the theoretical analysis approach, the polynomial
approximation is more efficient and flexible. Unfortunately, this
approach [3] doesn’t consider large signal effect either, and only circuit
behaviors with small input signals are characterized. In addition, the
issue of modeling error distribution is not addressed in [3]. But in
practical applications, designers may require the developed behavioral
model to have a constant relative error at different circuit output values.
Otherwise, the model may present nonuniform error distribution under
different working conditions.

In this paper, we propose a wavelet collocation method to expand
the input-output functions of analog circuit blocks by wavelets. Taking
advantage of the superior computational properties of wavelets, the
proposed method can express both small signal effect and large signal
effect by a unified formulation, which eases the process of modeling
and simulation. In addition, a nonlinear companding method is
developed in this paper to control the modeling error distribution.

The rest of the paper is organized as follows. In Section 2, we
introduce the basic principle of the wavelet collocation method for
behavioral modeling, then develop the nonlinear companding algorithm
for error distribution control in Section 3. To demonstrate the
computational efficiency of the proposed method, a 4th order switched-
current filter is employed in Section 4 to construct the behavioral model.
Finally, we draw conclusions in Section 5.

2. Behavioral Modeling by Wavelets

Without loss of generality, we assume that the input-output
relation of an analog circuit block is described by a nonlinear function

y=7) )
where y is the output and x represents the input. According to the
wavelet approximation theory [6], function f (‘) can be expanded by
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{C,;i:1,2,---,M} are

{Wl- (x);i :1,2,--~,M} are wavelet basis functions, and M is the total

where unknown coefficients,
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number of basis functions that have been employed. The wavelet basis
functions can be constructed by many means [6], but in this paper, we
prefer to use the basis functions in [7], [8], because they are proved to

have a high convergence rate Oli* ), where £ is the step length [7],

(8].

Equation (1) can be written in a familiar form after being

discretizated at some interior collocation points
{xl,xz,-u,x,\,;NZM} .
CIF=Y ©)
where
c=lc, ¢, - ¢ 4)
AR
_0W Wy \x, Wy\xn )
2o z : D ®
g 0
By () 7y (x,) Wy (xy B
Yzb(xl) J’(xz) J’(xzv)] (6)

For each value x;, the value y(x,-) can be found by a transistor-level

simulator such as SPICE. Then, the optimal solution for equation (3)
with least-square error is given by [9]
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where T denotes the operation of transpose.

It is worth mentioning that the above wavelet collocation method
can be easily extended to multi-input building blocks, as long as the
input-output function is expanded by multi-dimension wavelets. For the
reason of simplicity, we only discuss the wavelet collocation method
for modeling single-input building blocks in this paper.

3. Error Distribution Control by Companding
3.1 Algorithm of Nonlinear Companding

According to wavelet approximation theory [6], the
approximation error depends on the singularity of wavelet basis
functions. Therefore, the modeling error distribution can be modified if
the singularity of wavelet bases is changed. This issue can be realized
by a nonlinear companding algorithm proposed in the following.

Assume the input-output function f (x) is defined and modeled
in interval [xA,xB] . We call domain [xA,xB] the Input Domain. On
the other hand, the wavelet basis functions {Wl (l);i = l,2,--~,M} are
defined in another domain [l 2l B], which is called the Companding
Domain. The relation between Input Domain and the Companding
Domain is determined by a nonlinear companding function [ = g(x).

Now, with the nonlinear companding, the original wavelet expansion in
equation (2) shall be modified to

()= ¢, m,()
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where the wavelet coefficients {Ci N 1,2,---,M} can be obtained by

the collocation method illustrated in Section 2. The nonlinear function
/= g(x) defined in interval shall satisfy the following
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constraints’.

" These two constraints are sufficient, but not necessary, conditions for
constructing a companding function. A monotonically decreasing
function may also be suitable for nonlinear companding. For simplicity,
we only discuss those companding functions satisfying the proposed
two constraints, since the similar result can be obtained in other cases.

1) g(xA)zlA =x, and g(xB):lB =Xp-

(2) Function /= g(x) is monotonically increasing.

Hence, function /= g(x) establishes a one-to-one mapping between
the Input Domain and the Companding Domain.

