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ABSTRACT     
 
In this paper we propose a model to predict the performance of 
synchronous discrete event simulation.  The model considers 
parameters including the number of active objects per cycle, event 
execution granularity and communication cost. We derive a single 
formula that predicts the performance of synchronous simulation. 
 
We have benchmarked several VHDL circuits on SGI Origin 2000. 
The benchmark results show that the prediction model explains more 
than 90% of parallel simulation execution time. We also measure the 
effect of computation granularity over performance. The benchmark 
results show that although higher granularity can have better speedup 
because of dominance of computation over communication, the 
computational granularity cannot overshadow the inherent 
synchronization cost. This model can be used to predict the speed-up 
expected for synchronous simulation, and to decide whether it is 
worthwhile to use synchronous simulation before actually 
implementing it.  

Keywords 
Parallel Discrete Event Simulation, Synchronous Simulation, 
Synchronization Cost, Communication Cost, Granularity, 
Performance. 

1. Introduction 
 
Synchronous simulation is one of the simplest and easiest parallel 
simulation protocols. It, however, may suffer from poor performance 
because only events with the smallest timestamp can be executed. For 
every cycle, processors are synchronized, making processors wait 
until all other processors finish their event execution. Frequent 
synchronization makes synchronous simulation more prone to the 
situation when the load is unbalanced in certain time stamps [9]. This 
does not mean that synchronous simulation should not be used. 
Except from additional communication cost, synchronous simulation 
has little overhead compared to a sequential simulation. Although 
conservative and optimistic simulations can exploit more parallelism, 
they have much more overhead than synchronous simulation, which 
can make the overall performance worse than synchronous 
simulation. Soule and Gupta evaluated the Chandy-Misra algorithm 
[3] for digital logic simulation. They found that overhead of Chandy-
Misra algorithm overwhelm its advantage and the performance is 
about three times slower than traditional parallel event-driven 
algorithm [17].  
 
In this paper we propose a model to predict the performance of 
synchronous simulation.  Parameters of the performance model can 
be obtained from the circuit characteristics and parallel computer 
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systems. From this model and parameters, we can decide whether it is 
worthwhile to use synchronous simulation before actually 
implementing it.  Synchronous simulation cost includes computation 
cost, communication cost and idle time waiting for others to finish 
event execution. This waiting is caused by load unbalancing in some 
time steps. The cost of longest executing processor is considered as 
the computation cost of each time step. For other processors that have 
shorter execution time will have to wait for the longest executing 
processor before all of them can proceed to next time stamp. After 
each time step, all the processors exchange message. This parallel 
programming model can be categorized as a BSP programming 
model [18].  
 
Agrawai and Chakradhar [1] considered only load unbalancing factor 
for synchronous simulation. They gave a statistical model for 
synchronous simulation. Given a system with uniform granularity of 
event execution and with random partitioning, an object is active with 
a probability of activity rate. The number of independent random 
variables is the same as the number of objects in the system. At each 
cycle, different processors have different number of active objects 
while the cost of the cycle is determined by the maximum order 
statistics of binomial random variables. They proposed a performance 
model based on the number of objects together with the activity rate. 
They compared the theoretical prediction with the benchmark for 
several circuits. However, they did not consider the communication 
cost. In many cases, especially when the computational granularity is 
small, communication cost should be considered. 
 
In this paper, we first propose a different statistical model to predict 
the distribution of load and the effect of load balancing factor. Our 
model is based on multinomial distribution, and uses average number 
of active object per cycle. To predict the performance of synchronous 
simulation, we have developed a model based on the multinomial 
distribution model and communication model. 
 
The communication overhead of modern message passing parallel 
computers includes the operating system overhead of dividing the 
messages into packets, adding header information to the packets and 
then putting the packets into hardware. Modern parallel computers 
with advanced routing technique and high bandwidth, communication 
overhead takes most part of total communication cost.  
 
