A Simulation-Based Method for the Verification of Shared
Memory in Multiprocessor Systems

Scott Taylor!, Carl Ramey?, Craig Barner®, David Asher®
Compaq Computer Corporation

Abstract

As processor architectural complexity increases, greater effort
must be focused on functional verification of the chip as a
component of the system. Multiprocessor verification presents
a particular challenge in terms of both difficulty and
importance. While formal methods have made significant
progress in the validation of coherence protocols, these
methods are not always practical to apply to the structural
implementation of a complex microprocessor. This paper
describes a simulation-based approach to modeling and
checking the shared-memory properties of the Alpha
architecture by using a directed acyclic graph to represent
memory-access orderings. The resulting tool is integrated with
a simulation model of an Alpha implementation, allowing the
user to verify aspects of the implementation with respect to the
overall architectural specification. Both an implementation-
independent and an implementation-specific version of the tool
are discussed.

Keywords

Microprocessor, Functional Verification, Shared Memory,
Checking

1. Introduction

Multiprocessor (MP) systems are becoming very popular in
high-performance technical computing, where massively
parallel applications can make use of many processors in a
single system box. For example, the EV7 processor can
support up to 128 processors in a single system configuration

[1].
1.1 The Alpha Shared Memory Model

In a shared-memory multiprocessor system, many programs on
many processors may be contending for access to a single
memory location. When multiple programs access the same
memory location, the value of a location read by a CPU may
not match the last value written by that CPU. The
specification of the Alpha architecture contains specific rules
for cache coherency, data sharing, atomic update mechanisms,

! Now employed by Intel Corporation
2 Now employed by Stargen, Inc.

¥ Now employed by Cavium Networks

memory ordering considerations, visibility rules for data as
seen by other processors, read/write ordering, etc. [2]

This specification allows programmers to write shared-
memory programs for any implementation of the architecture,
while keeping processors free to implement efficient memory
systems [2]. The architecture is not required to maintain strict
program order of all memory accesses. On an Alpha
processor, the following sequence is perfectly legal (Example
1-1):

Assume memory is initially O for all locations, and that address
X 1= address Y.

Example 1-1:

CPU-0

ST2 X (store, value=2 to address X)

ST2 Y (store, value=2 to address Y)

CPU-1

LDY 2 (load from address Y, value received was 2)

LD X 0 (load from address X, value received was initial 0)

Alpha allows the two stores in the above example to be
reordered in the memory system. If the programmer wants the
ordering to be maintained, they must explicitly order the
references via a “memory barrier” instruction. A memory
barrier guarantees that all subsequent loads or stores will not
access memory until after all previous loads and stores have
accessed memory, as observed by other processors.

One of the most interesting reorderings allowed by Alpha is
the ST-LD program order of accesses on a single CPU. The
Alpha specification allows the following memory accesses to
be reordered (Example 1-2):

Example 1-2:
CPU-0

ST2 X
LDX 2

Even though the LD in this example can be ordered’ before the
ST, it must “see” the value written by the ST. (Consider the
programming implications were this not true.) By allowing
these accesses to be reordered, a processor can tolerate LDs
consuming data from write buffers before that write has been
made available to other processors. The property that causes
the LD to “see” the ST and allows programmers to write
meaningful programs is called “visibility”.

The Alpha architectural reference manual lists a formal set of
properties and rules for accessing shared-memory regions that
provides both constraints for hardware and expectations for
software.

1.2 Implications of Multiprocessor Architectures

Shared-memory multiprocessing presents a difficult problem
to the verification engineer. One of the realities of functional
verification is that formal verification methods are not yet
capable of handling a full design. Thus, we must still rely
upon simulation for the bulk of our verification. Often, the
memory-ordering rules for an MP architecture can lead to
complex interactions, which can further lead to post-silicon
bugs in an MP system [3].

For instance, consider a case in which multiple processors are
reading and writing a single memory location (such as an
operating system semaphore). It is not difficult to picture a
bug in which multiple processors think they own the block, or
where an atomic update fails and store-data from a processor is
lost. (Events in Example 1-3 are time-ordered [A], [B], etc.)

