
Predicting the performance of synchronous discrete event simulation systems

Jinsheng Xu and Moon Jung Chung
Department of Computer Science

Michigan State University
{xujinshe,chung}@cse.msu.edu

ABSTRACT

In this paper we propose a model to predict the performance of
synchronous discrete event simulation. The model considers
parameters including the number of active objects per cycle, event
execution granularity and communication cost. We derive a single
formula that predicts the performance of synchronous simulation.

We have benchmarked several VHDL circuits on SGI Origin 2000.
The benchmark results show that the prediction model explains more
than 90% of parallel simulation execution time. We also measure the
effect of computation granularity over performance. The benchmark
results show that although higher granularity can have better speedup
because of dominance of computation over communication, the
computational granularity cannot overshadow the inherent
synchronization cost. This model can be used to predict the speed-up
expected for synchronous simulation, and to decide whether it is
worthwhile to use synchronous simulation before actually
implementing it.

Keywords
Parallel Discrete Event Simulation, Synchronous Simulation,
Synchronization Cost, Communication Cost, Granularity,
Performance.

1. Introduction

Synchronous simulation is one of the simplest and easiest parallel
simulation protocols. It, however, may suffer from poor performance
because only events with the smallest timestamp can be executed. For
every cycle, processors are synchronized, making processors wait
until all other processors finish their event execution. Frequent
synchronization makes synchronous simulation more prone to the
situation when the load is unbalanced in certain time stamps [9]. This
does not mean that synchronous simulation should not be used.
Except from additional communication cost, synchronous simulation
has little overhead compared to a sequential simulation. Although
conservative and optimistic simulations can exploit more parallelism,
they have much more overhead than synchronous simulation, which
can make the overall performance worse than synchronous
simulation. Soule and Gupta evaluated the Chandy-Misra algorithm
[3] for digital logic simulation. They found that overhead of Chandy-
Misra algorithm overwhelm its advantage and the performance is
about three times slower than traditional parallel event-driven
algorithm [17].

In this paper we propose a model to predict the performance of
synchronous simulation. Parameters of the performance model can
be obtained from the circuit characteristics and parallel computer

 This work was supported in part by HPCMP program F33615-96-C-1913
and NSF DMI-0075396.

systems. From this model and parameters, we can decide whether it is
worthwhile to use synchronous simulation before actually
implementing it. Synchronous simulation cost includes computation
cost, communication cost and idle time waiting for others to finish
event execution. This waiting is caused by load unbalancing in some
time steps. The cost of longest executing processor is considered as
the computation cost of each time step. For other processors that have
shorter execution time will have to wait for the longest executing
processor before all of them can proceed to next time stamp. After
each time step, all the processors exchange message. This parallel
programming model can be categorized as a BSP programming
model [18].

Agrawai and Chakradhar [1] considered only load unbalancing factor
for synchronous simulation. They gave a statistical model for
synchronous simulation. Given a system with uniform granularity of
event execution and with random partitioning, an object is active with
a probability of activity rate. The number of independent random
variables is the same as the number of objects in the system. At each
cycle, different processors have different number of active objects
while the cost of the cycle is determined by the maximum order
statistics of binomial random variables. They proposed a performance
model based on the number of objects together with the activity rate.
They compared the theoretical prediction with the benchmark for
several circuits. However, they did not consider the communication
cost. In many cases, especially when the computational granularity is
small, communication cost should be considered.

In this paper, we first propose a different statistical model to predict
the distribution of load and the effect of load balancing factor. Our
model is based on multinomial distribution, and uses average number
of active object per cycle. To predict the performance of synchronous
simulation, we have developed a model based on the multinomial
distribution model and communication model.

The communication overhead of modern message passing parallel
computers includes the operating system overhead of dividing the
messages into packets, adding header information to the packets and
then putting the packets into hardware. Modern parallel computers
with advanced routing technique and high bandwidth, communication
overhead takes most part of total communication cost.