We have benchmarked several VHDL circuits on SGI Origin 2000. 
The prediction result is close to benchmark results. Circuits with 
large average active number of object per simulation cycle have 
better performance because it has larger multiplication factor from 
the maximum order statistics of multinomial random variables. We 
also measured the effect of computation granularity over the 
performance. The benchmark results show that although higher 
granularity can have better speedup because of dominance of 
computation over communication, the deciding factor over 
performance is still active number which can both reduce the load 
unbalancing factor and the communication cost. This can be seen 
from the result that when the granularity is higher than some value 



there is little gain in speedup. The computational granularity can 
overshadow the communication cost but not the inherent 
synchronization cost. 
 
The paper is organized as follows: In section two we proposed 
multinomial distribution model.  In section three we proposed 
prediction model due to load unbalancing factor. In section four we 
discussed the communication model. In section five we derived our 
final performance formula for synchronous simulation based on our 
multinomial distribution model and communication model. We also 
compared the performance model with empirical result. 

2. The Model 
 
The discrete event system we are interested in is all objects in the 
system have the same granularity. This is applicable to the circuit 
simulation where each object is a gate and there is not significant 
difference between execution time of two gates. The other 
assumption of the model is random partitioning. The objects in the 
system are randomly partitioned to different processors. This allows 
us to apply statistical methods to estimate the cost of the simulation. 
Other partitioning algorithms can reduce the cost of message passing 
by making as many events internal to its own partition as possible. 
This will reduce the randomness of object distribution and will 
potentially cause less accurate estimations. 
 
Figure 1 shows the synchronous algorithm our simulation is based 
on. The algorithm runs with parallel message passing system. GVT is 
computed by piggybacking the next smallest timestamp in the event 
message sent per cycle. This algorithm has the advantage of 
removing the cost of broadcasting and reducing cost, but it needs to 
send a null message to other processors when there is no event for 
some cycles.  
 
 
 
 
 
 
 
 
 
Fig. 1. Synchronous algorithm our model based on 
 
This is a very simplified synchronous simulation model. There are 
optimizations to this model. We are interested in this model because 
it enables us to derive a nice performance prediction formula and we 
believe other complex models can be reduced to this simple model 
without significant loss of performance. 
 

2.1 Multinomial Distribution 
 
In this paper, we proposed a different statistical model for 
synchronous simulation. We emphasized the importance of the 
average number of active objects per simulation step rather than the 
activity rate. A system with a large number of objects with a low 
activity rate may perform better than a system with a small number of 
objects but with a high activity rate because the system with a large 
number of objects with a low activity rate has a greater average 
number of active objects per cycle. For simplicity, we will call the 
average number of active objects per cycle, the active number. Based 
on the average number of active objects per cycle, we proposed a 
multinomial distribution model to model the distribution of load and 
the effect of the load-balancing factor. An active object has the same 

probability to be at any one of the partitions. There are an active 
number of active objects per cycle and they are independent random 
variables. The cost of each cycle is determined by the maximum 
order statistics of the counting variables that are the number of active 
objects distributed to different processors. The multinomial 
distribution model reduces the number of parameters from two in the 
binomial distribution model to just one variable – the active number. 
The prediction is computationally easier for the multinomial 
distribution model because the number of active objects is usually 
much smaller than the total number of objects in the system. We 
compared the two models and the results were close. In part three of 
this paper, we discuss the multinomial distribution model and 
compare simulation results with the benchmark results for several 
VHDL circuits.  
 
The active number for one cycle is different than that of another 
cycle. The benchmark shows that the active number varies from cycle 
to cycle significantly in circuit simulation. For the simplicity of 
prediction formula, we are not considering the distribution of the 
active number over the cycles. We use the average active number to 
predict performance. The accuracy of the prediction shows that the 
distribution factor of the active number in circuit simulation does not 
have significant contribution to the final performance.  

 
The active number is an inherent property of a circuit and other 
discrete event systems. It is the most important factor for our 
performance prediction model. There is question about how we can 
acquire this number. If we already know the activity rate of the 
circuit, we can estimate the active number by multiplying the total 
number of objects with the activity rate. If we do not have the activity 
rate, we can do sequential simulation with large enough cycles to 
estimate the value of the active number.  
 
