A New Algorithm for Routing Tree Construction with Buffer
Insertion and Wire Sizing under Obstacle Constraints ~

Xiaoping Tang, Ruigi Tiant, Hua Xiang, and D.F. Wong
University of Texas at Austin, Austin, TX 78712

{tang, ruiqi, xiangh, wong}@Qcs.utexas.edu

Abstract

Buffer insertion and wire sizing are critical in deep submicron
VLSI design. This paper studies the problem of constructing
routing trees with simultaneous buffer insertion and wire sizing
in the presence of routing and buffer obstacles. No previous
algorithms consider all these factors simultaneously. Previous
dynamic programming based algorithm is first extended to
solve the problem. However, with the size of routing graph in-
creasing and with wire sizing taken into account, the time and
space requirement increases enormously. Then a new approach
is proposed to formulate the problem as a series of graph prob-
lems. The routing tree solution is obtained by finding shortest
paths in a series of graphs. In the new approach, wire sizing
can be handled almost without any additional time and space
requirement. Moreover, the time and space requirement is
only polynomial in terms of the size of routing graph. Our
algorithm differs from traditional dynamic programming, and
is capable of addressing the problem of inverter insertion and
sink polarity. Both theoretical and experimental results show
that the graph-based algorithm outperforms the DP-based al-
gorithm by a large margin. We also propose a hierarchical
approach to construct routing tree for a large number of sinks.

1. Introduction

Rapid advances in integrated circuit technology have led to
a dramatic increase in the complexity of VLSI circuits. As a
result of scaling, the devices become much smaller and faster,
but interconnects get more resistive. Interconnect delay, es-
pecially global interconnect delay, has become the dominant
factor in deep submicron design in determining the overall
circuit performance and complexity. Many techniques are em-
ployed to reduce interconnect delay, such as buffer insertion,
wire sizing and routing topology generation. Since buffers are
implemented by transistors, they can not be placed over the
existing macro blocks. Thus, macro blocks present themselves
as routing resources for wires but obstacles for buffers. More-
over, routing congestion areas forbid wires to go through. All
these factors make routing one of the most challenging tasks
in VLSI design. As transistor count and chip dimension get
larger and larger, routing would become a computationally
expensive stage in the system design process.

Many buffer insertion and wire sizing algorithms have been
proposed in the past few years. Most of them were using
dynamic programming in a bottom-up fashion. Van Gin-
neken [21] presented a polynomial time algorithm based on
dynamic programming for optimal delay buffer insertion on a
given tree topology. Lillis et al. [13] and Okamoto et al. [15]
considered simultaneous routing and buffer insertion by com-
bining P-Tree algorithm and A-Tree algorithm with buffer in-
sertion, respectively. Salek et al. [17] presented an algorithm
on routing tree construction for an ordered set of critical sinks.
Alpert et al. [2] proposed a two-step approach of steiner tree
construction followed by buffer insertion for difficult instances.
Proper wire segmenting was discussed for buffer insertion in a
routing tree in [1]. These algorithms can efficiently construct a

*This work was partially supported by the National Science
Foundation under grant CCR-9912390.

tRuiqi Tian is also with Motorola Inc., Austin, TX 78721.

buffered routing tree, but they can not handle buffer obstacles
and routing obstacles. Cong et al. [6] first studied wire sizing
based on a dynamic programming algorithm. Sapatnekar [19]
considered area and timing constraints. Chen et al. [3] showed
the optimal continuous wire shape under Elmore delay model
is an exponential function. Kay and Pileggi [10] proposed an
efficient greedy approach for wire sizing. Chu and Wong [4]
presented a quadratic programming approach to simultaneous
buffer insertion and wire sizing for a routing path. Later on, it
is extended to combine with dynamic programming for rout-
ing tree optimization[14]. However, it is based on a fixed tree
topology. Zhou et al. [22] introduced the concept of buffer
obstacle and proposed an algorithm using dynamic program-
ming to minimize interconnect delay by simultaneous routing
and buffer insertion for 2-pin net with restriction on buffer lo-
cations. Most recently, Lai and Wong [12] proposed a graph-
based formulation of the Maze Routing problem with buffer
insertion and wire sizing. Jagannathan et al. [8] studied the
buffer insertion problem to maximize the delay reduction to
cost ratio. Both of them can handle constraints of routing
obstacles and buffer obstacles. However, they can only deal
with 2-pin nets, which limits the application. An algorithm
is presented in [7] for simultaneous routing tree construction
and buffer insertion for multiple-pin nets under fixed buffer lo-
cations. It used dynamic programming approach to construct
the routing tree in a bottom-up fashion. The number of buffer
locations it handled is small. Furthermore, it didn’t consider
wire sizing. (Our experiments show that proper wire sizing
together with buffer insertion can reduce the delay about 10%
further compared to inserting buffers only for a routing tree,
and hence is important and necessary.) Although the algo-
rithm in [7] can be extended to deal with the problem of
routing tree with buffer insertion and wire sizing under ob-
stacle constraints, the time and space requirement increases
enormously with the size of routing graph increasing and with
wire sizing taken into account.

In this paper, we present a new approach to formulate the
problem as a series of graph problems. We construct a graph
for each subset of the sinks. In the graph the source ver-
tex is the subset, and other vertices represent possible buffer
choices at different buffer locations. The shortest path from
the subset vertex to each other vertex v in the graph represents
the optimal routing tree with appropriate buffer insertion and
wire sizing which connects v and the subset of sinks. Then a
routing tree is created by increasingly considering more sinks.
The final solution turns out to be the shortest paths from the
subset including all sinks to the source node of the net. Our
algorithm differs from traditional dynamic programming ap-
proach, and is much more efficient. In the new approach, wire
sizing can be handled almost without any additional time and
space requirement, i.e. wire library does not affect the com-
plexity. Moreover, the time and space requirement is only
polynomial in terms of the size of buffer locations and buffer
library. The algorithm is capable of addressing the problem
of inverter insertion and sink polarity. Both theoretical and
experimental results show that the graph-based algorithm out-
performs the DP-based algorithm by a large margin. We also
propose a hierarchical approach to construct routing tree for
a large number of sinks.