Example 1-3:

CPU-0

[A]JLDX 0 (Atomic load operation locks address X)
[CISTX 1 (Increment and atomic store, which passes)
CPU-1

[BILDX O (Atomic load operation locks address X)
[D]STX 1 (Increment and atomic store. Store

SHOULD fail due to [C] in the absence of a
bug)

1.3 Current Approaches to Multiprocessor
Verification

Traditionally, companies have verified MP-capable CPUs by
instantiating a single instance of the CPU and using a complex
test bench to mimic the behavior of all other processors in the
system [4,5,6,7]. However, the complexity of large MP
configurations make such a test bench difficult to implement
and increases the risk that valid sequences of events in an
actual system are not covered by the test bench. And while
formal methods have made significant progress in the

T Here, “ordered” refers to the order in which other processors in the
system “see” these memory accesses.

validation of coherence protocols [11-13], these methods are
not always practical for the implementation of a protocol
within a complex microprocessor.

This led the EV7 team to try an additional approach—
performing MP verification by instantiating multiple instances
of the RTL (Register Transfer Level) code and designing a
new simulation checker to detect memory
coherency/consistency violations. This gives the benefit of
realistic inter-processor communication, but at the cost of
simulation size and performance.

It also became clear that the complex cross products of
memory accesses in a ccNUMA architecture such as EV7,
DASH [8], and SGI’s ORIGIN2000 [9] would require better
coherency checking techniques to cover correctness,
deadlock/starvation avoidance, races, and other special events
in the memory system.

Many previous Alpha simulation environments checked results
using a generalized reference model for each CPU in the
system. This model was typically connected to a simple array-
like memory, similar to Figure 1. The reference model
executes each instruction and updates all architectural state
(such as register values, program counter, and memory).

The reference model’s memory behaves as a single-ported
array to which the reference model can read and write data. If
a location is written with a value, that value is returned on the
next read. But this configuration is ineffective in a system that
contains multiple processors writing the same memory
location. The value read on a CPU is not necessarily the last
value written from that CPU.

A simple solution to this problem is to treat all shared memory
in a simulation as unpredictable. The reference model would
then “trust” all values that were loaded from regions of
memory in which other processors are allowed to write. All
non-memory instructions would then have the benefit of
complete runtime checking because both the reference model
and the simulator would be executing each instruction using
the same register contents.

Reference Model Reference Model

RTL Model

Execution Test Bench Test Bench Execution

Model’s with with Model's

Memory memory memory Memory
Instruction Instruction
Execution «— CPUO CPU1 H Execution

Model Model

Errors Errors
Figure 1

The “unpredictable memory” solution clearly leaves
opportunities for bugs to go undetected. For example, if no
other processors happened to write the location then the value
read should be the same as the value written. In order to check
that the data read from a shared-memory location is legal
within the shared-memory specification, the reference model
must use some type of system-wide shared-memory model.

Ideally, the simulation environment could contain a single
memory with which all reference models would communicate.
But, when reference models do not exactly match the timing of
the simulated RTL, memory ordering at the reference level
will not match the ordering at the RTL level. In these cases, it
is not possible to simply connect all reference models to a
single array-like memory: Even if CPU-0 completes a store in
its reference model before CPUI completes a store in its
reference model, the memory order of those stores in the RTL
cannot be predicted, and the final value of that memory

location is not simply the last store completed by the reference
model.

The reference memory problem can be broken into three
distinct categories: memory data storage, memory data
checking, and protocol checking. The latter was determined to
be a critical verification bottleneck, so a new tool was
developed to address this issue. As you will see in the next
section, the first two issues can be trivially solved within the
framework of the protocol checker.

2. The Memory Order Model

2.1 Concept

The Memory Order Model (MOM) allows the results of
shared-memory simulations to be checked against the Alpha
shared-memory specification. Rather than shared memory
being treated as unpredictable, MOM can dynamically decide
whether the data returned for a load is legal.

MOM provides results checking not just for data integrity, but
also for ordering violations. Consider Example 2-1:

Example 2-1:

CPU-0 CPU-1
ST2 X ST3 X
LDX 3 LDX 7

Given that the LD on CPU-0 returned the result from the ST
on CPU-1, we know that the ST on CPU-1 must have occurred
after the ST on CPU-0 (regardless of the order of reference
model completion). Since time must move forward, the LD on
CPU-1 must receive a 3 as well. In other words, the LD on
CPU-0 created an ordering between the two STs. This
ordering determined that “3" is the only legal value for the LD
on CPU-1.

A MOM-based simulation environment replaces all the
reference models’ memories with a centralized shared-memory

model (see Figure 2). This centralized memory verifies a
memory access’s validity against the Alpha shared-memory
specification.