We have benchmarked several VHDL circuits on SGI Origin 2000.
The prediction result is close to benchmark results. Circuits with
large average active number of object per simulation cycle have
better performance because it has larger multiplication factor from
the maximum order statistics of multinomial random variables. We
also measured the effect of computation granularity over the
performance. The benchmark results show that although higher
granularity can have better speedup because of dominance of
computation over communication, the deciding factor over
performance is still active number which can both reduce the load
unbalancing factor and the communication cost. This can be seen
from the result that when the granularity is higher than some value

there is little gain in speedup. The computational granularity can
overshadow the communication cost but not the inherent
synchronization cost.

The paper is organized as follows: In section two we proposed
multinomial distribution model. In section three we proposed
prediction model due to load unbalancing factor. In section four we
discussed the communication model. In section five we derived our
final performance formula for synchronous simulation based on our
multinomial distribution model and communication model. We also
compared the performance model with empirical result.

2. The Model

The discrete event system we are interested in is all objects in the
system have the same granularity. This is applicable to the circuit
simulation where each object is a gate and there is not significant
difference between execution time of two gates. The other
assumption of the model is random partitioning. The objects in the
system are randomly partitioned to different processors. This allows
us to apply statistical methods to estimate the cost of the simulation.
Other partitioning algorithms can reduce the cost of message passing
by making as many events internal to its own partition as possible.
This will reduce the randomness of object distribution and will
potentially cause less accurate estimations.

Figure 1 shows the synchronous algorithm our simulation is based
on. The algorithm runs with parallel message passing system. GVT is
computed by piggybacking the next smallest timestamp in the event
message sent per cycle. This algorithm has the advantage of
removing the cost of broadcasting and reducing cost, but it needs to
send a null message to other processors when there is no event for
some cycles.

Fig. 1. Synchronous algorithm our model based on

This is a very simplified synchronous simulation model. There are
optimizations to this model. We are interested in this model because
it enables us to derive a nice performance prediction formula and we
believe other complex models can be reduced to this simple model
without significant loss of performance.

2.1 Multinomial Distribution

In this paper, we proposed a different statistical model for
synchronous simulation. We emphasized the importance of the
average number of active objects per simulation step rather than the
activity rate. A system with a large number of objects with a low
activity rate may perform better than a system with a small number of
objects but with a high activity rate because the system with a large
number of objects with a low activity rate has a greater average
number of active objects per cycle. For simplicity, we will call the
average number of active objects per cycle, the active number. Based
on the average number of active objects per cycle, we proposed a
multinomial distribution model to model the distribution of load and
the effect of the load-balancing factor. An active object has the same

probability to be at any one of the partitions. There are an active
number of active objects per cycle and they are independent random
variables. The cost of each cycle is determined by the maximum
order statistics of the counting variables that are the number of active
objects distributed to different processors. The multinomial
distribution model reduces the number of parameters from two in the
binomial distribution model to just one variable – the active number.
The prediction is computationally easier for the multinomial
distribution model because the number of active objects is usually
much smaller than the total number of objects in the system. We
compared the two models and the results were close. In part three of
this paper, we discuss the multinomial distribution model and
compare simulation results with the benchmark results for several
VHDL circuits.

The active number for one cycle is different than that of another
cycle. The benchmark shows that the active number varies from cycle
to cycle significantly in circuit simulation. For the simplicity of
prediction formula, we are not considering the distribution of the
active number over the cycles. We use the average active number to
predict performance. The accuracy of the prediction shows that the
distribution factor of the active number in circuit simulation does not
have significant contribution to the final performance.

The active number is an inherent property of a circuit and other
discrete event systems. It is the most important factor for our
performance prediction model. There is question about how we can
acquire this number. If we already know the activity rate of the
circuit, we can estimate the active number by multiplying the total
number of objects with the activity rate. If we do not have the activity
rate, we can do sequential simulation with large enough cycles to
estimate the value of the active number.

The general idea that allows us to predict the performance of
synchronous simulation is based on the following simple observation.
If the objects are partitioned randomly enough and the behavior of
the discrete event system is random enough, we can assume that the
active objects for each cycle have multinomial distribution over
partitions. An active object has the same probability to be at any of
the partitions. There are active number of independent random
variables each cycle. The cost of each cycle is determined by
maximum order statistics of the counting variables that are number of
active objects distributed to different processors. If the number of
cycles is large enough, the average cost of each cycle will be close to
its expected value.