The rest of the paper is organized as follows. Section 2

reviews the delay model and formally defines the problem of
routing tree with buffer insertion and wire sizing under obsta-
cle constraints. In section 3, the previous dynamic program-
ming algorithm is extended to solve the problem, and its com-
plexity and limitation are briefly described. Section 4 gives
our new algorithm and analyzes its time and space complex-
ity. We also present a hierarchical approach to handle large
number of sinks in section 5. Several capabilities of extension
are discussed in section 6. Finally, we show the experimental
results with concluding remarks in Section 7.

2. Delay Model and Problem Formula-
tion
In this section, we briefly review the delay model and formally

define the problem of constructing a routing tree with buffer
insertion and wire sizing under obstacle constraints.

2.1 Delay Model

Component <

Figure 1: Components decomposed by buffers (source, or sink)
in a routing tree.

As in most previous works, we use the 7-RC model for wires
and switch-level RC model for buffers. In this paper, we adopt
the distributed RC delay model developed by Rubinstein et al.
[16] for delays. Given a distributed RC circuit, the signal delay
at a node is computed as follows:

d= > R;-Ci

all nodes k

where Ry, is the resistance of node k and Cj, is the downstream
capacitance for all branches from node k. Each buffered rout-
ing tree is a set of components which are decomposed by
buffers in the tree. Each component is a tree or a path with-
out any buffer inside. Fig 1 illustrates the components of a
routing tree. The delay of a component is computed by Ru-
binstein model. The total delay from the source to a sink in
the buffered routing tree is the sum of the component delays
and buffer delays along the path from the source to the sink.

The reasons that we choose this delay model are: (i) Al-
though the model is simpler than Elmore delay model, it still
captures the property of distributed circuit, and gives the same
delay as Elmore delay model for a routing path; (ii) It gives
a uniform upper bound of the delay for every receiver node
in a component; (iii) It implicitly encourages more sharing of
routing resources than Elmore delay model.

2.2 Problem Formulation
The goal of our algorithm is to construct a routing tree with
feasible buffer insertion and proper wire sizing in the presence
of obstacles, such that the maximum delay from the source
to sinks is minimized. Without buffer obstacles, the optimal
routing tree is a shortest path tree rooted at the source node.
But in the presence of macro blocks, which are available for
wiring but infeasible for buffer insertion, the shortest path
tree does not guarantee to be the optimal routing tree with
minimized maximum delay from the source to sinks. Previ-
ous algorithms which ignore macro blocks during routing tree
construction may result in a much inferior solution.

We illustrate the importance of the problem by an exam-
ple of the 3-pin net in Fig 2. Shaded boxes represent routing
obstacle regions where wiring is not allowed, and gray boxes

T T T TP T

t2

T P T T LT T
T T [T

P A o v

TP T T T LT T

i

B

Figure 2: (a) Routing tree problem (b) Shortest path tree +
buffer insertion, delay = 1183ps (c¢) Avoid obstacles + buffer
insertion, delay = 1220ps (d) Our routing tree approach, delay
= 977ps.

represent macro blocks where buffering is not allowed. The
routing area has the unit length of 0.5mm. The technology pa-
rameters are taken from [20] with unit length wire resistance
0.076Q2/pum, unit length capacitance 0.118 fF//um, driver re-
sistance of source and output resistance of buffer 18012, load
capacitance of sink and input capacitance of buffer 23.4fF,
and intrinsic delay for buffer 36.4ps. An optimal shortest path
tree is shown in Fig 2(b), and its delay is 1183ps with proper
buffer insertion. The shortest path tree has a long part going
over macro blocks, which forbid buffer insertion. As a result,
it produces a large delay. An alternative approach is to re-
gard macro blocks as routing obstacles and avoid wiring over
them. An optimal solution by this approach is shown in Fig
2(c), and its delay is 1220ps. Although buffers can be inserted
anywhere, it wastes routing resource and may be too long to
have short delay. By wisely routing with proper buffer inser-
tions, we can obtain a better solution which is shown in Fig
2(d) with delay 977ps.

In the problem of routing tree construction, the routing
area is represented by a grid graph G = (V,E). Routing
obstacles and buffer obstacles are present in the routing area.
Each edge in E is a wire segment. Wire library W provides
wire choices, and buffer library B contains buffer choices to
be inserted at grid nodes in G. There are four types of nodes
in G(V, E):

1. Source node s: grid node representing the source of a

net

2. Sink node ¢;, 1 = 1,..., k: grid node representing a sink
of a net

3. Buffer node f: grid node which allows buffer to be in-
serted

4. Wire node r: grid node which forbids buffering but al-
lows wiring.

In the rest of the paper, we use F' to denote the set of
buffer nodes in G, and R to denote the set of wire nodes. The
problem of routing tree with buffer insertion and wire sizing
under obstacle constraints is formally described as follows:

Problem 1. RTBW Given a routing graph G = (V,E), a
wire library W, a buffer library B, a source node s € V and
k sink nodes ti,ta,....,tx € V of a net, find a buffered routing
tree T rooted at s and leafed at t;, © = 1,...,k, for each node
v €T, b(v) € BU{0} where b(v) = 0 indicates no buffer is
inserted at v and b(v) # 0 requires v is a buffer node, for each
segment | € T wire w(l) € W, such that the mazimum delay
from s to t; is minimized.