The general idea that allows us to predict the performance of 
synchronous simulation is based on the following simple observation. 
If the objects are partitioned randomly enough and the behavior of 
the discrete event system is random enough, we can assume that the 
active objects for each cycle have multinomial distribution over 
partitions. An active object has the same probability to be at any of 
the partitions. There are active number of independent random 
variables each cycle. The cost of each cycle is determined by 
maximum order statistics of the counting variables that are number of 
active objects distributed to different processors. If the number of 
cycles is large enough, the average cost of each cycle will be close to 
its expected value. 
  
These are the terms we will use in this paper. 
Notations and terms 
o1,o2,...,on   : a list of n objects in the discrete event system 
t1,t2,...,tnumcycle : a series of discrete time and numcycle is the number 
of cycles. 
A[ti] : Number of objects that is active at time ti 
A : The average of A[ti], i=1,2,…,max  
S = A[t1] + A[t2] + ... + A[tmax] : Total number of activity 
p : Number of partitions 
cycle : a cycle is the duration of simulation for each discrete time ti 
 
We assume the following three conditions. 
Condition 1: 
A[ti] > 0, for all i 
  A[ti]=0 means there is no object active at time ti. It is not necessary 
to have discrete time ti. 
S >> A[ti] 
This means that simulation has a wide range of discrete time and does 
not finish in a few cycles. 

Each processor executes the following code: 
 
while (GVT < MAXGVT) { 
  Execute all the events with GVT; 
  Send events to other processors with LVT attached; 
  Receive events from other processors; 
  Compute the GVT with piggybacked LVT; 
} 



Condition 2: Randomness 
  At each cycle, an object has equal probability of being active with 
all other objects. 
Condition3: Uniform granularity 
  Each object takes a unit time to execute an event. 

 
3. Prediction Model due to Load Balancing 

factor 
 
In this section we will derive the computation cost under the 
multinomial distribution model and compare it with the benchmark 
result. We also propose a multiplication factor, which describes the 
degree of load unbalancing. 
 

3.1 Total computation cost 
 
The cost of each cycle is the maximum number of active objects 
among all partitions. We denote the cost of each cycle by C[ti] = 
max(Ak[ti]), where Ak[ti] is number of objects active at partition k and 
A1[ti] + ... + Ap[ti] = A[ti]. p is the number of processors the 
simulation is running on. The cost of the whole simulation is C[t1] + 
C[t2] + ... + C[tmax]. Since we have assumed that each active object 
has equal probability of being present at any of the partitions, A[ti] 
objects that are active at time ti, are randomly distributed to p 
partitions. Therefore the cost of each cycle can be estimated by the 
expected value of the maximum order statistics of counting variables 
that are the number of active objects distributed to p partitions. The 
cost of each cycle is a function of A[ti] and p which denote as E(A[ti] 
,p). The closed formula for function E(A[ti] ,p) may not be easy to 
obtain. Instead of trying to find the closed formula for the function, 
we can use simulation to get the result of the function with good 
accuracy. Total simulation costs due to execution of events should be 
Numcycles*E(A,p), where A is the average of A[ti]. 
 

3.2 Multiplication Factor 
 
We want to measure the degree of load unbalancing with different 
average number of active objects per cycle. We now define the 
multiplication factor as follows. Suppose that the average activity 
number of objects per cycle of a circuit is A and the circuit is 
partitioned to P parts. Suppose E(A,p) is expected value of maximum 
order statistics of counting variables that are number of objects 
distributed to P partitions. We define multiplication factor M as: 
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M is a function of A and P. Table 1 shows the value of the 
multiplication factor over different values of A and P. The range of 
multiplication factor is from 0 to 1 exclusive. The multiplication 
factor shows the efficiency of parallel simulation. Larger 
multiplication factor means lower degree of load unbalancing. The 
multiplication factor increases as A increases and P decreases. 
Therefore, the synchronous parallel simulation will be more efficient 
with a larger A and smaller P. 