RTL Model
Test Bench Test Bench
with with
memory memory
Instruction Instruction
Execution —b@«—— CPUO |« CPU1 Execution
Model Model
Errors Errors,
Memory Memory
Accesses Accesses
Memory
Order
Model
Errors
Figure 2

Traditional reference model based simulations use a reference
memory system only to provide data. If that data doesn’t
match the data in the simulated processor, an error is reported.
In a shared-memory environment, there is often more than one
“correct” answer, which is dependent on the execution-time
order of events in the simulation. It is not possible for the
shared-memory model to provide a single memory value to the
reference model. Instead, the reference model must rely on
(and trust) the value generated by the simulated CPU. This is
entirely acceptable because MOM will look at the simulation
memory data, compare it to the list of possible values, and
check that the received value is valid. The act of observing the
simulated data causes the state space of the memory model to
collapse into the observed state (similar to the behavior of a
quantum particle which collapses to a single state when
observed under Heisenburg’s Uncertainty Principle!). Thus,
both memory storage and memory data checking come “for
free” when checking the protocol. The reference memory
simply becomes a memory checker. The following section
highlights some of the more common violations that the
checker looks for.

2.2 Checking Shared Memory Properties

The memory order model is capable of detecting violations of
any of the rules and properties defined in the Alpha shared-
memory specification [2]. Three of the primary properties
checked by MOM are the visibility property, the storage
property, and the acyclic ordering (causality) property. The
code that implements these property checks is small—about
2000 lines of C++ code.

2.2.1 Visibility Property

A piece of data is "visible" to a CPU when that CPU can
legally consume it. The visibility rule states that a LD may

receive data from either the latest external* ST observed by the
LDs CPU, or it may receive data from the latest internal ST on
the LDs CPU (as ordered by the program order) whether or not
it is yet visible to other CPUs. Violations of the visibility rule
often occur when a load receives data from a write buffer entry
that is not the latest store in the program. In the Alpha
architecture, this condition is supposed to be detected by the
memory system and result in a LD-ST order trap. This
hardware trap detects that a load would receive stale data, and
schedules the load to re-try later (after the original ST
instruction has completed). See Example 2-2:

Example 2-2:
CPU-0
ST2 X

ST3 X —could issue to the memory controller after the LD
in an out-of-order machine.

LD X data=2 (load should have been trapped and wait to
re-issue after the second ST)

In the above example, both stores are visible on CPU-0 as
soon as they are reported to the memory order model. But the
second store is the most visible because it is ordered after the
first store. Note that the LD in this case may actually be
ordered before the stores because there is no strict ordering
requirement for LDs following STs in program order.

2.2.2 Storage Property

Violations of the storage property occur when the data read
from a location does not reflect the most “visible” data written.
This can occur if there is a bug in the logic responsible for
latching, byte aligning, or ECC-correcting the data. See
Example 2-3:

Example 2-3:

CPU-0

ST2 X

---Data is not properly latched, so stale data remains--
LDX datal!l=2

One can see that there could be cases where the stale data ==2
and we would miss the bug. This brings up the issue of data
uniqueness, which is covered later.

2.2.3 Acyclic Ordering (Causality) Property

Since memory access orderings are required to be acyclic
(time must move forward), this property may also be checked.
The following case (Example 2-4) would lead to a cycle
violation.

¥ Here, “external” refers to memory accesses from other CPUs or I/O
devices; “internal” refers to memory accesses originating from the
same CPU.

Example 2-4:

CPU-0 CPU-1
[A]ILDX 3 |[CILDX 2
[B]ST2 X [D]ST3 X

Since [C] received its data from [B], [C] is after [B]. By the
same reasoning, [A] is after [D]. We also have an ordering
between [A] and [B] due to the program order, as well as
between [C] and [D].

This leads to the cycle: [B] =>[C] => [D] => [A] => [B]

Violations of the acyclic property most often result from
violations of visibility properties. They can also occur when
the cache coherency protocol in a processor has broken down
and allowed multiple processors to gain write permission to a
block concurrently. The concurrent writes of multiple
processors can cause CPUs to observe memory accesses in
opposite orders (thus creating a cycle in the ordering graph).