3. Previous Approach by DP

Dynamic programming is a popular method for various buffer
insertion and wire sizing problems [21, 17, 15, 22, 7]. A dy-
namic programming algorithm solves every subproblem and
saves the partial solution in a table, then computes an optimal
solution in a bottom-up fashion. In this section, we extend the
algorithm in [7] (called DP-RTBW) to solve RTBW problem,
and analyze its complexity and limitation.

Each node is labeled by a set of tuples (C, D, T") represent-
ing a subtree rooted at the node where C' is the downstream
capacitance, D is the delay of the subtree; and I is the sink set
of the subtree. Two tuples, belonging to two adjacent nodes in
the routing graph, are merged by a wire connection to create
a new tuple if the two tuples have disjoint subsets of sinks. A
priority queue @ is constructed to sort the partial solutions
on the key D, and initialized with the union of all label sets
of sinks. A tuple (C1,D1,T'1) is redundant with respect to
another (Cz, D2,T'2) if I'y = 'y, Cy > C2, D1 > D,, which can
be discarded safely. The pseudocode is omitted.

The time and space complexity of DP-RTBW is very large.
Let Cinaz denote the max value of all downstream capaci-
tance. The number of sink subsets is 2¥. Thus each node
could have O(2¥Cinas) tuples. Since there are V nodes in

routing graph, the total number of tuples is O(2*V Ciaz).
Each node has at most 4 adjacent nodes in routing graph.
Thus a tuple at a node will merge with O(Zkaaz) tuples at
other nodes, each costing O(W). Each time inserting a new
tuple to the priority queue takes O(l0g(2¥V Crnas)), and prun-
ing can be amortized. Therefore, by multiplying the number
of tuples, merging cost and inserting cost, we get a loose time
bound: O(4*WV Cinaz?10g(2¥V Crras)), where k is the num-
ber of sinks, W is the number of wire choices, and Ciqz is
the maximum value of downstream capacitance. A loose space
complexity bound is O(28V Crnaz). Crmas is usually very large,
even huge to make the algorithm impractical'. By carefully
examining the possible capacitance combinations at each node,
we can get a much more accurate bound of complexity.

== !

| ———=

Figure 3: Illustration of a wire path with length [and W wire
choices.

Let us consider the wire path with length ! and W choices
as in Fig 3. We know the wire width must be decreasing
along the path (otherwise the tuple label will be redundant
and pruned). Then the number of different non-redundant

combination is CKI;{I. Since there are B different buffer

choices, the number of capacitance is CK;VIAB. Let L be
the distance from a grid node v to a sink. If we assume each

node between v and the sink can be a buffer location (which

is possible), then the node v can have Eszo CK;V{IB =

CK_WB tuples related to the sink. When the number of

!These bounds depend on Ciuaz. It suggests that we use a
rough metric for capacitance, thus we should reduce the time
and space requirements. But it will greatly affect the optimal-
ity and quality.

sinks is k, roughly, a node v can have O(Hle(CK_WB)) =
O(LV*B*) capacitance combinations or tuples. Thus, the
space requirement is O(VLWk Bk), and the time requirement
is O(VLWkBY . WLW*B* .10g(VLW* B*)) = O(VW L?Wk B2*
log(VLY*B*)). In routing graph, L = O(v/V). Hence, the
space complexity is O(VVWk/ 2B*) and time complexity is
O(WVWk+1 B2k |og(VWk/2+1 Bk)). With the number of sinks
increasing, the complexity increases enormously.

4. New Graph-Based Algorithm

In this section, we describe a new graph-based algorithm, and
analyze its complexity. At first, we summarize the notations.
Without ambiguity, we also use a set X to represent its car-
dinality (i.e. |X|).

4.1 Notation

o W: wire library of different wire choices.

B: buffer library of different buffer choices.

F: the set of nodes which allows buffer to be inserted

(also called buffer node).

N ={s}U{t;|i =1,...,k} UF: the set consisting of the

source, the sinks and the possible buffer nodes. Clearly,

IN| < [V].

e I': the non-empty subset of sinks.

e Wire Path: a path connecting two nodes in N by prop-
erly sized wires but no buffer between (refer to Fig 4).

o Buffered Path: a path connecting two nodes in N
with buffers inserted between. A wire path is a spe-
cial buffered path. Without ambiguity, we also call a
buffered path as a path.

e Buffer Combination: a tree component connecting
three or more nodes in N without internal buffers. For
convenience, we call the upstream node in a buffer com-
bination as driver, and the other node as receiver (refer
to Fig 6).

e Subtree: a tree connecting a buffer node or the source
to a subset of sinks.

e BC-Subtree: a subtree beginning with a buffer combi-
nation. A BC-subtree is a special subtree.

o Wire Path Table ¥: a table storing pre-computed op-
timal buffer-to-buffer wiresizing solutions for wire paths.

¢ Buffer-Combination Table ®: a table storing pre-
computed optimal wiresizing solutions for buffer combi-
nations. _

e Buffered Path Table P: a table storing pre-computed
optimal solutions for buffered path.

e S,: the space size of wire path table ¥ and buffer-
combination table ®.

e T,: the runtime to compute ¥ and ®.

Wire Path

~=-BC-Subtree
Buffer Combination

Figure 4: Illustration of notations.

Buffered
path
Buffered

Figure 5: Two configurations of a routing tree with 3 sinks.

4.2 General lIdea

Notice that a buffered routing tree is a set of buffer combina-
tions plus the connecting buffered paths as shown in Fig 5. A
buffered path is a set of connected wire paths. Both wire path
and buffer combination can be pre-computed.