These are the terms we will use in this paper.
Notations and terms
o1,o2,...,on : a list of n objects in the discrete event system
t1,t2,...,tnumcycle : a series of discrete time and numcycle is the number
of cycles.
A[ti] : Number of objects that is active at time ti
A : The average of A[ti], i=1,2,…,max
S = A[t1] + A[t2] + ... + A[tmax] : Total number of activity
p : Number of partitions
cycle : a cycle is the duration of simulation for each discrete time ti

We assume the following three conditions.
Condition 1:
A[ti] > 0, for all i
 A[ti]=0 means there is no object active at time ti. It is not necessary
to have discrete time ti.
S >> A[ti]
This means that simulation has a wide range of discrete time and does
not finish in a few cycles.

Each processor executes the following code:

while (GVT < MAXGVT) {
 Execute all the events with GVT;
 Send events to other processors with LVT attached;
 Receive events from other processors;
 Compute the GVT with piggybacked LVT;
}

Condition 2: Randomness
 At each cycle, an object has equal probability of being active with
all other objects.
Condition3: Uniform granularity
 Each object takes a unit time to execute an event.

3. Prediction Model due to Load Balancing

factor

In this section we will derive the computation cost under the
multinomial distribution model and compare it with the benchmark
result. We also propose a multiplication factor, which describes the
degree of load unbalancing.

3.1 Total computation cost

The cost of each cycle is the maximum number of active objects
among all partitions. We denote the cost of each cycle by C[ti] =
max(Ak[ti]), where Ak[ti] is number of objects active at partition k and
A1[ti] + ... + Ap[ti] = A[ti]. p is the number of processors the
simulation is running on. The cost of the whole simulation is C[t1] +
C[t2] + ... + C[tmax]. Since we have assumed that each active object
has equal probability of being present at any of the partitions, A[ti]
objects that are active at time ti, are randomly distributed to p
partitions. Therefore the cost of each cycle can be estimated by the
expected value of the maximum order statistics of counting variables
that are the number of active objects distributed to p partitions. The
cost of each cycle is a function of A[ti] and p which denote as E(A[ti]
,p). The closed formula for function E(A[ti] ,p) may not be easy to
obtain. Instead of trying to find the closed formula for the function,
we can use simulation to get the result of the function with good
accuracy. Total simulation costs due to execution of events should be
Numcycles*E(A,p), where A is the average of A[ti].

3.2 Multiplication Factor

We want to measure the degree of load unbalancing with different
average number of active objects per cycle. We now define the
multiplication factor as follows. Suppose that the average activity
number of objects per cycle of a circuit is A and the circuit is
partitioned to P parts. Suppose E(A,p) is expected value of maximum
order statistics of counting variables that are number of objects
distributed to P partitions. We define multiplication factor M as:

APPAE
PAM

/*),(

1
),(=

M is a function of A and P. Table 1 shows the value of the
multiplication factor over different values of A and P. The range of
multiplication factor is from 0 to 1 exclusive. The multiplication
factor shows the efficiency of parallel simulation. Larger
multiplication factor means lower degree of load unbalancing. The
multiplication factor increases as A increases and P decreases.
Therefore, the synchronous parallel simulation will be more efficient
with a larger A and smaller P.

Multiplication factor
A/P 2 4 8 16 32

1 0.50 0.25 0.13 0.06 0.03
10 0.80 0.60 0.41 0.27 0.17

100 0.93 0.83 0.70 0.57 0.43
1000 0.98 0.94 0.87 0.81 0.72

10000 0.99 0.98 0.96 0.93 0.89

Table 1. Multiplication factor for different A and P

The speedup can be defined using multiplication factor as:

S(A,P) = P*M(A,P)
Table 2 shows the speedup for the A and P of above table.