2.3 Representation of Memory Events in MOM

MOM represents shared-memory orderings in a directed
acyclic graph (DAG). The nodes are memory accesses such as
loads, stores, instruction-fetches, and memory barriers. The
edges represent orderings between accesses. Figure 3 is a
representation of Example 2-1. If, for example, a store is
determined to be before a load, then there will be a directed
edge from the store node to the load node. The “Root” node
contains the initial value of all memory locations referenced by
the DAG.

Figure 3

As memory accesses are added to the DAG, the rules specified
in the Alpha shared-memory specification are applied. These
rules may lead to additional graph edges or changes in
visibility. An edge that would introduce a cycle in the graph
indicates a violation of the Alpha shared-memory specification
(Figure 4 illustrates Example 2-4):

Figure 4

Other shared-memory properties, such as visibility, storage,
and causality are also checked within the DAG.

2.4 Algorithmic Considerations

Early on in the development and testing of the shared-memory
model, it became clear that computational efficiency is critical.
Initial implementations of MOM achieved a test-bench
overhead of less than 15% for simple cases. However, test
cases containing hundreds of LDs and STs caused simulation
time to increase by orders of magnitude. Several techniques
were applied to reduce the run-time cost of the memory order
model.

24.1 Algorithmic Optimization

Many of the rules that are applied when accesses are added to
the DAG involve searches. To prevent the order model from
becoming a computational bottleneck in the simulation,
algorithms had to be implemented with O(Nlog(N)) worst-case
complexity. This was accomplished using common DAG data
structures/algorithms [10] to make graph searching more
efficient. Other search optimizations involved traditional
techniques such as height-based termination and node marking
to deal with reconvergent fanout.

Applying these optimizations at the expense of memory usage
allowed the model to process thousands of nodes before its
computational requirements began dominating the simulation.

2.4.2 DAG Size Reduction

Additional optimizations were required to allow efficient
simulations of hundreds of thousands of loads and stores.
Reducing the size of the DAG is the other major component of
optimization. The method for optimizing the DAG takes
advantage of the knowledge of what rules can be applied to
memory accesses. Accesses that are no longer needed are
collapsed from the DAG and their state is moved to the root
node. Referring again to Figure 3, if no CPU has seen the
data stored by CPUO, and anyone sees the data stored by
CPUI1 (as with CPUO’s load), then the “ST 2” node is no

longer visible within the system and can be collapsed into the
root node. The root node’s “initial value” for that address
would be set to “2” as a result.

This collapsing optimization allows simulations to dispose of
unimportant DAG nodes. Whenever graph updates have
occurred, MOM sweeps through the candidate nodes and
collapses appropriate nodes. Using the collapse method,
simulations of hundreds of thousands of accesses can easily be
achieved without the memory order model becoming a
significant computational or memory drain relative to the RTL
simulator.

Another way to reduce the number of nodes in the graph
involves trading off some implementation independence. By
using specific knowledge about an implementation’s access
properties, the DAG size can be further reduced by avoiding
the creation of unnecessary nodes. Any such assumptions
about an implementation must then be checked either by the
memory order model or by an additional assertion built into
the simulator.

2.5 Tracking Data

Each implementation of the Alpha architecture must build
specific hooks to communicate with MOM. One such hook
must report the program order of memory accesses on a given
CPU. This data is necessary to allow the DAG entries for that
CPU to be inserted with the proper ordering. This hook
provides MOM with the ability to do data checking in MP
shared-memory simulations. But another more complex
simulation hook is needed to provide MOM with the ability to
check for compliance with the shared-memory specification.
Namely, MOM must be able to determine which store
produced the data received by each load. Doing so requires
that we associate a unique identifier for each datum associated
with a memory location.

251 Tracking Based on Data Uniqueness

For unique data, this task is trivial; the received data can be
used to determine the store that created it. However, if two
different CPUs perform stores of the same value to the same
location and a load subsequently consumes that value, MOM
cannot rely on the received data to distinguish between the two
stores. This may seem like an unlikely event, but consider a
semaphore contention test where the semaphore is always O or
1. Also, the Alpha architecture supports an instruction that
zeroes out an entire 64-byte cache block. So, consider a
program instruction sequence in which the cache block is
zeroed out, partially written, then zeroed out again. If a load
were to receive zero, it cannot be determined if the load
received the first version or the third version of the memory
location simply from the data received. While this program
sounds useless, such sequences must be verified to be in
compliance with the Alpha shared-memory specification.