Given a routing grid graph G = (V, E), let N = {s}U{t;|i =
1,..,k} UF. Clearly, |[N| < |V|. For a grid graph G with a
lot of buffer obstacles, |N| is much less than |V|. For any
u,v € N, the minimum delay of a wire path from u to v is a
simple function of the shortest distance from u to v (denoted as
d(u,v)) in G, the driver resistance in u, the load capacitance in
v, and the wire library W. Since the buffer library B is given,
the possible driver resistance and load capacitance are known.
Buffer-to-buffer wiresizing solutions can be pre-computed and
stored in a table for wire path (denoted as ¥). The minimum
delay value from w with buffer b, to v with buffer b, can be
found by looking up the wire path table ¥ (b, by, d(u,v)). It
should be noted that we assume the driver resistance of the
source equals one of the resistances of buffers in B and the load
capacitance of sinks equals one of the capacitance of buffers.
If not, it can be solved easily by adding an additional buffer
type with source resistance and sink capacitance into B and
letting the buffer type be used at source and sinks only.

Figure 6: A buffer combination with 3 nodes (v,r1,72).

The delay of a buffer combination (v,r1,...,7¢), where v
is driver and ri,...,7+ are receivers, is more complicated to
compute. However, it is still a function of the distance config-
uration of the buffer combination, the driver resistance of v,
the load capacitances of r;,7 = 1, ..., ¢, and the wire library W.
As an example, Fig 6 shows a buffer combination of 3 nodes
(v,7r1,72). Its minimum delay is determined by the stem length
e, branch length l1, 12, the driver resistance of v, the load ca-
pacitances of r1,72, and the wire library W. In practice, the
degree of a buffer combination (= t+ 1) is small (otherwise, it
will cause large delay). If we restrict the maximum degree of a
buffer combination, the distance configuration (e.g. e,l1,l2 in
Fig 6) can be obtained by computing a steiner tree of a small
number of nodes. Thus we can still build a pre-computed ta-
ble (denoted as ®) to store the minimum delay for possible
buffer combinations.

After getting wire path table ¥, we can compute the op-
timal buffered path between any two nodes. As in [12] a
buffer node is splitted into B nodes, we construct a BP-Graph
Gee = (VBa, EBg):

Ve ={s}U{tili=1,..,k}U{felb=1,..,B, f € F}

Epc = {(u,v)|u,v are not the same node in V'}

Figure 7: A shortest path between u and v represents an op-
timal buffered path (no buffer at location c¢).

Clearly, |Vee| = O(BN). The edge (u,v) € Epg is an
optimal wiresized path, and its weight W (u,v) is obtained by
looking up the table ¥(by,b,,d(u,v)). Therefore, a shortest
path between any pair in Vag is an optimal buffered path
connecting the two nodes of the pair (see Fig 7). Then, we
apply all-pair shortest path algorithm on Gpg, and store the
values in buffered path table of the size O(BN x BN) (denoted

as ﬁ) Thus, the minimum delay of any pair in VB¢, which
is determined by the optimal buffered path, can be found by

looking up the table P.

Figure 8: 4 BC-subtrees rooted at v connecting t1,t2 (other
BC-subtrees are omitted).

7
HX V4 V4

t 1 t 2 t 1 t 2
Figure 9: A shortest path represents an optimal subtree.

A BC-subtree connects a node with a subset of sinks, be-
ginning with a buffer combination rooted at the node. Let us
consider BC-subtree rooted at v connecting 2 sinks:ty, 2 (see
Fig 8). If we enumerate all possible buffer combinations rooted
at v (v be driver), we will get all possible BC-subtrees. Fig
8 illustrates 4 of the BC-subtrees. Since the delay of buffered
path and buffer combination is known by looking up table,
we can get the delay of BC-subtrees immediately. Then the
best BC-subtree is picked up for v. In this way, we get the
optimal BC-subtrees for every node. Note that the optimal
BC-subtree rooted at v may not be the optimal subtree for v.
Then we construct a graph called Gr as shown in Fig 9. In the
graph the source vertex is I' = {¢1,%2}, and other vertices are
possible buffer nodes. The edge (I',v) represents the optimal
BC-subtree rooted at v, and its weight is the maximum delay
of the BC-subtree. The edge (u,v),u,v # I' represents the
optimal buffered path between u and v, which can be looked

up in table P. Then the shortest path from I' to each other
vertex v corresponds to the optimal subtree connecting to ¢;
and t2. If we apply single-source shortest path algorithm (such
as Dijkstra’s algorithm), we can get all optimal subtrees for
every node. The algorithm proceeds to create subtrees by in-
creasingly considering more sinks. The final routing tree turns

out to be the shortest paths from the subset including all sinks
to the source node of the net.

Figure 10: Illustration of Gr computations. (a) A routing
problem with 3 sinks and 4 buffer locations. (b) Gy,, every
edge is a buffered path. (c¢) Gr,,I'1 = {t2,¢s}, the edges adja-
cent to I'y are BC-subtrees and other edges are buffered paths.
(d) Part of Gr,, the edge (T'1, fa) represents a BC-subtree,
and the edge (fs, f1) is a buffered path. (e) Part of Gr,, two
paths from T'y to fi represent two subtrees, respectively. (f)
Part of Gr,,l's = {t1,%2,t3}, the edge (I'z, f2) represents a
BC-subtree. (g) Routing tree solution.

4.3 New Algorithm

Let T" be a non-empty subset of all sinks. Then the number
of Is is 28 — 1. We construct a series of 28 — 1 graphs, each
corresponding to a I'. Let F denote the set {folob=1,..B,f €

F}. Each graph Gr = (Vr, Er) is constructed as:
Vo = {s}U{T}UF
Er {(T,)} U{(T,v)lve F}u
{(u,v)|u,v € {s}UF and u # v in V}

The edge (u,v) € Er,u # I, represents a buffered path which
connects v with u, thus, its weight W (u,v) can be found in
table P. The edge (T',v),v € {s} U F, represents an optimal
BC-subtree rooted at v and containing the sinks of I'. The
weight W (L', v) is determined as:

W(T,v) - min(W (¢) + max (D, (1,73), s D (piy)

where ¢ = (v,r1,...,7;) is buffer combination, p1,...,p; is a
disjoint non-empty partition of I' (p; is a true subset of I'),
W () is the delay value found in the buffer combination table

®, and D,(p,v) denotes the delay value of the shortest path
from p to v in the graph G, (p is a subset of all sinks).