Speedup
A/P 2 4 8 16 32

1 1.00 1.00 1.00 1.00 1.00
10 1.61 2.38 3.31 4.29 5.29

100 1.85 3.31 5.63 9.07 13.73
1000 1.95 3.76 6.94 13.02 23.06

10000 1.98 3.92 7.69 14.95 28.57

Table 2. Speedup table for different A and P

Table 1 and 2 show that for large A there is little loss of efficiency,
but for small A the loss of efficiency is significant. For example when
A is 100 and P is 32, the load unbalancing will cost 57% of the ideal
speedup.

Comparisons with Benchmark

Theoretical vs. Empirical
We ran several VHDL circuits sequentially up to some large enough
time limits. We are able to get the total number of executions and
number of cycles. The benchmark circuits used are based on VHDL
Description of ISCAS circuit. The activity number is derived from
the quotient of number of executions divided by number of cycles.
Table 3 shows the results for s35932_structural, s15850_structural,
s9234_structural and multi32_arraymulti32.

Number of Executions, Cycles and Activity Number
Circuit S35932 S15850 S9234 Multi32
Number of Executions 3294920 257457 143965 2303858
Cycles 3499 4415 3258 1998
Avg. Activity Number 942 58 44 1153

Table 3. Number of Executions, cycles and Average Activity
Number

When these circuits are partitioned to a number of processors, the
cost of each cycle is the maximum number of executions among
these processors. The sum of these maximum numbers of executions
for all cycles is the total amount of the computation. We can estimate
the total amount using our multinomial distribution model with the
average activity number.

To see how accurate the estimation is, we randomly partitioned the
objects into a different number of parts where each part had the same
number of objects. We then recorded the number of executions for
each of these parts and recorded the sum of then maximum number of
executions of all parts for all cycles. This experiment was done
sequentially and there was no communication cost involved. Table 4
shows comparisons of the benchmark computation cost and the
estimation with the different number of partitions. The estimation is
quite close to the benchmark. Most of the estimations have errors less
than 2%. This shows that many circuits have random behaviors that
fit well to our multinomial distribution model. We compared the
result of the multinomial distribution with binomial distribution.
They both have good estimations of the benchmark. The number of
independent trials for multinomial distribution model is much less
than that of binomial distribution model because the number of
independent variables of the multinomial distribution model is much
less than that of the binomial distribution model. A more important
advantage of the multinomial distribution model is it only depends on
one parameter – the average number of active object per cycle. The
binomial distribution model needs the activity rate and the total
number of objects.

s35932
PE Empirical Multinomial Binomial Multinomial Error Binomial Error

2 1701621 1690454 1687933 0.66% 0.80%
4 877571 879266 877099 0.19% 0.05%
8 463184 466671 465514 0.75% 0.50%

16 254433 254690 253294 0.10% 0.45%

s15850

PE Empirical Multinomial Binomial Multinomial Error Binomial Error
2 138725 142112 142378 2.44% 2.63%
4 77702 82084 82048 5.64% 5.59%
8 48511 50101 49892 3.28% 2.85%

16 29089 32552 32526 11.90% 11.82%

s9234

PE Empirical Multinomial Binomial Multinomial Error Binomial Error
2 81135 80534 80564 0.74% 0.70%
4 45804 47469 47519 3.64% 3.74%
8 29635 29596 29515 0.13% 0.40%

16 19591 19670 19598 0.40% 0.04%

multi32

PE Empirical Multinomial Binomial Multinomial Error Binomial Error

2 1172691 1178893 1176680 0.53% 0.34%

4 605081 611254 608103 1.02% 0.50%

8 317674 322804 319431 1.61% 0.55%

16 168821 174766 171944 3.52% 1.85%
Table 4. Comparison of theoretical and empirical results

3.3 Speedup and Multiplication factor

From results of the above experiment we obtained the speedup for
those four VHDL circuits. Therefore, the speedup was calculated
from pure computation with no consideration of communication cost.
Figure 2 shows the speedup graph for the VHDL circuits we used
above. The multi32 has the best performance while s9234 has the
worst. From Table 3 we can see that multi32 has the highest average
activity number and s9234 has the lowest average activity number.
The speedup is directly related to the average activity number of a
circuit.