This issue can be solved in many (but not all) cases by careful
analysis of the non-unique store data. For instance, if there are
two potential sources for the data, and one is definitely illegal,

we can assume the load is associated with the legal one. If this
leads to a conflict or cycle later on, then there is a bug. If
there are multiple store scenarios (i.e., multiple combinations
of stores that could have sourced all the observed bytes of the
load), then MOM will apply its “best guess” of the correct
sequence (potentially allowing a bug to slip through!). This
has been measured to occur less than 1% of the time in random
simulations.

2.5.2 Tracking Based on Data Versioning

That 1% could be caught if MOM avoided the unique data
constraint by associating a unique identifier, or version, with
each memory access that occurs in the system. This identifier
allows MOM to reference a specific memory access when
reporting errors or updating state, and allows the tracking of
non-unique data as well.

To provide this capability in the RTL-to-MOM interface, a
version-tracking module was developed. It was the
responsibility of this module to shadow all data movements
through the memory subsystem and inherently across multiple
processors with version movements. If a block of data is
moved anywhere, its version must also be moved.

During the verification of EV7, a "version buffer" (VB) was
created for the register file, the store queue, the L1 instruction
cache, the L1 data cache, the L2 instruction/data cache, the
router, main memory, the victim buffers, and even the I/O
ASIC. These version buffers contain the versions of memory
locations residing in the corresponding structure within the
simulated RTL. The version tracker watches the RTL for
movements between these data-storage structures and moves
the corresponding version identifier between the
corresponding version buffers. As an example, consider a load
that hits in a remote processor’s L2 cache. The simulated RTL
will first move the data to a victim buffer. The version tracker
will consequently move the data's version from the L2 VB to
the victim buffer VB. Next, the RTL will move the data to the
router, and the version tracker will move the data's version
from the victim buffer VB to the router VB. Eventually the
data will reach the router of the processor from which the load
originated. The version tracker will then move the version
from the remote processor's router VB to the requesting
processor's router VB. Lastly, the data fills into the L1 data
cache and the register file. This causes the version tracker to
move the data's version from the router VB to the L1 data
cache VB and also to the register file’s VB.

Using the version-tracking module, the interface can inform
MOM of not only the data that was received, but also the
version that was received, with a resulting independence from
data uniqueness constraints. However, this checking came at
great cost. The implementation of the version buffers was
extremely complex, time-consuming, and highly dependent on
the implementation of a particular processor. Fortunately, this
effort overlapped with the creation of other cache coherency
checking software and reduced the net cost of the version
buffer development.

2.6 Implementation-Dependent Checking

If the model only reported errors on orderings that violate the
Alpha shared-memory specification, it would not detect bugs
that violated an implementation’s cache coherence protocol
(unless that breakdown eventually led to the violation of an
architectural shared-memory property). Implementations also
commonly maintain coherence by creating memory systems
that maintain more strict orderings than the shared-memory
specification requires. One such example: The Alpha memory
model allows more than one processor to have write
permission to a block concurrently. Having multiple unique
dirty versions of the data in the system is difficult to support,
so the feature has never been implemented in an Alpha
processor (instead, we assume that only one dirty copy of the
data may exist in the system for a given address).

MOM is well positioned to report violations of
implementation- specific assumptions about orderings. This
allows robust checking against both the implementation-
specific and the generic Alpha memory specifications. This
type of implementation-specific check typically catches cases
where more than one processor does get write permission to a
block concurrently. For this bug to become an ordering
violation, a series of events would need to occur such that two
CPUs observe different orderings of the writes to the cache
line. Putting the implementation-dependent checks into the
order model allows the bug to be detected immediately rather
than waiting for the necessary observability conditions to be
met.

There are many other areas in which an implementation may
implement rules that are stricter than the Alpha architectural
specification requires. Examples include atomic data update
instructions, IO processing, and cache management
instructions.

2.7 Debugging MOM failures

Debugging memory order failures can be a daunting task.
Violations of ordering rules can manifest themselves long after
the actual bug has occurred in the simulation. The user may
only see the effects of an illegal cache transaction after the
block has passed through several other processors.

It is also common for a bug to require dozens of memory
accesses to create the visibility and ordering components
necessary for failure. A user can easily be overwhelmed when
looking through text-based representations of the memory
accesses and resultant orderings.