Then we apply single-source shortest path algorithm to the
graph Gr sourced at I', and compute the delay value of the
shortest path from I' to each v in Gr. Therefore, a shortest
path from IT" to v corresponds to an optimal subtree rooted at
v and containing T'.

Since the construction of Gr depends on G, where p is a
proper subset of I', we construct and compute the graphs Gr
in increasing order of the degree of I' (|I'|). Gsinkset is the last
graph. The final solution is the value of Dginrset(sinkset, s).
By storing the back-up information at each node, we can con-
struct the whole buffered routing tree.

Fig 10 shows part of Gr constructions. Fig 10(a) illustrates
a routing tree problem. Fig 10(b) and (c) illustrates G¢, and
Gr,,T'1 = {t2,t3} respectively. Fig 10(d) illustrates part of
Gr,, 't = {t2,t3}. The edge (I'1, f4) represents an optimal
BC-subtree beginning with the buffer combination (fa,t2,%3).
Then, the shortest path from I'; to fs4 is an optimal subtree
rooted at f4 and containing I'y, and the shortest path from I'y
to fi is an optimal subtree rooted at fi. Fig 10(e) illustrates
two paths from I'; to fi, each representing a subtree rooted
at fi and containing I';. Fig 10(f) illustrates part of Gr,,
Iy = {t1,t2,t3}. The edge (T, f2) is an optimal BC-subtree
beginning with the buffer combination (f2, f3, f4), where the
partition Of Pz is P11 = {tl},pz = {tz,t3}. Part Of the BC—
subtree, rooted at fs, is referred to Gr, as the shortest path
(a subtree) from I'; to f4 (The other part of the BC-subtree
is the shortest path from ¢1 to f3 in Gy,). Fig 10(g) shows the
final routing tree solution. As we can see, every subtree of the
routing tree corresponds to a shortest path in one of the Gr
graphs.

Since all information in Gr, |I'| = 1 (single sink) is stored in

the graph Gp¢ and table P, these graphs Gr are not needed
to be constructed and computed. We only need to start with
IT| = 2.

Every graph Gr is a fully-connected graph with the same
configuration (the same set of vertices except I' and the same
set of edges except (I',v)). The edge weight W (u,v), (u,v) €

Er and u # T, is in table P. Actually, we don’t need to store

these edges. The weight W (T',v),v € {s}UF, can be stored at
the same place with Dr(T',v). By carefully constructing the
graph, we only need ©(Vr) = O(BN) space to represent both
the graph and the results.

The pseudocode of the algorithm is shown in Fig 11.

Algorithm GRAPH-RTBW
Compute all-pair shortest distance d(u,v) in G
Compute wire path table ¥ and buffer combination table ®
Construct the graph Ggg
Compute all-pair shortest path in Ggg
and store in buffer path table P(u,v)
FOR:i=2TO k£ DO
FOR each subset T', |T'| = ¢ DO
FOR v in Gr DO
W(T,v) + o
FOR j =2 TO ¢t DO //t: combination threshold
FOR each ¢ = (v,ry1,...,7;) DO
FOR each I',|T'| = i DO
FOR each disjoint non-empty partition pi,...,p; of T’
DO
W(T,v) < min(W(T,v),
W(¢) + maﬁ(Dpl (pla 7'1)7 R Dpj (Pj,rj)))
FOR each subset T, |T'| = i DO
Apply Dijkstra’s algorithm on Gr with source T'
Store Dp(T,v)
RETURN Dy;,pset(sinkset, s)

Figure 11: Graph-based algorithm for RTBW problem

4.4 Complexity
Let S, denote the space size of wire path table ¥ and buffer
combination table ®, and T, denote the runtime to compute

the two tables. The space needed for d(u,v) in grid G = (V, E)

is O(V?). P(u,v) and graph Gpe require O(B>N?) space. As
mentioned above, each Gr and Dr (T, v) requires only O(BN)
space to represent. All of the graphs Gr and Dr(I',v) need

O(2¥ BN) space in total. The following theorem summarizes
the space requirement of Algorithm GRAPH-RTBW:

Theorem 1. The space complexity of Algorithm GRAPH-
RTBW is O(Sa + V2 + B2N? 4+ 2*BN) for a given routing
grid graph G = (V,E), where k is the number of sinks, B
is the buffer choices in the buffer library, and N is the set
{s}U{tili=1,..,k}UF.

Computing d(u,v) in G can be done in O(V?log V) time.
It takes O(B®N?) time to construct Gpg and compute P(u, v)
in Gpe. Dijkstra algorithm on each Gr runs in O(Vrlog Vr +
Er) = O(B?N?) time. The time required by Dijkstra algo-
rithm for all Grs is O(2¥B2N?). The number of different
T,|T| =i from k sinks is C;. The number of different parti-
tion p1, ..., p; of T, |T'| =14, is O(5*). Let us compute the num-
ber of buffer combinations ¢ = (v,r1,...,r;) for each graph
Gr. Choosing j + 1 nodes from Gr, the number of the com-
binations is C{,:l = O(C%Y}). Since each node of the j + 1
nodes can be the driver, the number of buffer combinations
is O((j + 1)C%L}). Note that, the order of receivers 71, ..., 7;
does not need to be counted here because partition pi,...,p;
is ordered. Thus, given that the degree of buffer combination
is restricted to be <t + 1 (¢t be threshold), the time required
to compute all Grs is:

k

t
> +1o5Y

i=2j=2

k
= Y Y ifau+neil

M)
.
<,

|

i+ 1)CEY

g

j=2i=0
t
NRk41 j+1
= S a+iHtoiy
j=2

< ec- (t+1)kBt+1Nt+1

Note that the runtime required for Dijkstra algorithm is
O(2¥B2N?) = o((t + 1)*B*** N*+1) (¢t > 2). Thus it can be
omitted safely. The following theorem describes the time com-
plexity of Algorithm GRAPH-RTBW.