From the multinomial distribution model, we can see that the speedup
is a non-decreasing function of the number of processors. We ignored
the communication cost for all previous analysis. If the
communication cost is considered, the speedup will not be a non-
decreasing function. Indeed if the number of partitions increases over
a certain threshold, the performance will be suffered because some
processors are just waiting for other processors to finish their work.

Speedup

1

6

11

16

1 5 9 13
Number of Partitions

S
p

ee
d

u
p

s35932

s15850

s9234

multi32

Fig. 2. Speedup graph

4. Communication Model

In this section, we propose a prediction model based on the
communication cost and the synchronization cost. The
communication overhead of modern message passing parallel
computers includes the operating system overhead of dividing the
messages into packets, adding header information to the packets and
then putting the packets into hardware. For modern parallel
computers with advanced routing technique and high bandwidths,
communication overhead takes up most of the total communication
cost. Because of this we are only interested in the communication
overhead and will incorporate it into our prediction model.

There are several parallel models proposed. The LogP model is good
when the message is short [6]. The LogGP model is proposed to
incorporate long messages [2]. In the LogGP model the message with
size k is sent into network at time Onull+m(k-1), where Onull is
overhead and m is time per byte for a message. In this paper, we
considered Onull+m(k-1) as the communication overhead and, Onull as
the overhead for sending the null message. We ran the experimental
program on SGI Origin 2000. Figure 3 shows the change of
communication overhead of sending and receiving as size of message
increases.

Figure 4 shows the least square fit of communication overhead to a
linear formula. We assumed that the communication overhead O
follows following linear formula:

O = Onull + m*MsgSize
Where Onull is the overhead of sending a null message and m is the
increasing factor as size of the message increases. We used least
square method to estimate m and Onull. The value of m and Onull are
12.9*10-3 microsecond and 37.3 microsecond separately on SGI
origin 2000.

Communication Overhead(s+r)

0

50

100

150

200

0 5000 10000
MsgGran

M
ic

ro
se

co
n

d

Experimental

Fig. 3. Message overhead

Experiemental and Least Square
Estimation

0

50

100

150

200

0 5000 10000
MsgGran

M
ic

ro
S

e
c

o
n

d

Experimental

Linear Square
Estimation

Fig. 4. Least Square fit to a linear formula

5. Performance Model

Total execution time is the sum of computation time and
communication time. Our multinomial distribution model can
estimate the computation cost. From the activity number and the
number of processors, we can get the multiplication factor. The total
computation cost is Total Computation = G*N/(P*M), where P is the
number of processors; M is multiplication factor; G is the granularity
of computation for each execution of an event and N is the total
number of event executions.

The communication time depends on number of events generated.
Suppose that an average of E events are generated per cycle and C is
the total number of cycles. The total number of cycles is total number
of event executions divided by the active number. When the system is
partitioned into P parts, the number of events generated also follows
multinomial distribution. The cost of communication per cycle is
decided by the maximum order statistics of these multinomial
random variables. Therefore, the number of events generated per
cycle per processor is (E/P)*1/M. These events will be sent to P
processors. Therefore the event sending and receiving cost of a cycle
is P*((E/P)/(P*M)*m+Onull). Onull and m are the communication
parameters derived from part four of this paper. The total
communication cost is:

C*P*((E/P)/(P*M)*m+Onull)=Etotal/(P*M)*m+C*P*Onull

Where Etotal is the total number of events generated. Not all event
executions generate new events. Depending on the circuit, we have
Etotal=N*k, where k is the probability that an event execution
generates a new event. The number of cycles C can be represented as
N/A. The refined total communication cost is
N/(P*M)*(m/k)+N/A*P*Onull.