3.2 Mechanism of Nonlinear Companding
Equation (8) implies that the process of nonlinear companding is

equivalent to transforming a set of wavelet basis functions
{Wi (l);i :1,2,---,M} initially in Companding Domain to their
counterparts {W, [g(x)];i :1,2,---,M} in Input Domain. Then, the
companded basis functions W,[g(x)] are employed to expand the
input-output function f (x) in Input Domain. The first-order derivative
functions of Wl.[g(x) are

dw, _dw, dl _dw, _, .
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Equation (9) demonstrates that the derivative of Wl(l) is scaled by

g’(x) after nonlinear mapping. Since the derivative function of a
waveform indicates its singularity, equation (9) thus implies that the
singularity of the original wavelet basis functions dW; /dl is changed

in Input Domain.

10

Companding Domain (1)

0 2 4 6 8 10
Input Domain (x)

Nonlinear companding function [ = g(x) - 210 [(eo.n _1)

Fig. 1.
& e -1

1.2

°© o 9o
N o ® =~

o
N

Wavelet Basis Functions

o

-0.2 ! ! ! !
0 2 4 6 8 10
Companding Domain (I)

Fig. 2.  Wavelet basis functions in Companding Domain

For example, consider the nonlinear companding function

/= g(x): 210 . E(eo‘z'” —l) (displayed in Fig. 1), which is defined in
e —

interval [O, 10] . Fig. 2 gives the waveforms of a set of wavelet basis




functions with uniform order in the Companding Domain, and their
equivalent counterparts in I/nput Domain are depicted in Fig. 3.
Comparing Fig. 2 with Fig. 3, one would notice that the companded
wavelet basis functions near x =10 are much more singular than that
near x =0 . Such a feature can be explained as a result of the nonlinear

mapping, because the first-order derivative g’ (xx =10 is greater than 1

and g’ (XXXZO

basis functions are used to represent the input-output function f(x) in

is less than 1. Therefore, when the companded wavelet

Input Domain, the singular bases near x =10 have the potential to
approximate f (x) more accurately since they contain more high
frequency components.
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The above analysis indicates that the modeling error in one
interval can be reduced by increasing the singularity of wavelet bases in
that region. According to equation (9), the singularity of wavelet bases
is proportional to g’ (x) , l.e. the greater the first-order derivative
g’(x) is, the more singular the wavelet bases will be. Therefore, we
shall increase the value of g’ (x) in those regions where high modeling
accuracy is required.

Finally, it is important to note that for wavelet approximation, we
can modify the modeling error distribution by the nonlinear
companding technique because wavelet bases have compact support.
However, polynomial basis functions {l,xl,xz,-u} have global support
so that their error distribution cannot be regulated easily.

3.3 Comparison with the Conventional Wavelet Expansion

According to the multiresolution analysis in conventional wavelet
approximation theory, there exists an adaptive scheme which can be
used to select proper wavelet basis functions automatically [6]-[8]. The
multiresolution analysis decomposes a space H into a set of orthogonal
subspaces {W,;J = -~-,—1,0,1,--} , and the approximation accuracy
depends upon the wavelet space level J that has been employed. The
higher the space level is, the less the error will be. Using adaptive
techniques, high-level wavelet bases can only be used in those regions
where the input-output function shall be approximated with high
accuracy. However, the adaptive algorithm is not so efficient as the
nonlinear companding approach in modeling analog circuits. It can be
shown [6] that for any multiresolution analysis there exists a wavelet
W (x) such that the family of functions

v, (x)= 2’w(2’x—n)- Jon= =101, (10)
is an orthogonal basis of W, at any resolution 2’ . Equation (10)

implies that the wavelet bases in W, can be generated if we compress

those basis functions in lower level space W, ; by one time. In other
words, the singularity of the wavelet bases in W, is doubled,
compared with that in W, . Note that the singularity of basis

functions doesn’t change continuously as the wavelet space level J is
increased. It, in turn, means that the approximation error doesn’t
change continuously either, because singularity of wavelet basis
functions determines their ability for approximation [6]-[8].