Theorem 2. The runtime of Algorithm GRAPH-RTBW is
O(Ta+V?2log V+B3N3+(t+1)k B*F N for a given routing
grid graph G = (V, E), where t is the threshold on the degree of
buffer combination, k is the number of sinks, B is the buffer
choices in the buffer library, and N is the set {s} U {t:|s =
1,...k}UF.

Especially, if we restrict the routing tree to be a binary tree
(i.e. t = 2), which is the common case and gives optimal delay
in practice, we will get the following time bound.

The number of non-empty 2-partition p1,p2 of I', |T'| = ¢, is
2" — 2. Thus, the total time to compute all Grs is:

k
S @' —2)cisciy

=2

IA

(BN)® > (2" —2)C}
j=2

k
= BN*OSE -2)Cc) +1)
j=0

= (BN)3(3* —2F*t' 11

Theorem 3. If the routing tree is a binary tree, the run-
time of Algorithm GRAPH-RTBW is O(Ts +V?2logV + (3% —
28+ L 9)B3N®) for a given routing grid graph G = (V, E),
k 1is the number of sinks, B is the buffer choices in the buffer
library, and N is the set {s}U{t;li =1,...,k} UF.

The complexity of GRAPH-RTBW is much better than
that of DP-RTBW (space:O(S. + V? + B>N? + 2¥BN) to
O(VVWE/2BR) time: O(T,+V?2log V + (3% —2k+1 1 2) B3 N?)
to O(WVWE+1 B2k |og(Wk/2+1 BEY))) Notably, the complex-
ity of GRAPH-RTBW is mainly dependent on the number of
sinks and the cardinality of N, while DP-RTBW is related
to the size of routing graph G = (V, E). In the applications
where more buffer obstacles exist, i.e., N is much less than
V, we will get much more benefit by using GRAPH-RTBW
algorithm.

5. Hierarchical Approach

As we can see, the time and space complexity of GRAPH-
RTBW increase exponentially in terms of the number of sinks.
In some routing tree problems where the number of sinks is
large, the performance of GRAPH-RTBW will degrade con-
siderably; even some can not be handled. In this case, we can
consider a hierarchical approach. The hierarchical approach
has two aspects: two-phase routing and clustering.

5.1 Two-phase Routing

First, we use a rough grid graph, the sinks near a grid node
are grouped into one new sink. By this way, we could reduce
not only the number of sinks but also the number of |BN]|.
Then, the GRAPH-RTBW algorithm is applied to the rough
grid graph to get a rough routing tree. After that, we can use
a fine grid on the rough routing tree obtained, and compute a
new fine routing tree again (refer to Fig 12). Note that unused
grid nodes in rough grid do not appear in the fine grid, which
will reduce the size of the fine grid.

Global Detailed

Figure 12: Two-phase routing approach.

5.2 Clustering

Clustering is useful in “divide and conquer” strategy. Orga-
nizing sinks into sensible groupings not only catches the idea
of hierarchical design, but also reduces the complexity of our
algorithm. Many clustering algorithms are available in [9].
We use Zahn’s clustering algorithm, because it is efficient and
suitable to our problem.

1. Construct an MST (minimum spanning tree) for the set
of sinks.

2. Remove the largest edges in the MST (consider balance
between connected components as well).

3. Identify clusters. (Every connected component forms a
cluster)

If we remove n — 1 edges in MST, we will get n clusters.
Each cluster could be further divided into several subclusters.
The connected component is the MST for the cluster, so it can
be re-used. The process can proceed in multi-level.

Then we regard the center of a cluster as a new sink. Thus
we build a buffered routing tree to connect the source to these

new sinks. Note that the center of a cluster may not be a good
position to locate a new source for the sinks in the cluster.
Instead, we use the buffer in the routing tree close to the
bounding box of the cluster to be the new source. Then a new
routing tree is to be built to connect the new source to the
sinks in the cluster. The process can go recursively in multi-
level. Each level, we can specify a threshold for the number
of clusters. As an example, Fig 13 shows that the MST of all
sinks is decomposed into 3 clusters. Fig 14 shows the routing
tree connecting the source to the centers of all clusters. The
buffer close to the bounding box of a cluster is regarded as
the new source for the sinks in the clusters, which forms a
subproblem.

Cluster

a
source \m

Figure 13: 3 clusters of 8 sinks. Dashed lines are removed
edges in the MST.

o 1 g
source m

Figure 14: A routing tree connecting the source to the centers
of all clusters. The buffer close to the bounding box of a cluster
acts as a new source.

6. Discussion

In this section, we discuss some possible extensions and im-
provements of our algorithm.

6.1 Pruning

In practice, a buffer combination (component of a buffered
tree) with a large number of branches will result in a large de-
lay. As mentioned above, a threshold can be put on the degree
of buffer combination in the algorithm. Thus, the runtime of
the algorithm can be greatly reduced.

In the algorithm described above, we enumerate all combi-
nations of the nodes in Gr, which is not necessary. In practice,
we know a buffer must be inserted inside if the interconnect
length is beyond a certain value. This specific value is tech-
nology dependent, which can be used as a threshold for enu-
merating buffer combinations. A buffer combination could be
left out if the distance from its driver to one of its receivers is
greater than the threshold. This pruning technique can speed
up the algorithm considerably.