Multiplication factor 
A/P 2 4 8 16 32 

1 0.50 0.25 0.13 0.06 0.03 
10 0.80 0.60 0.41 0.27 0.17 

100 0.93 0.83 0.70 0.57 0.43 
1000 0.98 0.94 0.87 0.81 0.72 

10000 0.99 0.98 0.96 0.93 0.89 

Table 1. Multiplication factor for different A and P 
 

The speedup can be defined using multiplication factor as: 

S(A,P) = P*M(A,P) 
Table 2 shows the speedup for the A and P of above table. 
 

Speedup 
A/P 2 4 8 16 32 

1 1.00 1.00 1.00 1.00 1.00 
10 1.61 2.38 3.31 4.29 5.29 

100 1.85 3.31 5.63 9.07 13.73 
1000 1.95 3.76 6.94 13.02 23.06 

10000 1.98 3.92 7.69 14.95 28.57 

Table 2. Speedup table for different A and P 
 
Table 1 and 2 show that for large A there is little loss of efficiency, 
but for small A the loss of efficiency is significant. For example when 
A is 100 and P is 32, the load unbalancing will cost 57% of the ideal 
speedup. 

Comparisons with Benchmark 

Theoretical vs. Empirical 
We ran several VHDL circuits sequentially up to some large enough 
time limits. We are able to get the total number of executions and 
number of cycles. The benchmark circuits used are based on VHDL 
Description of ISCAS circuit. The activity number is derived from 
the quotient of number of executions divided by number of cycles. 
Table 3 shows the results for s35932_structural, s15850_structural, 
s9234_structural and multi32_arraymulti32. 
 
Number of Executions, Cycles and Activity Number 
Circuit S35932 S15850 S9234 Multi32 
Number of Executions 3294920 257457 143965 2303858 
Cycles 3499 4415 3258 1998 
Avg. Activity Number 942 58 44 1153 

Table 3. Number of Executions, cycles and Average Activity 
Number 
 
When these circuits are partitioned to a number of processors, the 
cost of each cycle is the maximum number of executions among 
these processors. The sum of these maximum numbers of executions 
for all cycles is the total amount of the computation. We can estimate 
the total amount using our multinomial distribution model with the 
average activity number.  
 
To see how accurate the estimation is, we randomly partitioned the 
objects into a different number of parts where each part had the same 
number of objects. We then recorded the number of executions for 
each of these parts and recorded the sum of then maximum number of 
executions of all parts for all cycles. This experiment was done 
sequentially and there was no communication cost involved. Table 4 
shows comparisons of the benchmark computation cost and the 
estimation with the different number of partitions. The estimation is 
quite close to the benchmark. Most of the estimations have errors less 
than 2%. This shows that many circuits have random behaviors that 
fit well to our multinomial distribution model. We compared the 
result of the multinomial distribution with binomial distribution. 
They both have good estimations of the benchmark. The number of 
independent trials for multinomial distribution model is much less 
than that of binomial distribution model because the number of 
independent variables of the multinomial distribution model is much 
less than that of the binomial distribution model. A more important 
advantage of the multinomial distribution model is it only depends on 
one parameter – the average number of active object per cycle. The 
binomial distribution model needs the activity rate and the total 
number of objects. 
 
 



s35932 
PE Empirical Multinomial Binomial Multinomial Error Binomial Error 

2 1701621 1690454 1687933 0.66% 0.80%
4 877571 879266 877099 0.19% 0.05%
8 463184 466671 465514 0.75% 0.50%

16 254433 254690 253294 0.10% 0.45%

 
s15850 

PE Empirical Multinomial Binomial Multinomial Error Binomial Error 
2 138725 142112 142378 2.44% 2.63%
4 77702 82084 82048 5.64% 5.59%
8 48511 50101 49892 3.28% 2.85%

16 29089 32552 32526 11.90% 11.82%

 
s9234 

PE Empirical Multinomial Binomial Multinomial Error Binomial Error 
2 81135 80534 80564 0.74% 0.70%
4 45804 47469 47519 3.64% 3.74%
8 29635 29596 29515 0.13% 0.40%