On the other hand, the nonlinear function /= g(x for
companding is continuous and smooth so that it can continuously
modify the singularity of the wavelet basis functions, and consequently
the modeling error distribution. In many analog-circuit-modeling
applications, the absolute modeling error shall be a continuous function
of input x, if the input-output function f (x) is continuous and the
relative error is required to be constant. Under such circumstances, the
nonlinear companding technique is more efficient than the adaptive
algorithm, although the latter one is a general-purpose method and is
very useful in many other applications.

4. Behavioral Modeling Example

In this section, a 4th order switched-current filter is examined to
demonstrate the effectiveness of the proposed wavelet collocation
method for analog behavioral modeling.

4.1 Modeling Methodology
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Fig. 4.  Switched-current memory cell
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Fig. 5.  Input-output function of the switched-current memory cell

Fig. 4 shows the circuit schematic of a second-generation
switched-current memory cell, which is the basic building block of
switched-current circuits. Combining several basic memory cells, we
can realize a 4th-order lowpass Butterworth filter consisting of two
biquadratic switched-current filters [10]. For modeling this Butterworth
filter, we first represent the input-output function of each building block



by wavelets. Second, we construct the behavioral model of the filter by
a signal flow graph, which is derived from the circuit topology and the
non-ideal input-output relationship of each block. Such a signal-flow-
graph-based model is then simulated by MATLAB SIMULINK to
verify the accuracy of the proposed model. In the following, we take
the current memory cell as an example to present the block modeling
method by wavelets.

Denote [

in

B’l —%E as the input current of the memory cell and
O O

1. (n) as its output current. Then, the input-output relation of the
memory cell can be modeled in equation (11).

0 1 .
1, ()=t o @ 'E% when ®, = high (11
B), when @, = low

Function f (') is weakly nonlinear [3]-[5] for small signal input,
where non-ideal factors such as mismatch, charge injection, finite
output impedance, etc. are considered. However, for large signal input,

f (-) will exhibit strongly nonlinear, because the output current /,,, is

restricted by the bias current 7,,, =20uA4 as simulated by SPICE in

Fig. 5. In order to cover the effect of large signal input, we approximate
the input-output function f(°) in interval [— SOuA,SO/JA] when
building behavioral models. Furthermore, we require the developed
behavioral model to have a constant relative error at different circuit
output values. Applying the nonlinear companding technique
introduced in Section 3, we can achieve the uniform relative error
distribution by the following three steps.

Step 1. Specify the modeling requirements. In the current application,
the relative simulation error shall be constant. Such a linguistic
specification can be mathematically expressed as an explicit merit
function

Q = (EV}”R |1nput:15/,lA)Z teed (E}’VR |1nput2150/,lA)Z (12)

The notation ErrR| represents the relative simulation

Input=*ilIA
error when the switched-current memory cell is simulated with a
sinusoidal input of amplitude +iuA (i = 5,10,---,50). The relative
simulation error is defined as

Il-)/SPICE ()= 3 tour )] 2 dt

I[y SPICE (t )]2 dt

where  yopic (t) is the simulation result by SPICE and y,;,,.; (t)

Errg =

(13)

is the result by the developed behavioral model. After merit
function (12) is minimized, we have

Err, =Erry so that the minimum and

Input=+50ud >

ppur=spd
constant relative error is obtained.

Step 2. Build the prototype of nonlinear companding function
/= g(x). Our goal is to keep the relative simulation error
constant. When the input-output function in Fig. 5 is expanded by
wavelets, the absolute approximation error near x =0uA4 shall
be smaller than that near x =#50u4. Recall that we shall
increase the value of g’(x) in those regions where high model
accuracy is needed. Therefore, the derivative of the companding

function g’(xxxzo shall be greater than g’(xxxzso e Define the
prototype function in interval l— 5x107%,5%107° J as
-5
l=g(x)— >x10 B‘ign(x)l]n(l+p|x|) (14)

" nli+5x107 p)
where p is a parameter controlling the nonlinearity of the function

and its value is to be determined by an optimization process in
Step 3.

Step 3. Refine the prototype function. With merit function (12) and
the prototype function (14), we optimize parameter p by the
Golden Section Search method [9]. As long as the minimum
value of (12) is reached, the optimal p is found and consequently
the proper companding function /= g(x) is determined.