6.2 Inverter

Inverters consume less resource than normal buffers, and are
used as an alternative of buffers in many applications. One
simple way is to use two cascaded inverters as a single buffer.
Thus our algorithm can still apply without any modification.
However, it is beneficial not to use cascaded inverters but
rather to maintain an even number of inverters along ev-
ery source-sink path. With inverter taken into account, the
GRAPH-RTBW algorithm can be modified as follows. Each

buffer node in Gee and Grs is splitted into two nodes fur-
ther, one representing a node with even number of inverters
from source, the other representing a node with odd number
of inverters. The source is labeled as odd, and all sinks are
labeled as even. For an edge (u,v) € Epg of Gea, v and v
must have different labels of even or odd. We can still build a
table of buffered path for looking up at the construction and
computation of Gr. During the generation of buffer combi-
nation ¢ = (v,r1,...,7;), the driver v must have the different
label of even or odd from those of all receivers ry, ..., ;.

6.3 Sink Polarity

Sinks may have different polarities (positive/negative) [2]. A
sink with negative (‘-') polarity needs an additional inverter
to get the right signal. With polarity constraint taken into
account, we can easily modify GRAPH-RTBW for inverter
insertion as follows. We label the sink with positive (‘+’) po-
larity as even, and the sink with negative (‘-’) polarity as odd.
Each wire path and buffer combination connects nodes with
different labels (even/odd). We can still compute the buffered
path between any pair of nodes, with even/odd label alterna-
tively along the path. Thus, our GRAPH-RTBW algorithm
for inverter insertion is still applicable to construct a routing
tree with polarity constraint.

7. Experimental Results

We have implemented both DP-RTBW and GRAPH-RTBW
algorithms in C language, and tested them on a Pentium
II(400MHz) machine with 2566 M memory. We use the tech-
nology parameters in [20]. The driver resistance of source is
set to be 18012, and the load capacitance of sink 23.4f F' respec-
tively. One kind of buffers is used in the program with input
capacitance of 23.4fF and output resistance of 180f2. The
intrinsic delay of buffer is set to be 36.4ps. The resistance Ry,
and capacitance Cy, for a wire with width = and length [are
given by Ry, = ryl/z and Cy = cazl + ¢yl respectively, where
rw 1S unit resistance, ¢, is up-down wire capacitance per unit
area, and cy is fringing wire capacitance per unit length. We
use the parameters: ry, = 0.076Q2/um, co = 0.024fF/pm and
¢y = 0.094fF/pm. There are three choices of wire in our wire
library: {z =1,2,3}.

We first compared the solutions with wiresizing and buffer
insertion to those without wiresizing. We used test cases with
1-8 sinks and 4-6 obstacles. Table 1 lists the comparison re-
sults. The grid used for routing has unit length of 0.5mm.
In non-wiresizing case, we used the wires with width z = 1.
It shows that on average, proper wire sizing together with
buffer insertion can reduce the delay up to 10% further com-
pared to inserting buffers only for a routing tree while the
runtime is almost the same. Compared to non-wiresizing run-
time, wiresizing takes only additional time to compute table
¥ and @, which can be done very fast (less than 1 second).
This explains why the runtime is almost the same. As we no-
tice, the wirearea in wiresizing increases by a ratio of 2 com-
pared to that in non-wiresizing, but the number of buffers de-
crease. Therefore, wiresizing can reduce the number of buffers
inserted.

We also compared our GRAPH-RTBW algorithm with the
dynamic programming based DP-RTBW algorithm. Table 2
shows the runtime and memory requirement for test cases T1-
T8. N/A means the result is not available due to huge runtime
and memory requirement. The number of buffer locations in
the test cases is up to 500, which is significantly greater than
that in [7] (30). Our GRAPH-RTBW outperforms DP-RTBW
in all test cases. With the number of sinks increasing, the per-
formance of DP-RTBW degrades very fast, while GRAPH-
RTBW scales reasonably well. In the case that the routing
region has more buffer obstacles, the GRAPH-RTBW algo-
rithm can benefit from the reduced number of buffer nodes.
For example, the test case T7 has more buffer obstacles, and
thus results in less runtime than T6 even though T6 has less
sinks.

Table 1: Comparison of buffered routing trees with and without wiresizing. (delay imp. means delay improvement)

Data non-wiresizing wiresizing

name | pin | chipsize delay | wirearea [buffer | time delay | wirearea | buffer | time || delay
(mm?) (ps) (s) (ps) (s) || imp.

T1 2 11.5x14 1080.2 45 6 9.7 979.41 90 4 9.8 9.3%
T2 3 | 12.5x11.5 || 1010.2 42 6 7.5 918.73 87 4 7.5 9.1%
T3 4 12.5x12 1059.7 46 7 15.7 || 962.33 96 5 15.7 || 9.2%
T4 5 15x13 1095.3 69 12 57.8 || 998.45 140 9 57.9 8.9%
TH 6 12.5x14 1109.9 77 12 131.6 || 1008.1 170 12 131.9 || 9.2%
T6 7 15x11 838.21 70 12 655.1 || 767.29 154 11 655.3 || 8.6%
T7 8 12.5x24 11334 115 20 181.2 || 1032.1 235 16 181.3 || 9.0%
T8 9 15x13 1182.5 111 19 6270 || 1076.5 210 17 6271 || 9.0%

Table 2: Runtime and memory requirement of DP-RTBW vs.
GRAPH-RTBW. Note that the delay is the same (omitted).