16 19591 19670 19598 0.40% 0.04%
 

multi32 

PE Empirical Multinomial Binomial Multinomial Error Binomial Error 

2 1172691 1178893 1176680 0.53% 0.34%

4 605081 611254 608103 1.02% 0.50%

8 317674 322804 319431 1.61% 0.55%

16 168821 174766 171944 3.52% 1.85%
Table 4. Comparison of theoretical and empirical results 

 

3.3 Speedup and Multiplication factor 
 
From results of the above experiment we obtained the speedup for 
those four VHDL circuits. Therefore, the speedup was calculated 
from pure computation with no consideration of communication cost.  
Figure 2 shows the speedup graph for the VHDL circuits we used 
above. The multi32 has the best performance while s9234 has the 
worst. From Table 3 we can see that multi32 has the highest average 
activity number and s9234 has the lowest average activity number. 
The speedup is directly related to the average activity number of a 
circuit. 
 
From the multinomial distribution model, we can see that the speedup 
is a non-decreasing function of the number of processors. We ignored 
the communication cost for all previous analysis. If the 
communication cost is considered, the speedup will not be a non- 
decreasing function. Indeed if the number of partitions increases over 
a certain threshold, the performance will be suffered because some 
processors are just waiting for other processors to finish their work.  
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Fig. 2. Speedup graph 

4. Communication Model 
 
In this section, we propose a prediction model based on the 
communication cost and the synchronization cost. The 
communication overhead of modern message passing parallel 
computers includes the operating system overhead of dividing the 
messages into packets, adding header information to the packets and 
then putting the packets into hardware. For modern parallel 
computers with advanced routing technique and high bandwidths, 
communication overhead takes up most of the total communication 
cost. Because of this we are only interested in the communication 
overhead and will incorporate it into our prediction model. 
 
There are several parallel models proposed. The LogP model is good 
when the message is short [6]. The LogGP model is proposed to 
incorporate long messages [2]. In the LogGP model the message with 
size k is sent into network at time Onull+m(k-1), where Onull is 
overhead and m is time per byte for a message. In this paper, we 
considered Onull+m(k-1) as the communication overhead and, Onull as 
the overhead for sending the null message. We ran the experimental 
program on SGI Origin 2000. Figure 3 shows the change of 
communication overhead of sending and receiving as size of message 
increases. 
 
Figure 4 shows the least square fit of communication overhead to a 
linear formula. We assumed that the communication overhead O 
follows following linear formula: 

O = Onull + m*MsgSize 
Where Onull is the overhead of sending a null message and m is the 
increasing factor as size of the message increases. We used least 
square method to estimate m and Onull. The value of m and Onull are 
12.9*10-3 microsecond and 37.3 microsecond separately on SGI 
origin 2000. 
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Fig. 3. Message overhead 
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Fig. 4. Least Square fit to a linear formula 

 



5. Performance Model 
 
Total execution time is the sum of computation time and 
communication time. Our multinomial distribution model can 
estimate the computation cost. From the activity number and the 
number of processors, we can get the multiplication factor. The total 
computation cost is Total Computation = G*N/(P*M), where P is the 
number of processors; M is multiplication factor; G is the granularity 
of computation for each execution of an event and N is the total 
number of event executions. 
 
The communication time depends on number of events generated. 
Suppose that an average of E events are generated per cycle and C is 
the total number of cycles. The total number of cycles is total number 
of event executions divided by the active number. When the system is 
partitioned into P parts, the number of events generated also follows 
multinomial distribution. The cost of communication per cycle is 
decided by the maximum order statistics of these multinomial 
random variables. Therefore, the number of events generated per 
cycle per processor is (E/P)*1/M. These events will be sent to P 
processors. Therefore the event sending and receiving cost of a cycle 
is P*((E/P)/(P*M)*m+Onull). Onull and m are the communication 
parameters derived from part four of this paper. The total 
communication cost is: 

C*P*((E/P)/(P*M)*m+Onull)=Etotal/(P*M)*m+C*P*Onull 

Where Etotal is the total number of events generated. Not all event 
executions generate new events. Depending on the circuit, we have 
Etotal=N*k, where k is the probability that an event execution 
generates a new event. The number of cycles C can be represented as 
N/A. The refined total communication cost is 
N/(P*M)*(m/k)+N/A*P*Onull. 