4.2 Simulation Results of the Memory Cell
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Fig. 7.  Relative simulation error of different models

In this section, three methods in all are applied to approximate the
input-output function of the switched-current memory cell in interval
[—SO/JA, 50[1A] . First, the polynomial expansion is employed to express
the input-output function by 15 basis functions. Second, we use the
conventional wavelet collocation method with adaptive scheme to
automatically employ proper high-level wavelet basis functions in
those regions where high accuracy is needed. As a result, 17 wavelet
bases are selected by the adaptive scheme to represent the input-output
function. Third, the wavelet collocation method with nonlinear
companding is applied to approximate the input-output function by 15
basis functions. Fig. 6 depicts the optimal companding function
[= g(x) after the merit function (12) is minimized. The behavioral
models developed by these three approaches are tested respectively
with sinusoidal inputs of different amplitude =*iu4 (i =510, -,50). Fig.
7 depicts the relative simulation errors, defined in equation (13), for
these three models. Note that the relative error of polynomials increases
as the input current amplitude decreases, which demonstrates that the
modeling error distribution is completely uncontrolled. On the other
hand, the wavelet expansion with either adaptive scheme or nonlinear



companding is able to keep the relative error almost unchanged at any
output value. Moreover, it is shown in Fig. 7 that the modeling error of
the nonlinear companding technique is less than that of the adaptive
scheme, although the wavelet basis functions employed by the latter
method are more than those employed by the former approach. In this
point of view, the nonlinear companding method is more efficient than
the conventional adaptive scheme in modeling switched-current circuits,
which consists with the theoretical analysis in Section 3.3.

4.3 Simulation Results of the 4th Order Filter

Using the memory cell model developed above, we simulate the
signal-flow-graph-based filter model by MATLAB SIMULINK. In the
following, we present the results.
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1. Time domain response. First, we test the filter models by a
sinusoidal input of frequency 1kHz and amplitude *10ud (small
signal input). Fig. 8 gives the time-domain simulation results obtained
from SPICE and three kinds of different models. Again, these results
indicate that the model developed by the wavelet collocation method
with nonlinear companding is the most accurate one in predicting
circuit behaviors under small signal input.
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Fig. 9. Frequency domain response of the 4th order filter

2. Frequency domain response. Second, the filter model is tested
with sinusoidal inputs of amplitude +10u4 (small signal input) at

different frequencies. Fig. 9 depicts the frequency response obtained
from SPICE and three kinds of different models. Note that the model
expressed by wavelet expansion with nonlinear companding works
much better than the other two ones.

3. Simulation speed. We run the behavioral simulations on a Pentium
III-550 computer. Assume that a transient simulation is performed for

the 4th order switched-current filter in time domain [O,Sms] , then the

computation time is 380 seconds by SPICE, 2.0 seconds by the
behavioral model with polynomial expansion, 5.0 seconds by the
behavioral model with wavelet expansion (adaptive scheme) and 2.8
seconds by the behavioral model with wavelet expansion (nonlinear
companding). Compared with SPICE, the overall speed up with
behavioral models is about two orders in time domain.

5. Conclusion

We propose in this paper a wavelet collocation method with
nonlinear companding for behavioral modeling of analog circuits. The
proposed method presents several merits in contrast with those
conventional techniques.

First, compared with the modeling approach by theoretical
analysis, the proposed method is a general-purpose one. It can be
applied in automatically modeling different analog circuit blocks with
different structures.

Second, compared with the conventional polynomial expansion,
the proposed method can include small signal effect and the large signal
effect in a unified formulation with constant relative error distribution.
It, in turn, eases the process of both modeling and simulation.

Third, compared with the conventional adaptive wavelet
collocation method, the proposed method has the potential to regulate
modeling errors continuously. Therefore, it is more efficient than the
adaptive scheme in dealing with analog circuit modeling, although the
latter method is more general and very useful in many other
applications.

In conclusion, as a counterpart of those conventional techniques,
the wavelet collocation method with nonlinear companding exploits a
new general-purpose approach for modeling analog circuits in
behavioral-level simulations.
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