Data DP-RTBW GRAPH-RTBW
name | pin || memory time memory | time
(MB) (s) (MB) (s)
T1 2 3.33 12.4 1.47 9.8
T2 3 3.93 48.6 0.65 7.5
T3 4 12.18 480.6 1.48 15.7
T4 5 24.07 2100.4 1.59 57.9
TH 6 61.83 11218 2.13 131.9
T6 7 120.07 52671 247 655.3
T7 8 169.04 | 120908 1.49 181.3
T8 9 N/A N/A 3.99 6271.9

Table 3: Runtime and delay for hierarchical router.

Data Hierarchical optimal | delay
name | pin || delay(ps) | runtime(s) || delay(ps) | off
H1 10 936.08 31.26 883.31 5.9%
H2 11 872.85 33.97 811.74 7.5%
H3 12 883.67 33.85 820.60 7.7%
H4 | 50 || 859.17 3454 N/A | N/A
H5 | 100 | 1133.1 13164 N/A | N/A

We have implemented a hierarchical router based on the
approach mentioned above, and tested its quality on Sun So-
laris(Ultral0). We call LEDA package [11] to compute the
minimum spanning tree and connected components. The test
cases are generated randomly for the given number of sinks.
For test cases where the number of sinks is not very large, we
use flat GRAPH-RTBW algorithm to get the optimal delay
for comparison purpose. Table 3 lists the results. Note that
our hierarchical router is only 8% off from GRAPH-RTBW
in terms of delay. In [7], DP approach is compared with a
modified A-tree algorithm[15], and it shows that DP can out-
perform A-tree by up to 46% in terms of delay.

8. Concluding Remark

GRAPH-RTBW algorithm constructs a routing tree with si-
multaneous buffer insertion and wiresizing in the presence of
routing and buffer obstacles. Our algorithm differs from dy-
namic programming, and is capable of addressing the problem
of inverter insertion and sink polarity. Compared to dynamic
programming approach, it reduces time and space complexity
a lot. Wire sizing combined with buffer insertion can reduce
the delay about 10% further compared to inserting buffers
only for a routing tree. Wire sizing can reduce the number of
inserted buffers although it increases wire area. In the appli-
cations where the number of sinks is very large, we can use
the hierarchical router with acceptable quality.

9. References

[1] C. Alpert and A. Devgan, “Wire segmenting for improved
buffer insertion”, DAC-97, pp. 588-593, 1997.

[2] C. Alpert et al., “Buffered Steiner trees for difficult instances”,
ISPD-01, pp. 4-9, 2001.

[3] C.P. Chen, Y.P. Chen, and D.F. Wong, “Optimal wire-sizing
formula under the Elmore delay model”, DAC-96, pp. 487-490,
1996.

[4] C. Chu and D.F. Wong, “A quadratic programming approach
to simultaneous buffer insertion/sizing and wire sizing”, IEEE
Transactions on Computer-Aided Design, Vol. 18, No. 6, pp.
787-798, 1999.

[5] J. Cong, L. He, K.Y. Khoo, C.K. Koh, and D.Z. Pan, “In-
terconnect design for deep submicron ICs”, ICCAD-97, pp.
478-485, 1997.

[6] J. Cong, K.S. Leung, and D. Zhou, “Performance-driven inter-
connect design based on distributed RC delay model”, DAC-
93, pp. 606-611, 1993.

[7] J. Cong and X. Yuan, “Routing tree construction under fixed
buffer locations”, DAC-00, pp. 379-384, 2000.

[8] A.Jagannathan, S.W. Hur, and J. Lillis, “A fast algorithm for
context-aware buffer insertion”, DAC-00, pp. 368-373, 2000.

[9] AK. Jain and R.C. Dubes, “Algorithms for clustering data”,
Prentice hall, 1988.

[10] R. Kay and L.T. Pileggi, “EWA: efficient wiring-sizing algo-
rithm for signal nets and clock nets”, IEEE Transactions on
Computer-Aided Design, Vol. 17, No. 1, pp. 40-49, 1998.

[11] LEDA package: http://www.mpi-sb.mpg.de/LEDA/.

[12] M. Lai and D.F. Wong, “Maze routing with buffer insertion
and wiresizing”, DAC-00, pp. 374-378, 2000.

[13] J. Lillis, C.K. Cheng, and T.T.Y. Lin, “Optimal wire sizing
and buffer insertion for low power and a generalized delay
model”, ICCAD-95, pp. 138-143, 1995.

[14] Y.Y. Mo and C. Chu, “A hybrid dynamic/quadratic program-
ming algorithm for interconnect tree optimization”, ISPD-00,
pp- 134-139, 2000.

[15] T. Okamoto and J. Cong, “Buffered Steiner tree construc-
tion with wire sizing for interconnect layout optimization”,
ICCAD-96, pp. 44-49, 1996.

[16] J. Rubinstein, P. Penfield, and N.A. Horowitz, “Signal delay
in RC tree networks”, IEEE TCAD 2:3, pp. 202-211, 1983.

[17] A.H. Salek, J. Lou and M. Pedram, “A simultaneous rout-
ing tree construction and fanout optimization algorithm”,
ICCAD-98, pp. 625-630, 1998.

[18] A.H. Salek, J. Lou and M. Pedram, “MERLIN: semi-order-
independent hierarchical buffered routing tree generation using
local neighborhood search”, DAC-99, pp. 472-478, 1999.

[19] S.S. Sapatnekar, “RC interconnect optimization under the El-
more delay model”, DAC-94, pp. 387-391, 1994.

[20] Semiconductor Industry Association, National Technology
Roadmap for Semiconductors, 1997.

[21] L.P.P.P. van Ginneken, “Buffer placement in distributed RC-
tree networks for minimal Elmore delay”, ISCAS-90, pp. 865-
868, 1990.

[22] H. Zhou, D.F. Wong, I.M. Liu, and A. Aziz, “Simultaneous

Routing and Buffer Insertion with Restrictions on Buffer Lo-
cations”, DAC-99, pp. 96-99, 1999.

	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index