To simplify debugging of failure cases as well as the order
model itself, we use a visual representation of the DAG. The
viewer displays a typical graph representation with memory
accesses shown in boxes containing pertinent information
about the access and with arrows between the boxes
representing the directed edges (memory orderings), similar to
Figure 3. This representation allows the user to quickly see
the relationships between memory accesses leading up to the
failure. The visualization is linked to the simulator such that it

is updated concurrently with the internal data structures. The
visualization tool also minimizes nodes from uninteresting
parts of the graph.

The memory order model’s visualization tool along with text
based debugging tools and RTL model debugging tools have
allowed users to efficiently determine the source of memory
order specification violations.

3. Reaults

MOM has been used on two successive generations of the
Alpha architecture, one using the data uniqueness tracking
method, and the other using the version buffer tracking
method. As stated earlier, only 1% of the total loads are
thrown away in the data-based method. The data-based
method is nearly implementation-independent, because only a
simple simulation hook is needed to report retired memory
accesses. Thus, a new project can get 99% coverage of
memory contents very early in a project. As the project
stabilizes, version buffers can be added to catch the last 1% of
interesting data-dependent memory operations.

3.1 Bugs

Theoretical and experimental results indicate that we could
detect memory-order-related bugs 35% earlier in a test case
when activating MOM. This, however, is not a good measure
of effectiveness because MOM incurs a certain percentage of
simulation overhead for both passing and failing cases.

The effectiveness of MOM can be better measured in its
ability to find unique bugs that are undetectable by other
means such as assertion checkers, reference models, or
(formal) verification of the high-level coherence protocol.
Table 1 summarizes MOM-detected bugs as found on
EV7/EVS:

% Bugs detected simultaneously by MOM and | 38%
other mechanisms:

% Bugs detected first by MOM, but which | 61%
could be found by other mechanisms later in the
simulation or later in the project:

% Bugs that are detected by MOM but which | 1%
could not be found via any other existing
checking mechanism:

Table 1

The first category of bugs generally occurs in memory
accesses that are not to shared memory locations. Bugs of this
nature are usually simple single-stream memory ordering
issues on the same processor where the loaded data doesn’t
Match the most recent store.

The second category of bugs can have several sources. If
MOM detects an error during insertion of a node into the
DAG, that error might not be visible to the RTL unless the
memory location is subsequently accessed. This may or may
not happen during the current simulation test case. Bugs can

also be hidden from checkers if subsequent store data
overwrites the bad data before any processor observes it. In
either case, it may take many simulation cases (which stimulate
the bug) before the necessary observability conditions are met.
In the pathological case, the conditions for observing the bug
in simulation may never be achieved.

The third category of bugs, while small, is the most important.
It usually occurs for loads from shared memory locations.
Here, a standard memory reference model would not be able to
predict the exact ordering of loads and stores, and consumers
of this particular memory location would be marked as
“unpredictable” and would not be checked. MOM is the only
mechanism capable of determining the correct answer in these
cases. Without MOM, it is likely that such bugs would have
reached the post-silicon testing stage.

3.2 Simulation Overhead and Scalability

One of the primary concerns when developing MOM was to
achieve low simulation overhead (in both computation and
memory) and excellent scalability from a single simulated
processor to hundreds of processors. Contributing factors
include:

e The ratio of memory instructions to non-memory
instructions in the simulation (affects number of DAG

nodes)

e Total number of memory accesses in a test case (affects
DAG width)

e Number of accesses to a particular address (affects
DAG height)

e Read/Write patterns of the stimulus (affects complexity
of the DAG node ordering, reconvergent fanin/out, etc)

e Uniqueness of data (Affects search time in DAG.
When not using version buffers, DAG must be searched
to find which stores may have generated the data
observed by a load)

Figure 5 illustrates these factors:

Performance Degradation Due to Memory
Data Complexity

45 —&— Memory Operations as % of Total Instructions
40 4 —&— Total Memory Accesses fou]
35 | —&—Total Accesses to a Single Memory Location
g 20 . —— R/W Complexity / ;
£ —@— Data Uniqueness //
E 254 —@—Total Performance Degradation / /
o 20
- A/ _a
&
10
=
0 T T T

Low Memory Data Complexity High

Figure 5

Note that, when not using version buffers, performance for
complex cases is dominated by the non-uniqueness of the data.
This is because the DAG search/data-resolution overhead
increases dramatically when multiple sources for a data value
exist. These non-unique data cases were minimized by the
intelligent generation of data values by the pseudo-random test
scripts... most MOM simulations incurred approximately 10%
overhead in the EV8 simulation environment. MOM was
typically disabled during simulations that tested non-memory
subsections, which also reduced the total cost of running the
tool.