 
5.1 Predicted Speedup 
 
The speedup is the ratio of sequential simulation time and parallel 
simulation time. The following gives the predicted speedup of 
synchronous simulation under our model. 
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The above formula can be simplified to: 
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G includes the event queue handling and event execution that can be 
considered to be much larger than m and k is within a practical range. 
The value of m, the unit cost of message per byte, is around 12.9*10-3 
microsecond for SGI Origin 2000 and value of k, the event generation 
rate, is dependent on the circuit and the values are around 0.1 for the 
circuit we have tested. The value of G is dependent on the circuit too 
and it is in the order of microseconds. Therefore, (m/k)/G is close to 
0. This can be explained intuitively. The queue overhead plus the 
object execution cost for generating one event is much larger than the 
cost of sending a longer message with additional size of an event. We 
removed (m/k)/G from the formula to get the simpler formula: 

A
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O
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null *
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From this formula we can see that if A is fixed, the upper limit of 
speedup is P*M when G >> Onull. When G is fixed the upper limit of 
speedup is also P*M when A >> P. The large active number A has 
the effect of reducing both computation and communication cost. 
According to the formula, synchronous simulation performs best 
when A is large. Although granularity G helps to overshadow the 

communication cost, it cannot overcome the upper bound speedup 
barrier of M*P. 
 
5.2 Benchmark Results 
 
Figure 5 shows the comparison of empirical speedup and theoretical 
speedup for s5932 and multi32. The prediction formula predicts the 
benchmark reasonably well. Figure 6 shows the effect of granularity. 
We put some loops to the object execution to study the effect of 
granularity over speedup on s35932 and multi32. Each unit of extra 
granularity is around 20us. There is improvement of speedup when 
extra G goes up from 0 to 1. But when extra G is over 1, there is no 
significant improvement on speedup. This can be explained by our 
prediction formula: when G*A >> Onull*P, 

MP *

1  dominates 

A

P

G

Onull * . For s15850, it has much smaller A than s35932, although G 

is large 
MP *

1  cannot overwhelm 
A

P

G

O null *
. This caused the better 

speedup for larger G. 
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Empirical vs. Theoretical  (S35932)
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Fig. 5.  The empirical speedup vs. Theoretical speedup. 
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The Effect of Granularity (S15850)
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Fig. 6. The effect of granularity. 

 
5.3 Observation 
 
The effect of granularity 
Higher granularity can improve the performance because it can hide 
the increasing communication cost as the number of processors 
increases. This can be seen best in the speedup graph for s15850 with 
varying granularity.  
 
When the granularity is large enough that communication takes a 
very small part of the total execution time, increasing the granularity 
will not improve the performance. Inherent load unbalancing as 
demonstrated by our multinomial distribution model restricts 
speedup. The speedup of s35932 did not increase with the granularity 
starting from two. The predicted communication cost of s35932 at 
granularity two takes less than 12% of the total cost. 
 
The cost computation vs. communication 
The cost of computation decreases as number of processors increases, 
while the cost of communication increases as the number of 
processors increases. If the activity number is small or granularity is 
small, then the computation takes a small portion of the total cost and 
performance will suffer.  

6. Conclusion 
 
In this paper we proposed a performance model for synchronous 
parallel discrete event simulation. From the speed-up formula derived 
from our performance model, we can predict that synchronous 
simulation performs better with a higher average active number of 
objects per cycle. It can both reduce the load unbalancing factor and 
communication cost. The large computation granularity can hide 
communication cost but it cannot hide the effect of load unbalancing 
caused the random distribution of active objects through a number of 
processors. P*M determines the upper limit of speedup of 
synchronous simulation, which is a function of the number of 
processors and the average number of active objects per cycle. 
 