5.1 Predicted Speedup

The speedup is the ratio of sequential simulation time and parallel
simulation time. The following gives the predicted speedup of
synchronous simulation under our model.

nullcommcomp

seq

OPANkmMPNMPGN

GN

TT

T
Speedup

**/)/(*)*/()*/(*

*

++
=

+
=

The above formula can be simplified to:

A

P

G

O

MP

Gkm null *
*

/)/(1
1

++

G includes the event queue handling and event execution that can be
considered to be much larger than m and k is within a practical range.
The value of m, the unit cost of message per byte, is around 12.9*10-3
microsecond for SGI Origin 2000 and value of k, the event generation
rate, is dependent on the circuit and the values are around 0.1 for the
circuit we have tested. The value of G is dependent on the circuit too
and it is in the order of microseconds. Therefore, (m/k)/G is close to
0. This can be explained intuitively. The queue overhead plus the
object execution cost for generating one event is much larger than the
cost of sending a longer message with additional size of an event. We
removed (m/k)/G from the formula to get the simpler formula:

A

P

G

O

MP
null *

*

1

1

+

From this formula we can see that if A is fixed, the upper limit of
speedup is P*M when G >> Onull. When G is fixed the upper limit of
speedup is also P*M when A >> P. The large active number A has
the effect of reducing both computation and communication cost.
According to the formula, synchronous simulation performs best
when A is large. Although granularity G helps to overshadow the

communication cost, it cannot overcome the upper bound speedup
barrier of M*P.

5.2 Benchmark Results

Figure 5 shows the comparison of empirical speedup and theoretical
speedup for s5932 and multi32. The prediction formula predicts the
benchmark reasonably well. Figure 6 shows the effect of granularity.
We put some loops to the object execution to study the effect of
granularity over speedup on s35932 and multi32. Each unit of extra
granularity is around 20us. There is improvement of speedup when
extra G goes up from 0 to 1. But when extra G is over 1, there is no
significant improvement on speedup. This can be explained by our
prediction formula: when G*A >> Onull*P,

MP *

1 dominates

A

P

G

Onull * . For s15850, it has much smaller A than s35932, although G

is large
MP *

1 cannot overwhelm
A

P

G

O null *
. This caused the better

speedup for larger G.

Benchmark vs. Prediction (multi32)

0.00

4.00

8.00

12.00

16.00

2 6 10 14 18 22 26 30
Number of Processors

S
p

ee
d

u
p

Benchm
ark

Speedup

Empirical vs. Theoretical (S35932)

0.00

2.00

4.00

6.00

8.00

10.00

2 6 10 14

Number of Processors

S
p

e
e

d
u

p Empirical
Speedup

Theoretical
Speedup

Fig. 5. The empirical speedup vs. Theoretical speedup.

The Effect of Granularity (S35932)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

2 6 10 14

Number of Processors

S
p

ee
d

u
p

Comp Grain
Size = 0

Comp Grain
Size = 1

Comp Grain
Size= 2

Comp Grain
Size = 4

The Effect of Granularity (S15850)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

2 4 6 8 10 12 14 16

Number of Processors

S
p

ee
d

u
p

Comp Grain
Size = 0

Comp Grain
Size= 4

Comp Grain
Size = 8

Fig. 6. The effect of granularity.

5.3 Observation

The effect of granularity
Higher granularity can improve the performance because it can hide
the increasing communication cost as the number of processors
increases. This can be seen best in the speedup graph for s15850 with
varying granularity.

When the granularity is large enough that communication takes a
very small part of the total execution time, increasing the granularity
will not improve the performance. Inherent load unbalancing as
demonstrated by our multinomial distribution model restricts
speedup. The speedup of s35932 did not increase with the granularity
starting from two. The predicted communication cost of s35932 at
granularity two takes less than 12% of the total cost.

The cost computation vs. communication
The cost of computation decreases as number of processors increases,
while the cost of communication increases as the number of
processors increases. If the activity number is small or granularity is
small, then the computation takes a small portion of the total cost and
performance will suffer.

6. Conclusion

In this paper we proposed a performance model for synchronous
parallel discrete event simulation. From the speed-up formula derived
from our performance model, we can predict that synchronous
simulation performs better with a higher average active number of
objects per cycle. It can both reduce the load unbalancing factor and
communication cost. The large computation granularity can hide
communication cost but it cannot hide the effect of load unbalancing
caused the random distribution of active objects through a number of
processors. P*M determines the upper limit of speedup of
synchronous simulation, which is a function of the number of
processors and the average number of active objects per cycle.