3.3 Future Work

While the memory order model has found many bugs, it still
has numerous areas that can be enhanced. There is always
room for improvement in efficiency, error checking, and
debugging capabilities. Work is underway to reduce or
simplify the memory order model’s dependence on
implementation-specific features. Each new implementation
currently requires new version modules and new rules.

Another significant task is to formally prove that the memory
order model itself implements and fully checks the Alpha
shared-memory model. Without formally verifying that the
model accurately represents and checks an implementation’s
memory access ordering, we may be reporting errors on
orderings that are in fact legal... or much worse, we may be
allowing violations of the formal specification to slip through
the checker. Until formal verification is performed on the
order model, the engineering team is relying on the informal
interpretation of the specification.

4. Conclusion

The memory order model has proved to be a valuable
verification resource by helping to find difficult multiprocessor
bugs. While flagrant violations of the Alpha shared-memory
specification are not common in the functional development
stage, it is common to find subtle problems with the cache
coherence protocol that can lead to ordering and visibility
violations. The primary benefit of the order model is that it
allows the verification team to run shared-memory MP
simulations with confidence that memory data is being
checked. Other solutions to this problem, such as complex
run-time assertions, formal verification, or tightly controlled
directed stimulus, require very tightly restricted stimulus
generation, impacting the time necessary to create cases and
the quality of the cases, or provide sporadic checking.

5. Acknowledgements

Several individuals helped to generate and analyze the data
contained in this paper. The authors would like to thank Joe

Huber, Soohong Peter Kim, Thomas Labonte, Michael Quinn,
and Greg Trendel for their assistance.

6. References

[1] Jain, A., et al., “A 1.2 GHz Alpha Microprocessor with
44.8 GB/sec of chip pin bandwidth”, ISSCC 2001
Proceedings.

[2] The Alpha Architecture Committee, Alpha Architecture
Reference Manual, Digital Press, 1998.

[3] Intel Corporation, “Pentium II Xeon Processor
Specification Update”, order number 243776-003, 1998.

[4] Mike Quinn, Scott Taylor, et al., “Functional Verification
of a Multiple-issue, Out-0f-Order, Superscalar Alpha
Processor — the Alpha 21264 CPU Chip,” Proceedings of
the 35" Design Automation Conference, June 1998.

[5] D. Marr, et al, “Multiprocessor Validation of the Pentium
Pro Microprocessor,” Intel White Paper.

[6] J. Yen, et al., “Multiprocessing Design Verification
Methodology for Motorola MPC74XX PowerPC
Microprocessor”, Proceedings of the 37" Design
Automation Conference, June 2000.

[7] D. Marr, et al., “Multiprocessor Validation of the Pentium
Pro”, IEEE magazine, November 1996, pp. 47-53.

[8] Lenoski, D., “The Stanford DASH Multiprocessor”, Ph.D.
Diss., Computer Systems Laboratory, Stanford University,
1992.

[9] Laudon, J.P., and D. Lenoski, “The SGI Origin: A
ccNUMA Highly Scalable Server”, Proc. 24" Intl
Symposium on Computer Architecture, 1997.

[10] Lewis, H.R., and Denenberg, L., Data Structures & Their
Algorithms, HarperCollins Publishers, Inc., 1991.

[11] Pong, F., et al., “Verifying Distributed Directory-based
Cache Coherence Protocols: S3.mp, a Case Study”,

International Conference on Parallel Processing
(EuroPAR), 1995, pp 287-300.

[12] Nalumasu, R., et al, “The ‘Test Model-checking’
Approach to the Verification of Formal Memory Models
of Multiprocessors”, in A.J. Hu and M.Y. Vardi, editors,
CAV 98: Computer Aided Verification, Lecture Notes in
Computer Science 1427, Springer-Verlag, 1998, pp. 464-
476.

[13] Henzinger, T., et al., “Verifying Sequential Consistency
for Multiprocessor Memory Protocols”, Proceedings of
the 11th International Conference on Computer-aided
Verification (CAV 1999), Lecture Notes in Computer
Science 1633, Springer-Verlag, 1999, pp. 301-315.

	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index