Increasing the average active number of object per cycle is the key 
for improving the performance of synchronous simulation. In the 
forthcoming paper, we are planning to propose a relaxed synchronous 
algorithm that can increase this number and improve the 
performance. The error of our prediction result compared with the 
benchmark result is less than twenty percent. This result can give 
some hint on whether it is worthwhile to use synchronous simulation 
before actually implementing it. 
 
 
 

7. References 
 

[1] Vusgwani D. Agrawai and Srimat Chakradhar, 1992. 
Performance Analysis of Synchronized Iterative Algorithms on 
Multiprocessors Systems. In IEEE Transactions on Parallel and 
Distributed Systems Vol. 3 No. 6, pp. 739-749. 

[2]   A. Alexandrov, M. Ionescu, K. E. Schauser, C. Scheiman, 1995. 
"LogGP: Incorporating Long Messages into the LogP model - 
One step closer towards a realistic model for parallel 
computation", 7th Annual Symposium on Parallel Algorithms 
and Architecture (SPAA'95) 

[3]   K. M. Chandy and J. Misra, 1979.  Distributed Simulation: A 
Case Study in Design and Verification of Distributed Programs. 
IEEE Transaction on Software Engineering. 

[4]  Eunmi Choi and Moon Jung Chung, 1995. An Important Factor 
for Optimistic Protocol on Distributed Systems: Granularity. In 
Proceeding of Winter Simulation Conference.  

[5]   Moon Jung Chung, Jinsheng Xu and Hee Chul Kim, 1998. 
Parallel VHDL Simulation Engine. Department of Defense High 
Performance Computing Modernization Program, UGC98 

[6]  David Culler, et. al. 1993. LogP: Towards a Realistic Model of 
Parallel Computation. ICSA 93. 

[7]   P. M. Dickens, D. M. Nicol, P. F. Reynolds, JR. and J. M. Duva. 
1997. Analysis of Bounded Time Warp and Comparison with 
YAWNS. ACM Transaction on Modeling and Computer 
Simulations, Vol. 6, No. 4. 

[8]   R. E. Felderman and L. Kleinrock, 1990. An Upper Bound on 
the Improvement of Asynchronous versus Synchronous 
Distributed Processing. Proc. of the SCS Multiconf. on 
Distributed Simulation, vol. 22. 

[9]  Alois Ferscha, 1995. Parallel and Distributed Simulation of 
Discrete Event Systems. Handbook of Parallel and Distributed 
Computing. 

[10]  D. R. Jefferson, 1985. Virtual Time. ACM Transaction of 
Programming Languages and Systems, 7(3). 

[11] Chu-Cheow Lim et. al. Performance Prediction Tools for 
Parallel Discrete-Event SimulationGintic Institues of 
Manufacturing Technology. 

[12] Yi-Bing Lin, 1992. Parallelism Analyzers for Parallel Discrete 
Event Simulation. ACM Transaction of Modeling and Computer 
Simulation. 

[13] B.D. Lubachevsky, A. Weiss and A. Shwartz, 1991. An Analysis 
of Rollback-Based Simulation. ACM Transaction of Modeling 
and Computer Simulation. 

[14] D. M. Nicol, 1991. Performance Bounds on Parallel Self-
Initiating Discrete Event Simulations. ACM Transaction of 
Modeling and Computer Simulation.  

[15] J. K. Peacock, J. W. Wong and E. C. Manning. 1979. Distributed 
Simulation using a Network of Processors. Computer Networks: 
3(1): 44-56 

[16] Christian Schaubschlaeger, 1999. Measurements of SKaMPI, 
Version 2.2 of SGI Origin 2000 at GUP/ZID, University of 
Linz, Austria. 

[17] L. Soule and A. Gupta, 1991. An Evaluation of Chandy-Misra-
Bryant Algorithm for Digital Logic Simulation. ACM 
Transaction of Modeling and Computer Simulation.  

[18] L.G. Valiant, A Bridging Model For Parallel Computation. 1990. 
Communications of ACM. 


	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index