Increasing the average active number of object per cycle is the key
for improving the performance of synchronous simulation. In the
forthcoming paper, we are planning to propose a relaxed synchronous
algorithm that can increase this number and improve the
performance. The error of our prediction result compared with the
benchmark result is less than twenty percent. This result can give
some hint on whether it is worthwhile to use synchronous simulation
before actually implementing it.

7. References

[1] Vusgwani D. Agrawai and Srimat Chakradhar, 1992.
Performance Analysis of Synchronized Iterative Algorithms on
Multiprocessors Systems. In IEEE Transactions on Parallel and
Distributed Systems Vol. 3 No. 6, pp. 739-749.

[2] A. Alexandrov, M. Ionescu, K. E. Schauser, C. Scheiman, 1995.
"LogGP: Incorporating Long Messages into the LogP model -
One step closer towards a realistic model for parallel
computation", 7th Annual Symposium on Parallel Algorithms
and Architecture (SPAA'95)

[3] K. M. Chandy and J. Misra, 1979. Distributed Simulation: A
Case Study in Design and Verification of Distributed Programs.
IEEE Transaction on Software Engineering.

[4] Eunmi Choi and Moon Jung Chung, 1995. An Important Factor
for Optimistic Protocol on Distributed Systems: Granularity. In
Proceeding of Winter Simulation Conference.

[5] Moon Jung Chung, Jinsheng Xu and Hee Chul Kim, 1998.
Parallel VHDL Simulation Engine. Department of Defense High
Performance Computing Modernization Program, UGC98

[6] David Culler, et. al. 1993. LogP: Towards a Realistic Model of
Parallel Computation. ICSA 93.

[7] P. M. Dickens, D. M. Nicol, P. F. Reynolds, JR. and J. M. Duva.
1997. Analysis of Bounded Time Warp and Comparison with
YAWNS. ACM Transaction on Modeling and Computer
Simulations, Vol. 6, No. 4.

[8] R. E. Felderman and L. Kleinrock, 1990. An Upper Bound on
the Improvement of Asynchronous versus Synchronous
Distributed Processing. Proc. of the SCS Multiconf. on
Distributed Simulation, vol. 22.

[9] Alois Ferscha, 1995. Parallel and Distributed Simulation of
Discrete Event Systems. Handbook of Parallel and Distributed
Computing.

[10] D. R. Jefferson, 1985. Virtual Time. ACM Transaction of
Programming Languages and Systems, 7(3).

[11] Chu-Cheow Lim et. al. Performance Prediction Tools for
Parallel Discrete-Event SimulationGintic Institues of
Manufacturing Technology.

[12] Yi-Bing Lin, 1992. Parallelism Analyzers for Parallel Discrete
Event Simulation. ACM Transaction of Modeling and Computer
Simulation.

[13] B.D. Lubachevsky, A. Weiss and A. Shwartz, 1991. An Analysis
of Rollback-Based Simulation. ACM Transaction of Modeling
and Computer Simulation.

[14] D. M. Nicol, 1991. Performance Bounds on Parallel Self-
Initiating Discrete Event Simulations. ACM Transaction of
Modeling and Computer Simulation.

[15] J. K. Peacock, J. W. Wong and E. C. Manning. 1979. Distributed
Simulation using a Network of Processors. Computer Networks:
3(1): 44-56

[16] Christian Schaubschlaeger, 1999. Measurements of SKaMPI,
Version 2.2 of SGI Origin 2000 at GUP/ZID, University of
Linz, Austria.

[17] L. Soule and A. Gupta, 1991. An Evaluation of Chandy-Misra-
Bryant Algorithm for Digital Logic Simulation. ACM
Transaction of Modeling and Computer Simulation.

[18] L.G. Valiant, A Bridging Model For Parallel Computation. 1990.
Communications of ACM.

	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index

